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Abstract
Quantized training has been proven to be a prominent method to achieve deep neural network

training under limited computational resources. It uses low bit-width arithmetics with a proper scal-
ing factor to achieve negligible accuracy loss. Cambricon-Q is the ASIC design proposed to efficient-
ly support quantized training, and achieves significant performance improvement. However, there
are still two caveats in the design. First, Cambricon-Q with different hardware specifications may
lead to different numerical errors, resulting in non-reproducible behaviors which may become a ma-
jor concern in critical applications. Second, Cambricon-Q cannot leverage data sparsity, where con-
siderable cycles could still be squeezed out. To address the caveats, the acceleration core of Cambri-
con-Q is redesigned to support fine-grained irregular data processing. The new design not only ena-
bles acceleration on sparse data, but also enables performing local dynamic quantization by contigu-
ous value ranges (which is hardware independent), instead of contiguous addresses (which is de-
pendent on hardware factors) . Experimental results show that the accuracy loss of the method still
keeps negligible, and the accelerator achieves 1. 61 × performance improvement over Cambricon-Q,
with about 10% energy increase.
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0　 Introduction

Convolutional neural network (CNN) has become
the wide-spread technology in computer vision (CV).
However, it is difficult to deploy them efficiently on re-
sources-constrained devices, e. g. , cellphones, weara-
bles, etc. , especially for training. Quantization is a
promising technique to reduce the computation cost by
using low bit-width data representations and arithmetics
to approximate the full-precision floating point data.
However, quantized training is more challenging than
quantized inference due to the much higher vulnerabili-
ty of numerical errors. Recently, state-of-the-art quan-
tized training algorithms succeeded in training CNNs in
8-bit or even less, while still maintaining negligible ac-

curacy loss, e. g. , precision-adaptive quantization[1-2],
specially-designed data format[3-4], gradient clip-
ping[5-6], etc. However, due to the dynamic quantiza-
tion approach adopted by these algorithms, they de-
pend on specialized architectural support to achieve
actual speedup.

Cambricon-Q[7] is a state-of-the-art accelerator for
quantized training. It adopts the dynamic quantization
approach from tensor-wise to per local data blocks,
thus enables on-the-fly dynamic quantization with spe-
cialized units to eliminate excessive data accesses. It
also features a near-data-processing (NDP) engine to
allow weights updated in-place, reducing data move-
ments furthermore. As a result, Cambricon-Q achieves
4. 2 × / 1. 6 × training speedups compared with GPU /
TPU, which illustrates a viable option to enable train-
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ing on mobile and edge devices.
However, there are still two caveats in the design

of Cambricon-Q. Firstly, the numerical errors are not
reproducible. Local dynamic quantization slices the da-
ta into local blocks, and only performs dynamic quanti-
zation per block. Therefore, the quantization error de-
pends on the slicing. For example, the data in NHWC
format will be sliced differently from that in NCHW for-
mat, leading to inconsistent numerical behaviors. Oth-
er depending factors include hardware specifications
(e. g. , block sizes, buffer sizes, PE array sizes),
programming ( e. g. , tiling options and task schedu-
ling), compiling and optimizations (e. g. , instruction
scheduling, memory allocations), etc. Although Cam-
bricon-Q is resilient enough to the slightly varying er-
rors, the non-reproducible numerical behavior may still
become a major concern in critical applications such as
security, healthcare, autonomous driving. Secondly,
Cambricon-Q cannot leverage data sparsity. By utili-
zing sparsity, considerable cycles could be further
squeezed out, which is essential to the application in
resource-constrained scenarios.

To address these problems, the acceleration core
of Cambricon-Q is redesigned to support fine-grained
irregular data processing. Enabled by the fine-grained
irregularity support, a new quantization technique is
proposed, whose numerals are bit-wise reproducible re-
gardless of hardware factors. Instead of slicing by ad-
dresses, the quantization technique divides the data in-
to groups of contiguous value ranges, which is algorith-
mic deterministic. The data from the same group is
placed discontiguously in memory, and processed with
the fine-grained irregularity support. Simultaneously,
the support for fine-grained irregularity also enables the
utilization of sparsity when training sparse CNN mod-
els.

Experiments are conducted on various CNNs. The
quantization technique achieves negligible accuracy
loss. The redesigned variant of Cambricon-Q, namely
Cambricon-QR, outperforms the original design by
1. 61 × on average with about 10% extra energy con-
sumption.

