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Abstract
A multi-strategy hybrid whale optimization algorithm (MSHWOA ) for complex constrained opti-

mization problems is proposed to overcome the drawbacks of easily trapping into local optimum, slow
convergence speed and low optimization precision. Firstly, the population is initialized by introducing
the theory of good point set, which increases the randomness and diversity of the population and lays
the foundation for the global optimization of the algorithm. Then, a novel linearly update equation of
convergence factor is designed to coordinate the abilities of exploration and exploitation. At the same
time, the global exploration and local exploitation capabilities are improved through the siege mecha-
nism of Harris Hawks optimization algorithm. Finally, the simulation experiments are conducted on
the 6 benchmark functions and Wilcoxon rank sum test to evaluate the optimization performance of
the improved algorithm. The experimental results show that the proposed algorithm has more signifi-

cant improvement in optimization accuracy, convergence speed and robustness than the comparison

algorithm.

Key words: whale optimization algorithm (WOA) , good point set, nonlinear convergence fac-

tor, siege mechanism

0 Introduction

With the development of human society and econ-
omy, the complexity of optimization problems in practi-
cal applications is increasing and the traditional meth-
ods such as gradient descent method and Newton itera-
tion method can not meet the actual demand. There-
fore, numerous swarm intelligent optimization algo-
rithms'"’ based on the simulation of social phenomena
and organizational behaviors have been advanced by
many scholars. These swarm intelligent optimization al-
gorithms have the advantage of strong robustness and

self-organizing ability and are widely used in the fields
] [3]

’

of video defogging'?’ | satellite image segmentation

]

, and so on.

path planning*

Since Holland">' proposed genetic algorithm in
1975 by studying adaptive survival mechanism and
Darwinian evolution, many scholars have proposed a
variety of swarm intelligent optimization algorithms.
Among them, Mirjalili'"®’ proposed a new swarm intelli-

gent optimization algorithm—whale optimization algo-

rithm (WOA)in 2016, which simulated foraging behav-
ior of humpback whales. WOA algorithm has the advan-
tage of few adjustment parameters and high accuracy.
According to no free lunch theorem for optimiza-
tion, no algorithm can solve all optimization problems.
Therefore, similar to other swarm intelligent optimiza-
tion algorithms, WOA still has some shortcomings such
as easiness to fall into local optimal and slow algorithm
convergence in the late stage. In order to overcome the
shortcomings of WOA, many scholars have proposed
some improved versions of the WOA algorithm and ap-
plied them to real world problems. Chakraborty
et al. " designed a whale optimization algorithm based
on hunger search, which combined the hunger-driven
search concept with the hunting behavior of humpback
whales and improved the performance of WOA with the
help of the hunting characteristics of hungry whales.
Chen et al. '*) introduced Levy flight and chaotic local
search strategies into the whale optimization algorithm
to enhance the optimization ability of the algorithm in

complex environments. Hu et al.'”’ improved the

searching ability of whale optimization algorithm by in-
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troducing Cauchy mutation and simulated annealing
strategy, and applied the algorithm to radar task sched-
uling problem.

Although the improvement of WOA in the above
research has improved the performance of the algo-
rithm, the algorithm still has some problems such as
slow convergence speed and insufficient exploration.
Therefore, a multi-strategy hybrid whale optimization
algorithm ( MSHWOA )is proposed to improve the per-
formance and balance the exploitation and exploration
capability of the algorithm. The main contributions of
this paper are summarized as follows.

(1) The good point set is used to initialize the
population, which enhance the diversity of the popula-
tion and improve the convergence speed of the algo-
rithm in the early stage.

(2) The non-linearly varying convergence factor is
introduced to balance the exploration and exploitation
ability of the algorithm.

(3) The population siege strategy of the Harris
Hawk optimization algorithm is introduced to update
the shrinkage siege mechanism of the algorithm and en-
hance the speed of search for the optimal position by all
the whale individuals.

(4) The efficiency of the proposed MSHWOA is
evaluated on a comprehensive set of well-known bench-
mark functions and compared with a variety of competi-
tive swarm intelligent algorithms.

