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Abstract
The large-scale development of electric vehicles(EVs) requires numerous charging stations to

serve them, and the charging stations should be reasonably laid out and planned according to the
charging demand of electric vehicles. Considering the costs of both operators and users, a site selec-
tion model for optimal layout planning of charging stations is constructed, and a queuing theory ap-
proach is used to determine the charging pile configuration to meet the charging demand in the plan-
ning area. To solve the difficulties of particle swarm global optimization search, the improved ran-
dom drift particle swarm optimization(IRDPSO) and Voronoi diagram are used to jointly solve for the
optimal layout of electric vehicles. The final arithmetic analysis verifies the feasibility and practicali-
ty of the model and algorithm, and the results show that the total social cost is minimized when the
charging station is 9, the location of the charging station is close to the center of gravity and the lay-
out is reasonable.

Key words: charging station, electric vehicle(EV), improved random drift particle swarm op-
timization(IRDPSO), optimal planning

0　 Introduction

With Chinas environmental has put forward higher
requirements for Chinas energy transformation, which
will accelerate the process of replacing fuel vehicles
with electric vehicles(EVs) [1] . With the joint promo-
tion of policy and technological progress, electric vehi-
cles have become a key development area for the auto-
motive industry in various countries. Although the e-
lectric vehicle industry is developing rapidly, it is still
in its early stage.

Numerous research institutions and researchers at
home and abroad have researched the siting of charging
facilities. Foreign research on the siting of EV charging
facilities is mainly divided into two categories: classical
siting models based on demand and comprehensive si-
ting models based on actual measurement data. Ref. [2]
established the siting model to minimize the distance be-
tween electric vehicles and charging stations. Ref. [3]
developed an intelligent algorithm based on data-driven
and particle swarm optimization(PSO) through a large
number of global positioning system (GPS) trajectory
data, taking the weekly trip data of taxis in Chengdu,
China as an example, to determine the optimal location

of the charging station by minimizing CO2 emissions.
Domestic scholars mainly consider the site selec-

tion scheme from the characteristics of electric vehicles
and mathematical models’ construction. Ref. [4] an-
alyzed the distribution forecast of electric vehicle char-
ging demand and built a charging station location mod-
el intending to minimize the total cost of electric vehi-
cle charging stations by using the double-layer dynamic
queuing method and Voronoi diagram. Ref. [5] stud-
ied the location of charging and changing facilities for
electric logistics vehicles, comprehensively considered
the charging duration, charging mode, and other influ-
encing factors, and established a charging and chan-
ging facility location model aimed at minimizing the
sum of power cost, vehicle driving cost, opportunity
cost and penalty cost under the charging and changing
mode under the premise of no charging behavior under
vehicle scheduling and path planning. Ref. [6] ana-
lyzed the factors that affect the location of the charging
station, and combined with these factors, established a
location model of the electric vehicle emergency char-
ging station with the main method of the analytic hier-
archy process (AHP), and then incorporated the goal
programming method and the AHP into the model, and
took a region as an example to conduct the location lay-
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out through the model method.
To accelerate the development of electric vehi-

cles, selecting reasonable charging station locations
and determining the optimal number of charging make-
ups for each charging station are urgent problems to be
solved. To address the above two problems, this paper
proposes a multi-objective site-setting planning model
based on the Voronoi diagram and improved random
drift particle swarm optimization ( IRDPSO) to obtain
charging station locations, a model based on queueing
theory to calculate the number of charging stakes, and
a multi-objective site-setting planning model with char-
ging station construction and operation cost, users
time-consuming cost and electricity price cost.

1　 Electric vehicle siting and capacity plan-
ning model

　 　 The site selection planning of charging stations is
a rather complex problem, which is restricted by many
conditions. However, the two main factors that affect
the site selection are the operators of charging stations
and the users of electric vehicles. From the operators
perspective, it is mainly considered to meet the char-
ging needs of EV users at the lowest cost, including
construction costs, land construction costs, operation
and maintenance costs, etc. For users, there are main-
ly two aspects. First, they will care about the distance
and time to the charging station. If the time to the
charging station is too long, the probability of users go-
ing to the charging station will be lower. Second, the
user will also be concerned about whether the charging
pile is idle when arriving at the charging station and
the waiting time. The influencing factors of site selec-
tion are shown in Fig. 1.