1　 Background and problem statement

1. 1　 Quantization
Quantization refers to techniques for performing

computations and storing tensors at lower bit-widths
than floating point precision, in order to save storage
space, speed up computations and save device power
consumption. The common formula is xq = round

(x - offset
scale ) , where x is the full-precision data, xq is

the quantized data, and offset and scale are quantiza-
tion parameters. The quantization can be performed at
different stages, corresponding to different quantization
types.

Quantization aware training ( QAT) [8] was pro-
posed by Google, which models quantization errors in
both forward and backward passes by introducing fake-
quantization modules. The inputs and weights are quan-
tized and then dequantized to make the loss aware of
the quantization errors, thus reducing the loss of infer-
ence accuracy on quantized models. The entire compu-
tation is performed in floating point.

Post training quantization ( PTQ) is performed
during inference of neural networks. Much work has
been done in this area, including data-free quantization
(DFQ) [9], analytical clipping for integer quantization
( ACIQ ) [10], piece-wise linear quantization
(PWLQ) [11], etc.

Quantized training. Different from QAT which
aims to improve inference accuracy, quantized training
uses quantized data in forward and backward passes to
reduce training cost. The main challenge is that train-
ing accuracy is much more sensitive to data precision
than inference accuracy. Especially, the gradients,
during training may lead the optimization of the model
to a wrong direction due to quantization errors. DoRe-
Fa-Net[12] quantizes gradients of CNNs to different bit-
widths and suffers from obvious accuracy loss at low
bit-width. Ref. [13] proposed a full-integer training
scheme and used a layer-wise scaling factor to replace
batch normalization ( BN). Ref. [14] quantized BN
layer based on Ref. [13] but still suffered from accura-
cy loss. Ref. [15] used 8-bit floating point numbers
for training and proposed chunk-base accumulation to
avoid data swamping. Ref. [5] also applied int8 train-
ing and tried to minimize the gradient quantization error
layer-wise by clipping the gradients periodically with
accuracy loss less than 2% . Ref. [6] still cliped the
gradients but quantized them channel-wise, achieving
negligible accuracy loss. Ref. [3] used block-floating-
point (BFP) and proposed a variant of BFP to make
the quantization parameters unchanged after transposing
the tensor. Ref. [1] adopted a layer-wise precision-a-
daptive quantization technique using int8 and int16.
Ref. [4] proposed a piece-wise fixed point ( PWF)
format to reduce the quantization error for gradients
close to zero.

Quantization can be divided into static quantiza-
tion and dynamic quantization according to how to ob-
tain the quantization parameters. The former requires
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calibration with a representative dataset to determine
optimal quantization parameters offline. The latter com-
putes the statistics of data on-the-fly to get quantization
parameters.

Due to the fact that the distributions of gradients
change significantly during training, most of current
quantized training algorithms use dynamic quantization
to get the quantization range, which leads to great
memory and compute overhead, and extra data move-
ments. To make these algorithms work efficiently, spe-
cial hardware is designed. Cambricon-Q is a first hard-
ware architecture for quantized training with negligible
accuracy loss. It uses local dynamic quantization by
slicing the data into fixed-size blocks and implements
the corresponding hardware unit. Cambricon-Q also
equips the DRAM with a near-data-processing engine
to avoid data transferring when updating weights. This
work is based on Cambricon-Q.

1. 2　 Sparsity
The utilization of sparsity can reduce the computa-

tion cost of neural networks effectively. Many neural
networks take ReLU, i. e. , f x( ) = max{0,x} as their
activation function, which will generate many zeros,
increasing the sparsity of neurons significantly. If some
pruning techniques are taken, some degree of weight
sparsity can also be obtained.

Many accelerators have been designed for sparse
neural networks. Cambricon-X[16] filtered unnecessary
neurons by an indexing module, and compressed
sparse weight by step indexing, but it makes no use of
neuron sparsity. Ref. [17] addressed both neuron and
weight sparsity, but it only supported full-connection
(FC) layer. Cambricon-S[18] proposed a pruning tech-
nique to reduce the irregularity of sparse neural net-
works and selected neurons needed by a neural selector
module ( NSM) along with weights. Ref. [ 19 ] ex-
plored sparse and irregular general matrix-matrix multi-
plications (GEMM) and introduced a flexible and scal-
able architecture which offers high utilization of its pro-
cessing elements (PEs). All these work has not been
well integrated with quantized training. Ref. [2] sup-
ported mixed-precision training of low bit-widths while
addressing sparsity, but it only supported float16 and
float8.