The remainder of this paper is structured as fol-
lows. The proposed MSHWOA algorithm is specified in
detail in Section 1. The experimentation and verification
of the proposed method on benchmark functions are
performed in Section 2. The conclusion and potential

future research directions are presented in Section 3.

1 Improved whale optimization algorithm

1.1 Position initialization using good point set
The distribution of the initial solution has an im-
pact on the search accuracy of the algorithm. The
standard WOA initializes the population in a random
way , and this method produces a poor uniformity of the
initial population, which reduces the search efficiency
of the algorithm to a certain extent. The theory of good

point set is applied to the population initialization stage

of MSHWOA , and the method of sub-circular domain

is adopted to construct the good point set in order to

improve the search ability of the algorithm''®’.

Let G, be the unit cube in the s dimensional space,

then .
Pn(k> = %<{rl (")k} ’ {rZ (")k} PR {r.s (">k} ) ’
k=1,2,-,n}
(1)
2wk .
where, r = {2cos(—=)},1 < k < s, and p is the
p
smallest prime number satisfyingp ; 3 = 5.

The deviation ¢ (n) satisfies ¢(n) = C(r,e)n"",
where C(r,&)n°""is a constant only related to £ and r( &
>0), {r, "k} represents the fractional part, n repre-
sents the number of points, and P,(k) is called the
good point set, and r is the good point.

The essence of the good point set is to construct a
uniform distribution of points in the unit cube G, in the
s dimensional space, and the distribution of points gen-
erated by using the good point set theory is more uni-
form than that generated by a random method.

The good point set is mapped to the search space
as shown in Eq. (2).

x,(j) = (ub, = 1b,) « {r, D gy + b, (2)
where , ub; and [b; denote the upper and lower bounds of
the j dimension respectively.

The initial population distribution of 100 particles
randomly generated in the two-dimensional search
space is shown in Fig. 1 (a), and the initial population
distribution of 100 particles generated in the two-di-
mensional search space using the good point set theory
is shown in Fig. 1 (b). Compared with the randomly
generated initial population in Fig. 1 (a), the popula-
tion generated by the good point set is uniformly dis-
tributed, which increases the diversity of the initial

population and helps avoid falling into local optimum.

1.2 Nonlinear variation convergence factor

The exploration and exploitation ability of the
WOA algorithm depends heavily on the variation of the
convergence factor a. The larger the convergence fac-
tor, the better the global search ability of the algorithm
and the better the ability to jump out of the local opti-
mum ; the smaller the convergence factor is, the better
the local exploitation ability of the algorithm and the

faster the convergence speed. However, in the basic WOA
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Fig.1 Population distribution

algorithm , the convergence coefficient decreases linear-
ly with the number of iterations from 2 to 0. This linear-
ly decreasing strategy makes the algorithm have better
global search ability but slow convergence speed in the
early stage, and fast convergence speed but easiness to
make the algorithm fall into the local optimum in the
later stage. This phenomenon is more obvious when
solving the optimal value of multi-peak function.

In order to make WOA have a strong global search
ability and maintain a fast convergence rate in the early
iteration, as well as a fast convergence rate and ability
of jumping out of the local optimum in the late iteration,
the value of @ should be large in the early iteration,
while be small when it enters the local search phase in
the late iteration. To this end, a convergence coefficient
update formula that varies nonlinearly with the number

of iterations is proposed as shown in Eq. (3).

0.45 log, (————
& Max_iter
a = (@ = ) + p (3)
1 —u-4—
M t"li‘lx
where a,,;, and a;,, are the initial and final values of

the convergence factor, ¢ is the current number of iter-
ations, Max_iter is the maximum number of iterations,
and u is the nonlinear adjustment coefficient.