Fig. 1　 Electric vehicle site selection influencing factors map

1. 1　 Objective function
The objective function mainly consists of two ma-

jor parts, considering the costs of operators and users
respectively. The operator includes the construction
cost and operation cost of the charging station when
building the station; for the user, it mainly includes
two parts: the cost of time lost by the user to get to the
charging station, and the cost of time spent in the char-
ging queue.

(1) Operators perspective
The construction cost of a charging station is

mainly the total fixed investment cost consisting of
charging pile cost, land cost, transformer cost, etc. ,
while the number of charging piles determines the scale
of the charging station, and the more the number of
charging piles, the more the fixed investment required.
Therefore, the fixed investment of the charging station
can be expressed as a function of charging piles, which
is expressed as

f N j
( ) = W + α N j + β N j

2 (1)
where, W is the fixed investment cost of the charging
station, including the cost of land and construction; N j

indicates the number of charging piles in the charging
station; α indicates the unit price of the charging piles,
and β indicates the investment coefficient related to the
charging piles and auxiliary equipment.

Therefore, the annual construction cost of the
charging station is

C1 = ∑
J

j = 1
f N j
( ) ×

r0 1 + r0( )m

1 + r0( )m - 1( ) (2)

where, r0 denotes the discount rate, m denotes the de-
preciable life of the charging station, and J denotes the
set of charging stations.

The operation and maintenance cost of the char-
ging station can also be written as a function of the
charging piles because the more the number of charging
piles, the more the staff salary of the charging station,
and the higher the maintenance cost of the equipment.
Generally, it can be calculated by taking a certain per-
centage θ of the investment construction cost, so the
annual operation and maintenance cost of the charging
station can be expressed as

C2 = θ W + α N j + β N j
2( ) (3)

(2) User perspective
The distance and time to the charging station will

affect the charging decision behavior of the user. If the
time to the charging station is too long, the probability
of the user going to the charging station will be lower;
On the contrary, it is higher. Then the time cost of EV
users on the way of charging can be expressed as
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C3 = 365φ
v ∑

J

j = 1
∑

I

i = 1
p dij λ ij ni (4)

where, φ denotes the time cost coefficient of charging
per user trip, p is the probability of charging of EVs in
a day, dij denotes the spatial linear distance from the
demand point to the charging station, λ ij denotes the
non-linear coefficient of urban roads from the demand
point to the charging station, and the square grid road
is taken from 1. 00 to 1. 41[7], n j is the number of EVs
at the demand point, and v denotes the average driving
speed of EVs in urban traffic.

When users arrive at a charging station, they are
generally concerned about the availability of charging
piles. When the number of electric vehicles is certain,
the queuing time of vehicle owners waiting for charging
decreases as the number of charging piles increases.
Therefore, the user queuing time in the queuing theory
is introduced, and the annual user queuing time cost is
calculated as

C4 = 365φ∑
J

j = 1
Tq∑

I

i = 1
p ni (5)

where, Tq denotes the average waiting time of EV own-
ers at charging stations.

1. 2　 Constraints
(1) Constraints with the number of charging piles

in each charging station.
ξ j N j,min ≤ N j ≤ ξ j N j,max (6)

where, ξ j denotes the 0-1 state variable, N j,min and N j,max

indicate the minimum and the maximum number of
charging piles to be built in the charging station, re-
spectively.

(2 ) Service scope constraints of charging sta-
tions.

λ ij dij ≤ dmax (7)
where λ ij and dij are the same as the parameters of
Eq. (4); dmax indicates the maximum distance from
the charging demand point to the charging station.

(3) Inequality constraint on the distance between
charging stations.

λ ij Dij ≥ Dmin (8)

2　 Electric vehicle charging station planning

2. 1　 Electric vehicle charging demand
Charging demand is not only the premise to deter-

mine the number of charging stations, but also one of
the important factors affecting the location and layout
planning of charging stations.