The variation curves of the convergence factor with
the number of iterations before and after the improve-
ment is shown in Fig. 2. It can be seen that after the
improvement, the decreasing degree of a is faster and
then slower, and the proportion of @ > 1 in the itera-
tions is smaller, which improves the global search

speed in the early stage of the algorithm and improves

the local search accuracy in the later stage.
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Fig.2 Variation curve of convergence factor a

1.3 Harris Hawks siege mechanism

The Harris Hawks optimization algorithm'' is an
meta-heuristic algorithm which simulates the predatory
action of Harris Hawks. The siege predation mechanism
in the algorithm makes the algorithm have a strong
global search capability.

In the process of WOA algorithm, the individual
whale usually conducts random exploration, and the
lack of communication between the individual and the
group makes some individuals conduct multiple useless
explorations at a distance from the prey, which affects
the efficiency of the algorithm. The siege strategy in the
Harris Hawks algorithm is introduced to update the

whale location formula, which is shown as follows.
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X(r+1) ={Y JOY) < fX(1)) (4)
Z f(Z) < f(X(1))

Y=X"(t) -A-D, (5)

Z=Y+S-LF(D) (6)
where X, Y, Z represent the individuals in population
A represents the vector coefficient; X (t) represents
the new individuals, f(x) represents the position adap-
tation value of x, which means the adaptation value is
calculated by substituting a position into the adaptation
function; LF(D) is the dimensional random vector
generated by the Lévy flight, and the Lévy flight for-
mula is shown in Eqs (7) - (8).

LF(D) =0.01 x > (7)

v |#

T(1 +8)sin(™B) T
o = 2 (8)
r(%> « B x 2%

where, u and v are random values between (0,1), Bis

set to 1.5, and I'(x) is the Gamma function.

1.4 Implementation steps of MSHWOA
Step 1

are initialized: population size N, spatial dimension

The parameters related to the algorithm

dim, searchable space of the population [ubj, lbj] s
maximum number of iterations of the algorithm Max_iter.
Step 2
point set theory is generated using Eq. (2).
Step 3 The fitness value of each whale individual is
calculated and the optimal individual position is selected.

The initial population based on good

Step 4 The parameter a is updated according to
Eq. (3).

Step 5 The Harris Hawk siege mechanism is in-
troduced to update the optimal solution, and the whale
individual positions are updated according to Eq. (5)
and Eq. (6).

Step 6

reached, return to Step 4. Otherwise, output the result.

If the maximum number of iterations is

1.5 Time complexity analysis of MSHWOA

The time complexity indirectly reflects the conver-
gence speed of the algorithm. In the WOA algorithm,
assuming that the time required to initialize the param-
eters ( population size N, search space dimension n,
coefficients E,X,E, etc. ) is «,, the time required to
update the other whale individuals in the population in
each dimension according to Eq. (7)is «,, and the

time required to solve the target fitness function is

f(n), then the time complexity of the standard WOA is
T,(n) = O(ea;, + N(na, +f(n)))
= 0(n +f(n)) (9)
In the MSHWOA algorithm, the time required to
initialize the parameters remains the same as the stand-
ard WOA , and the time required to initialize the popu-
lation using the good point set is @, , and in the loop
phase of the algorithm, let the time required to execute
the Harris Hawk breakout strategy be @, and the time
required to update the individual whale positions be
o, then the time complexity of MSHWOA is
T,(n) = O(a; + N(noy + oy +nas +f(n)))
= 0(n +f(n)) (10)
The time complexity of the MSHWOA and the
basic WOA algorithm is consistent
Ti(n) = T,(n) =0(n+f(n)) (11)
In summary, the proposed improvement strategy for

WOA defects does not increase the time complexity.
2 Simulation results and discussions

All algorithms are coded on Matlab R2020a, and
all of the simulation experiments are performed on a
computer with Intel ( R) Core ( TM ) 174790 CPU
(3.60 GHz) and 16.00 GB RAM. For fair comparisons,
the population size N for all algorithms is set to 100, and
the maximal number of FEs Max_iter is set to 1 000.

Due to the limitation of the paper space, the per-
formance of MSHWOA is tested using six different

12] " and the informa-

types of benchmark test functions
tion of the specific test functions is shown in Table 1.
Among them, f,, f, belong to single-peak function; f;,
/4 belong to multi-peak functions; and f5, f; belong to

multi-peak function with fixed dimensions.