Assuming that there are n road sections in the
planning area and they are connected with the intersec-

tion node with the number of i . Use px
t j,j′x( ) to repre-

sent the traffic flow density at junction j at time t , then
the traffic flow density formula at junction j at time t can
be expressed as

p j
t = ∑

n

x = 1
px
t j,j′x( ) (9)

If there are intersection Z nodes in this planning
area, the total charging demand Q in the planning area
in time T can be expressed as

Q = ∑
Z

j = 1
∫T
0
p j
tαβCvdt (10)

where, α denotes the share of electric vehicle owner-
ship in the planning area, β is the proportion of electric
vehicles requiring charging in the area, and Cv is the
average battery capacity of electric vehicles in the area.

2. 2 　 Calculation of the number of charging sta-
tions

　 　 The number of charging stations is determined by
the charging demand and capacity of charging stations,
and since the capacity of charging stations is not uni-
formly determined, the number of charging stations is
often difficult to calculate directly. Therefore, this sub-
section uses Eq. (10) to calculate the total charging
demand of the planning area and then estimates the
range of the number of charging stations with the maxi-
mum capacity limit of charging stations and the mini-
mum capacity limit, then the formula for calculating
the range of the number of charging stations in the
planning area can be expressed as

Kmin = Q
Smax

+ 1

Kmax = Q
Smin

　 　

ì

î

í

ï
ï

ïï

(11)

where, Kmin denotes the lower limit of the number of
charging stations in the planning area, Kmax denotes the
upper limit of the number of charging stations in the
planning area, Smax is the maximum capacity limit of
charging stations, Smin is the minimum capacity limit of
charging stations, and Q is the total charging demand of
electric vehicles in the planning area.

2. 3　 Charging pile configuration method based on
queuing theory

　 　 The queuing theory model system is composed of
three main parts: input process, queuing rules, and
service organization, as shown in Fig. 2 for the struc-
ture of the queuing service system.

Under the influence of uncertainties such as the
diversity of electric vehicles and operating conditions,
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Fig. 2　 Queuing service system structure diagram

it is assumed that the number of electric vehicles arri-
ving at charging stations by users obeys a Poisson dis-
tribution with parameter λ and the time of electric vehi-
cles enjoying charging service obeys a negative expo-
nential distribution with parameter μ . Then the equi-
librium equation of the electric vehicle charging facility
service system is

λ p0 = μ p1

λ pn-1 + n + 1( )μ pn+1 = λ + nμ( )pn

λ pn-1 + Nμ pn+1 = λ + Nμ( )pn

{ (12)

where, N denotes the number of charging piles availa-
ble for charging; n is the number of EVs in charging
service; pn denotes the probability that n electric vehi-
cles are in charge.

The equilibrium equation of Eq. (12) is solved to
obtain the probability of charging the electric vehicle as

　

p0 = ∑
N-1

k = 0

1
k!

λ
μ( )

k
+ 1
N!

μ
μ - λ

λ
μ( )

N

[ ]
-1

pn =

1
n!

λ
μ( )

n

p0n ≤ N

1
N!Nn-N

λ
μ( )

n
p0n ≥ N

ì

î

í

ï
ï

ïï

ì

î

í

ï
ï
ï

ï
ï
ï

(13)

From this, some operation indexes of electric ve-
hicle charging can be solved as follows.

The service intensity of the charging pile is

ρ = λ
μ (14)

The utilization rate of charging piles is

β = λ
Nμ (15)

The average queue length of the charging pile is

Ls =
ρNβ p0

N! 1 - β( )2
+ λ

μ (16)

The waiting time in line for electric vehicles is

Tq =
Lq

λ (17)

From Eq. (16), the average team length is ob-
tained, such that the total cost expectation per unit of
time is

M = Csc + Cw Ls (18)

where, c represents the number of charging piles, and
Ls represents the average queue length of charging
piles, Cs denotes the service cost per charging pile per
unit time, and Cw is the cost per unit travel time of user
queuing. Since the number of charging piles can only
be an integer, the marginal analysis method is used to
solve the model, and if the optimal number of charging
piles is found, then:

M c∗ - 1( )≤ M c∗( )≤ M c∗ + 1( ) (19)
Substitute Eq. (18) into the above inequality to

obtain:

M c∗( ) - M c∗ + 1( )≤
Cs

Cw
≤M c∗ - 1( ) - M c∗( )

(20)

2. 4　 Voronoi diagram and improved random drift
particle swarm algorithm

　 　 The Voronoi diagram, also called the Tyson poly-
gon diagram, was proposed and named after the Rus-
sian mathematician Voronoi[8] in 1908. It is composed
of a group of continuous polygons composed of vertical
bisectors connecting two adjacent point lines. In 1911,
Dutch climatologist Thiessen[9] used the Voronoi dia-
gram to divide the sensing range of weather stations to
calculate the average rainfall, connected adjacent
weather stations into a triangle, then made vertical bi-
sectors for each side of the triangle, and connected the
vertical bisectors into a polygon, i. e. , Tyson polygon.

The particle swarm optimization is simple, easy to
implement, and widely used in many applications, but
the disadvantages of the algorithm are also obvious: as
the particle population evolves and iterates, the diver-
sity of its particles gradually decreases, which leads to
the disadvantages of convergence too fast and falling in-
to local optimality. IRDPSO, as a novel algorithm, has
the advantages of fast convergence and high conver-
gence accuracy, but it is rarely used in the solution of
the charging station layout model at this stage.

In the random drift particle swarm optimization
(RDPSO) algorithm, the search behavior of each par-
ticle is considered similar to the motion law of free e-
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lectrons in a metallic conductor. Therefore, the search
behavior of the particles in the RDPSO algorithm is
considered a superposition of thermal and drift mo-
tions, i. e. , the velocity of each particle is superim-
posed by both parts of the motion. Assuming that in the
RDPSO algorithm, the velocity of the ith particle in the
t + 1 generation in the d-dimensional space is Vt +1

id , the
velocity of the drifting motion is VDt +1

id , and the veloci-
ty of the thermal motion is VR t +1

id .
Then the velocity of the irregular thermal motion is
VR t +1

id = α Mt
d - X t

id φt
id (21)

where, α is the thermal coefficient, Mt
d denotes the av-

erage of the individual optimal positions of the parti-
cles, and φt

id denotes a random function obeying a nor-
mal distribution.

Then, using the learning mechanism that particles
tend to local positions in PSO algorithm, the speed of
drift movement is

VDt +1
id = c1·rand1· pt

id - X t
id

( ) + c2·rand2

· pt
gd - X t

id
( ) (22)

where c1 and c2 are learning factors, rand1 and rand2 are
random values in the range of 0 - 1, pt

id is the local op-
timal position of the particle, pt

gd is the global optimal
position of the particle, and X t

id is the current particle
position. The above equation can be equivalent to

VDt +1
id = β pt

id - X t
id

( ) (23)
where β indicates drift coefficient and is greater than 0.

The IRDPSO algorithm is a change in the velocity
update equation based on RDPSO algorithm by repla-
cing the average best position of the particles with the
individual best position of each particle and adding
crossover operations and greedy selection processes to
achieve improvements as follows[10] .

(1) Adding the crossover operation
This operation increases the diversity of the popu-

lation and thus improves the performance of the algo-
rithm by matching the particle update position with the
local best position to create a new trial vector with the
following expression.

X t +1
id trial( ) = X t +1

id 0 ≤ rand ≤ η
pt
idη ≤ rand ≤1{ (24)

where rand is a random number within 0 - 1, η is the
probability of performing the crossover operation, and
after the crossover operation, a greedy selection process
is used[11-12] . If the fitness value of the locally optimal
position is low, a trial vector is used instead of the lo-
cally optimal position.