2.1 Efficiency analysis of the improvement strategy

To fully verify the effectiveness of different improve-
ment strategies, the basic WOA is combined with these
strategies separately to obtain the following algorithms;
(1) WOA with the good point set sequence initialization
strategy (SWOA); (2) WOA with the nonlinear conver-
gence factor strategy (NWOA) ; (3) WOA with the Harris
Hawks siege mechanism ( HWOA); (4) WOA with all
improved strategies (MSHWOA ).

The effectiveness of the improved strategies is
evaluated by comparing the best value ( Best), mean
value ( Mean ) and standard deviation ( Std ), and the

experimental results are shown in Table 2.



HIGH TECHNOLOGY LETTERSIVol.30 No. 1 |Mar. 2024 103

Table 1 Benchmark test functions

Test function Dimension Range Optimum value
fix) = Dt 30 [ -100,100] 0.000
i=1
fHx) = 100 (a2, + (2 - 1)?] 30 [ -100,100] 0.000
o1
fi(x) =-20exp(-0.2 /%inz) —exp(%Zcos(Zﬂxi)) +20 +e 30 [ -32,32] 0.000
i=1 i=1
e " ¥,
=Y 2 - Jleos(-2) +1 - _
fi(x) 40()0;% st(ﬁ) + 30 [ -600,600] 0. 000
1 25 2 o
f(x) = (e + G+ (n-a)®) ) 2 [ -65,65] 0.998
j=1 i=1
o (%) :4x12—2.1x14+%x16+x1x2—4x22+4x24 2 [ -5,5] -1.030

Table 2 Comparison results of different improvement strategies

Function Algorithm Best Mean Std
WOA 6.85E-23 8. 13E-18 4.56E-21
SWOA 7.65E-36 3.96E-21 2.07E-35
N NWOA 3.56E-48 5.82E41 5.68E-45
HWOA 6.25E-95 8.86E-86 0.00E +00
MSHWOA 0. 00E +00 0. 00E +00 0.00E +00
WOA 3.94E +02 9.88E +03 2.34E-02
SWOA 2.87E-02 3.88E +01 8.24E-02
f NWOA 2.65E-01 6.84E +03 8.57E-01
HWOA 6.72E-02 6.90E-02 3.56E +01
MSHWOA 4.56E-02 1.03E +00 5.87E-01
WOA 3.33E +00 1.31E +01 5.35E +01
SWOA 1.72E-02 5.85E +02 3.02E +01
5 NWOA 6.86E-04 7.86E-01 6.86E-02
HWOA 3.68E-12 6.56E-08 1.35E-09
MSHWOA 9.62E-15 3.32E-14 9.69E-12
WOA 2.32E +00 1.53E +02 2.87E-02
SWOA 2.97E-04 5.09E-01 4.37E-03
Ja NWOA 2.85E-04 1.32E-01 3.54E-00
HWOA 6. 17E-07 5.57E-05 2. 15E-04
MSHWOA 0.00E +00 0.00E +00 0.00E +00
WOA 5.32E +00 7.85E +00 2.58E +01
SWOA 3.58E +01 2.25E +02 6.23E +01
Js NWOA 5.22E +01 9.37E +03 6.85E-02
HWOA 5.63E +02 7.86E +04 5.65E-02
MSHWOA 9.98E-01 7.85E +03 5.28E-01
WOA 5.86E +02 7.55E +02 5.25E +01
SWOA 1.73E +01 8.67E +03 6.84E-01
Js NWOA 6.55E +01 8.98E +01 2.48E-02
HWOA -1.03E +00 8.53E +01 6.56E-04
MSHWOA -1.03E +00 6.25E +00 8.84E-03

First, SWOA has limited ability to improve the ing into local optimum. HWOA can find the theoretical
performance of the algorithm, and the good point set optimum of functions f; and f; due to the introduction of
strategy cannot completely avoid the algorithm from fall- the Harris Hawks siege mechanism, which enhances the
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algorithm global exploration ability. Second, on the
multi-peaked function f;, most of the improved algo-
rithms can find the optimal value of the test function,
and the standard deviation of MSHWOA is the smallest,
and the standard deviation performance of HWOA,
NWOA, and SWOA are ranked second to fourth, which
further verifies the stability of MSHWOA. Finally, MSH-
WOA has a great improvement in the solution accuracy
and more stable performance in the search for the best
solution compared with the original algorithm.

2.2 Comparative analysis of MSHWOA and oth-
er algorithms

In order to fully verify the performance of the algo-

rithm, MSHWOA is compared with three improved

swarm intelligence optimization algorithms MSS-
SA'BIChOAM™' ) MSCA'" and three new swarm in-
telligence  optimization  algorithms SCsote
SOAM™ | and SMA'™. Among them, MSSSA is an en-

hanced sparrow search algorithm incorporating adaptive

parameter strategies, IChOA is an improved chimpan-
zee optimization algorithm based on somersault foraging
strategy, MSCA is a sine cosine optimization algorithm
for multilevel search through adaptive multi scale con-
trol factors, and SCSO, SOA and SMA are novel
swarm intelligence optimization algorithms proposed in
recent years that have been applied in different disci-
plines and engineering fields. The parameters of each
algorithm is set up according to Refs [ 13 —15]. The
experimental result is shown in Table 3.

Table 3  Comparison results of solving functions by different algorithms

Function Algorithm Best Mean Std

MSSSA 4.26E-102 4.28E-96 9.65E-93

IChOA 6.56E-115 6.84E-103 9.62E-100

MSCA 8.24E-80 6.35E-75 6.26E-54

f SCSO 4.52E45 2.25E-25 4.29E-46
SOA 5.56E42 1.58E-30 2.58E-25

SMA 6.83E-25 9.84E-10 5.69E-06
MSHWOA 0.00E +00 0.00E +00 0.00E +00

MSSSA 6.42E-03 8.52E-02 9.35E-05

IChOA 3.45E-02 6.82E-02 1.28E-01

MSCA 1.92E-04 5.67E-02 6.88E +01

f SCSO 5.36E-03 2.97E-02 6.83E-01
SOA 8.32E +00 1.58E +02 3.68E +02

SMA 6.85E-03 5.26E-01 6.35E-01

MSHWOA 3.92E-02 1.03E +00 3.45E-01

MSSSA 1.56E-12 6.37E-09 6.52E-05

IChOA 8.86E-16 6.85E-14 2.58E-11

MSCA 6.35E-06 8.67E-02 6.97E +01

fi SCSO 3.25E-13 5.28E-10 9.54E-06
SOA 9.58E-03 6.85E-01 8.34E +01

SMA 1.21E-05 3.56E-03 5.85E-01

MSHWOA 5.86E-15 5.98E-14 6.62E-10

MSSSA 2.56E-18 1.48E-14 5.24E-12

IChOA 2.89E-05 5.64E-04 2.37E-06

MSCA 3.27E-02 3.59E-01 5.36E +01

fi SCSO 7.86E-05 6.24E-03 1.29E-06
SOA 5.25E +00 6.36E +02 9.85E +01

SMA 6.83E-01 7.85E +01 3.58E-01
MSHWOA 0.00E +00 0.00E +00 0.00E +00

MSSSA 7.83E +01 6.57E +03 8.87E-01

IChOA 6.85E +01 9.52E +02 4.97E-02
MSCA 8.95E +02 2.74E +03 6.54E +00

S SCSO 1.26E +01 5.82E +02 6.95E-02
SOA 4.58E +00 2.58E +02 6.53E +01

SMA 6.65E +01 5.82E +03 8.56E-01

MSHWOA 9.98E-01 3.57E +02 3.39E-01
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( Continuted Table 3)