(2) Replace the average best position with the lo-
cal best position

According to the extensive experiments on the

RDPSO algorithm mentioned in Ref. [8], if the aver-
age optimal position in Eq. (21) is replaced by the lo-
cal optimal position, the minimum total cost will be im-
proved after a certain number of runs. Therefore, the
speed update formula of the IRDPSO algorithm thermal
motion is

VR t +1
id = α pt

id - X t
id

( )φt
id (25)

To sum up, the velocity and position update equa-
tions of IRDPSO are described as

Vt +1
id = β· pt

id - X t
id

( ) + α· pt
id - X t

id
( )·φt

id

(26)
X t +1

id = X t
id + Vt +1

id (27)

2. 5 　 Joint Voronoi diagram and IRDPSO algo-
rithm solving process

　 　 Although Voronoi diagrams are suitable for the
characteristics of site selection, Voronoi diagrams lack
the ability of global seeking. This paper uses the
IRDPSO algorithm with the global stochastic seeking
capability to solve jointly the Voronoi diagram. The
specific planning steps are as follows.

Step 1 　 Import the charging demand at the de-
mand point calculated according to Eq. (10).

Step 2　 Initialize other parameters such as popu-
lation size N , thermal coefficient α and drift coefficient
β , the maximum number of iterations, and the number
interval of charging piles in the charging station, and set
the local optimum equal to the current population size.

Step 3 　 Calculate the range of the number of
charging stations according to Eqs ( 9 ), ( 10 ) and
(11) and initialize N = Nmin to determine the initial lo-
cations of K charging stations by geometric methods.

Step 4 　 The velocities of the particles are ran-
domly generated, and each particle includes K coordi-
nates, representing the initial locations of K charging
stations.

Step 5　 For each particle, the Voronoi diagram is
made with the charging station location as the growth
element according to the station coordinates, to divide
the service area of each charging station. The optimal
number of charging piles in the charging station is cal-
culated according to Eq. (20), and the process needs
to satisfy the constraints of Eqs (6) to (8).

Step 6 　 Start the iteration, calculate the fitness
value of the function, and update the local optimal po-
sition and the global optimal position of the particle.

Step 7 　 Update the velocity and position of the
particle according to Eq. (26) and Eq. (27).

Step 8 　 Add crossover operations according to
Eq. (24) and use a greedy selection process to update
the local best position.
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Step 9　 Update the global best position.
Step 10　 Determine whether the end condition is

satisfied, if not, continue to loop back to Step 4 to

continue execution.
Step 11　 Stop the iteration and output the result.
The flow chart of model solving is shown in Fig. 3.

Fig. 3　 Model solving flow chart
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3　 Calculation and analysis of algorithms

In order to verify the effectiveness of the model
and algorithm, a planning area of 72 km2, with 56 in-
tersection nodes in total is taken as an example to carry
out the planning and location of a charging station. The
road network structure and traffic flow are shown in
Fig. 4 and the number below the serial number indi-
cates the number of electric vehicles.

The parameters in the calculation example refer to
Ref. [ 13 ] and Ref. [ 14 ]; some parameters are
shown in Table 1. The improved random drift particle
swarm optimization algorithm is used to solve the loca-
tion model to optimize the location of the charging sta-
tion and calculate the total social cost of each planning

scheme. The calculation results are shown in Table 2.