Function Algorithm Best Mean Std

MSSSA 6.85E +01 5.39E +03 3.65E +00

IChOA -1.03E +00 6.38E +01 2.56E-01

MSCA 7.55E +02 8.21E +04 6.28E +01

Js SCSO -1.03E +00 6.58E +01 2.56E-01
SOA 6.82E +01 8.56E +01 1.35E +00

SMA 5.25E +00 4.52E +01 8.56E-01

MSHWOA -1.03E +00 2.25E +00 9.62E-02

The experimental results in Table 3 show that
MSHWOA finds the theoretical optimal values of the
functions f, and f,. For the function f;, there are a
large number of local minima in its solution space,
which makes some algorithms unable to find the global
optimum of the function, and MSHWOA shows higher
convergence accuracy in solving this function compared
with other algorithms. For functions f; and f;, MSH-
WOA can find its theoretical optimal value, and has
higher stability than other algorithms. Therefore, MSH-
WOA has strong performance in finding the optimal
value and shows competitive advantage in solving com-
plex function optimization problems.

2.3 Comparison and analysis between MSHWOA
and other improved WOA algorithms
MSHWOA is compared with the excellent im-

proved whale optimization algorithm in Refs [19,20].

The parameters of the comparison algorithm are set ac-

cording to the original paper, and the test function in

Table 1 is used as the experimental function to compare

the optimization performance. The experimental results

are shown in Table 4.

As can be seen from Table 4, the optimization
ability of MSHWOA based on 5 groups of test functions
is obviously superior to other comparison algorithms un-
der the same operating environment. For function f, —

Table 4  Comparison results of solving functions by different WOA algorithms

Function Algorithm Best Mean Std

WOA 3.69E-23 5.67E-14 1.08E-11

DEWOA 5.83E-39 6.25E-31 2.58E-36

/i EWOA 1.59E42 9.86E-36 2.57E-38
MSWOA 0.00E +00 0.00E +00 0.00E +00

WOA 3.96E +01 6.45E +02 1.88E-01

DEWOA 4.58E +01 5.83E +02 6.37E-00

£ EWOA 8.59E-01 2.56E +01 6.83E +01
MSWOA 5.11E-03 2.54E-01 3.68E-01

WOA 7.85E +01 6.36E +02 2.62E +01

DEWOA 5.26E-08 6.35E-06 5. 12E-05

£ EWOA 2.67E-12 2.52E-09 6.59E-10
MSWOA 8.23E-16 6.85E-13 1.34E-15

WOA 5.37E +01 1.56E +02 5.65E-01

. DEWOA 6.35E-32 5.21E-29 6.14E-24
s EWOA 7.84E-30 2.58E-23 4.13E-21
MSWOA 0.00E +00 0.00E +00 0.00E +00
WOA 9.03E +03 5.65E +05 2.86E +02
. DEWOA 3.68E +01 6.57E +01 6.12E +00
% EWOA 8. 14E +01 6.39E +02 5.36E +02
MSWOA 9.98E-01 1.57E +00 5.87E-01

WOA 5.86E +02 7.55E +02 5.25E +01
DEWOA -1.03E +00 3.58E +03 5.12E +00

fe EWOA -1.03E +00 9.35E +03 6.27E +01
MSWOA —-1.03E +00 3.83E +02 1.25E-02
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S5, MSHWOA algorithm always maintains the first
place in optimization performance compared with the
comparison algorithm and has excellent stability. The
convergence speed of MSHWOA algorithm is also im-
proved compared with the original algorithm. For func-
tion f;, MSHWOA algorithm can find the theoretical
optimal value in the test function of multiple extreme
value points. All in all, MSHWOA algorithm has excel-
lent optimization ability and stability regardless of sin-
gle-peak function or multi-peak function.

2.4 Convergence curve analysis

Convergence speed, convergence accuracy and
ability to avoid local optimum are important indicators
to test the optimization algorithm. To reflect the dynam-
ic convergence characteristics of MSHWOA | the average
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convergence curves of the algorithm in subsection 3. 1
for the four benchmark test functions f,, f,, f;, and f,
are given in Fig.3(a) - (d).

According to Fig. 3, the convergence speed and
accuracy of MSHWOA are significantly better than the
rest of the comparison algorithms. For functions f; and
fi, the solution accuracy of MSHWOA and HWOA is
much higher than the standard WOA ; for the complex
multi-peaked test functions, the convergence curves of
some of the comparison algorithms tend to level off
shortly after the beginning, making it difficult to jump
out of the local optimum, while MSHWOA gradually
approaches the global optimum as the number of itera-
tions increases. Overall, MSHWOA converges faster
and has a better ability to jump out of the local opti-
mum.

10 T T T T T T T T T
—6— WOA
SWOA
—6—NWOA
—O— HWOA
—*— MSHWOA

10%

10% +

100 +

Best score obtained so far

100 +

. . . . . . . .
0 100 200 300 400 500 600 700 800
iteration

(b) /3

104 T T T T T T T

10° L
4 —6— NWOA
—6— HWOA

10° —«— MSHWOA]

100 b

10°

L
900 1000

Best score obtained so far

D

10° L L L L L L L L
0 100 200 300 400 500 600 700 800

iteration

(d) £,

L
900 1000

Fig.3 Average convergence curve

2.5 Rank sum test analysis

The Wilcoxon signed ranks test is performed at a
significance level of 5% to examine the outcome of
each run. MSHWOA and 6 comparison algorithms are
subjected to 30 independent operations on five classical

functions, and the experimental results are shown in
Table 5, the symbols® +’,‘ = " and * =’ respectively
indicate that the performance of MSHWOA is better
than, worse than, and equivalent to the corresponding
comparison algorithm. According to Table 5, most of
the P-values on the classical test functions are less than
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0.05, and the performance of the two algorithms is
comparable only on individual functions, which indi-

cates that MSHWOA is generally better than other com-
parison algorithms.

Table 5 Wilcoxon rank sum test analysis

Function WOA MSSSA IChOA MSCA SCSO SOA SMA
h 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12
S 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12
fi 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12
A 7.36E-10 7.36E-10 N/A 3.25E-12 3.25E-12 3.25E-12 3.25E-12
Ss 7.36E-10 7.36E-10 3.25E-12 3.25E-12 3.25E-12 N/A 3.25E-12
Je 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12 3.25E-12

+/ =/~ 6/0/0 6/0/0 5/1/0 6/0/0 6/0/0 5/1/0 6/0/0

2.6 Friedman test

In order to further verify the significant differences
between MSHWOA and other algorithms, Friedman
test is adopted to conduct non-parametric tests on the
test algorithms in subsection 2. 2.

The basis of this test is from Table 4, and the test
results are shown in Table 6. P-value represents pro-
gressive significance, which indicates that there is a
significant difference between test data when its value
is less than 0. O1. According to Table 6, P-value is
8.35E - 09 which is far less than 0. 01, indicating that
there are significant differences between MSHWOA and
other comparison algorithms. From the average ranking
value of each algorithm, MSHWOA also obtains the
smallest result. Overall, the optimization ability of
MSHWOA is significantly improved compared with oth-

er comparison algorithms in a statistical sense.

Table 6 Friedman test result

Algorithm Average rank
MSSSA 4.17
IChOA 3.33
MSCA 3.50
SCSO 4.00

SOA 5.83
SMA 5.83

MSHWOA 1.17

P-value 8.35E-09

3 Conclusion

A novel algorithm named MSHWOA is proposed to
address the issue of trade-off between exploration and
exploitation in WOA. Firstly, the sequence of good
point set is introduced to initialize the population to en-
hance the population diversity. Then, the nonlinear

convergence factor is introduced to balance the explora-
tion and exploitation ability of the algorithm. Finally,
the siege mechanism of Harris Hawks algorithm is in-
troduced to enhance the global search ability of the al-
gorithm. The simulation experiments on six classical
test functions prove that the improved algorithm has
better search performance, and the algorithm is more
stable and converges faster. In the future, using MSH-
WOA to solve classic engineering problems is a poten-
tial research direction.
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