Fig. 4　 Road network structure diagram

Table 1　 Parameter setting
Parameter name Symbol Quantity Unit

Fixed investment cost of charging station W 100 10 000 yuan

Investment coefficient of charging pile β 3 10 000 yuan / set2

Scale factor θ 0. 1 \

Charging station discount rate r0 8% \

Depreciation life of charging station m 20 year

User unit travel cost φ 50 yuan / h

Nonlinear coefficient of urban road λij 1. 2 \

Charging probability p 15% \

Average driving speed v 40 km / h

Minimum number of charging piles Nj,min 4 set

Maximum number of charging piles Nj,max 12 set

Table 2　 Total social cost under different schemes

Number of charging
stations

Annual construction and
operation cost

Annual consumption cost of
users during charging

Annual waiting time cost
of users

Total annual
social cost

6 1 476. 540 1 362. 125 8 059. 000 10 897. 665

7 1 659. 165 1 356. 297 7 805. 764 10 821. 226

8 1 853. 211 1 353. 816 7 375. 750 10 582. 777

9 2 048. 572 1 342. 483 6 967. 429 10 358. 484

10 2 234. 136 1 339. 317 6 917. 768 10 491. 221

11 2 431. 376 1 334. 661 6 948. 066 10 714. 103

12 2 626. 037 1 330. 241 6 762. 815 10 719. 093

　 　 It can be seen from the above table that when nine
charging stations are built, the cost of the whole society
is the lowest, which is 103. 584 84 million yuan. The
service scope of each charging station is shown in

Fig. 5. The small box represents the charging demand
point of the road network structure, and the small cir-
cle represents the location of the optimized charging
station.
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Fig. 5　 Division of final service scope of charging station

　 　 It can be seen from the figure that the charging
station site is evenly planned and close to the center of
gravity[15], which indicates that the layout is reasona-
ble and conducive to the development of electric vehi-
cle charging facilities.

In this example, the traditional random drift parti-
cle swarm optimization algorithm and the improved ran-
dom drift particle swarm optimization algorithm are
used for simulation and comparison[16], and the com-
parison of fitness curve is shown in Fig. 6. It can be
seen from the figure that the RDPSO has nearly the
same iteration speed as the IRDPSO in 20 iterations,
but after about 38 iterations, the RDPSO falls into the
local optimal value, at which the fitness function value
is 110. 265 41 million yuan. Compared with RDPSO,
the convergence speed of IRDPSO in the early stage
has been greatly improved, and it converges smoothly
in the middle stage and tends to be optimal gradual-
ly[17] . At this time, the fitness function value is 103.
584 84 million yuan. The results show that the IRDPSO
algorithm is better than the traditional RDPSO algorithm

in terms of both the speed of convergence and the accu-
racy of convergence in the later stage[18] . The specific
optimization results are shown in Table 3. The results
show that the total comprehensive cost of the scheme
obtained by IRDPSO is lower.

Fig. 6　 Convergence curve comparison

Table 3　 Comparison of PSO and IRDPSO algorithm optimization results

Algorithm Annual construction and
operation cost

Annual consumption cost of
users during charging

Annual waiting time cost
of users

Total annual
social cost

RDPSO 2 221. 698 1 362. 125 7 442. 718 11 026. 541

IRDPSO 2 048. 572 1 342. 483 6 967. 429 10 358. 484
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4　 Conclusions

As a necessity of energy supply for electric vehi-
cles, the construction planning and site selection of
charging stations play a crucial role in the development
of electric vehicles. Reasonable planning of the site se-
lection of electric vehicle charging stations can not only
reduce the cost of operators but also facilitate the travel
of users, thus driving the development of the entire
charging industry[19] . This paper constructs a charging
station location model based on operators and users,
designs an improved random drift particle swarm opti-
mization algorithm to solve the model, and studies the
location of electric vehicle charging stations in a plan-
ning area as an example. The specific conclusions are
as follows.

(1) The charging station location model is con-
structed from the two aspects of charging station opera-
tors and electric vehicle users. The model is analyzed
from the perspective of operators, taking into account
the construction cost and operation cost of charging sta-
tions[20] . From the perspective of vehicle owners, the
cost of users‘annual charging journey time and the cost
of users’ annual waiting time for charging are consid-
ered.

(2) When solving the built charging station loca-
tion model, the random drift particle swarm optimiza-
tion algorithm is improved. By creating test vectors,
the personal best position of each particle is replaced
by the average best position of particles[21], and the
cross operation and greedy selection process are added
to achieve improvement.

(3) Taking a planning area as an example, the
location model, IRDPSO algorithm, and Voronoi dia-
gram are applied to the case. The solution results show
that when there are 9 charging stations, the total social
cost is the minimum, and the location of the charging
station is close to the center of gravity, so the layout is
reasonable.

This paper does not consider the type of electric
vehicles, the impact on the power grid, and other fac-
tors, which need to be further studied in the future.
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