1. 3　 Problem statement
Lack of reproducibility. Despite the efficiency and

negligible accuracy loss, there are still caveats in Cam-
bricon-Q. For the same tensor, the quantization result
of Cambricon-Q may be different if the tensor is fed to
it with different layouts ( i. e. , NHWC and NCHW),

due to the local dynamic quantization of fixed-size
blocks, which will further affect the training results. It
means that even given the same hyper-parameters,
datasets and random seeds, the results may be differ-
ent, which is unreasonable. One may try to solve this
problem by adding a flag to the quantization unit of
Cambricon-Q to indicate the data layout for channel-
wise quantization, or tensor ID for tensor-wise quanti-
zation, which is still not practical. One tensor is usual-
ly sliced to fit the factors of the hardware when fed to
it, thus making the results relevant with the hardware.
So this work proposes a quantization technique which is
irrelevant with both factors, i. e. , splitting data by
contiguous value ranges instead of addresses.

Irregularity and small convolutions. Dealing with
sparsity is a necessity for the proposed quantization
technique. As previously mentioned, the quantization
technique slices data into groups by different value ran-
ges. It means the numbers of a dot-product operation
fed to the accelerator can be divided into several parts
of irregular sizes. If the current design of Cambricon-Q
is used continually, whose PE can only output one par-
tial sum one time, many cycles will be needed to finish
a dot-product operation. This problem can be solved by
regarding these parts of data as several groups of fine-
grained irregular data.

Besides, in some light-weight neural networks,
e. g. , MobileNet[20] and Xception[21], some layers
adopt depth-wise convolutions which apply a single
convolution filter for each input channel, to reduce
computations and the number of parameters. Such
depth-wise convolutions are usually rather small, e.
g. , 3 × 3 , which are not friendly to hardware. The u-
tilization of a 32-input adder tree which is fed with this
convolution is only 28. 125% . So this work redesigns
the acceleration core of Cambricon-Q to address irregu-
larity and small convolutions.

2　 Algorithmic-deterministic quantization
technique

　 　 In this section, an element-wise quantization
(EWQ) technique is introduced, whose results are al-
gorithmic-deterministic, and independent of the data
layout and the hardware, to guarantee the reproduc-
ibility of quantization results.

Existing quantization techniques usually need to
get the statistics of a set of data, e. g. , the maximum
and minimum value, to get scale and offset. It is cos-
ting, and the quantization results depend on how the
data is grouped. Though the data can be grouped by
layer or channel, it is not reasonable for hardware to
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implement these quantization techniques because the
data fed to hardware is usually sliced again according
to hardware specifications. Instead, EWQ groups data
by the data range it belongs to, and the quantization
result of each element only depends on the element it-
self.

Grouping. One simple way of grouping is to group
float numbers by their exponents, e. g. , grouping
float16 numbers into 32 groups. However, it is not flex-
ible and takes no consideration of different data distri-
butions. If the data in a range is very dense, the range
needs to be split into more groups by using not only the
exponents but some bits of the mantissas when group-
ing. If the data in a range is rather sparse, some groups
can be merged into one by using just some high bits of
the exponents. Thus, this work proposes quantization
prefix codes to measure the quantization granularity.
Quantization prefix code is composed of the exponent
and some high bits of the mantissa, or only some high
bits of the exponent. For example, if 011000101 is a
quantization prefix code, the range it represents is from
0110000101000000 to 0110000101111111 in binary
form. If the prefix of a float-point number is the same
with the quantization prefix code, the number belongs to
the range represented by the quantization prefix code. It
can also be noticed that the longer the quantization pre-
fix code is, the narrower range it represents, and the
more precise the quantization is. Specially, a single
group needs to be spared for number zeros for the ad-
dressing of sparsity.

Scale and offset. Given the quantization prefix
code, scale and offset can be computed. Let a float16
number be x , and its exponent and mantissa be E and

M , M = f9 f8… f0 = ∑
9

i = 0
2 i -10 fi , then x =

2E-15 1 + M( ) . If the length of quantization prefix code
is l and the bit-width of the quantized integer xq is w ,
scale and offset can be obtained as follows ( only nor-
malized numbers are considered here, the case for de-
normalized numbers is more complex):

(1) l ≥ 6 . The quantization prefix code contains
not only the 5-bit exponent but the high l - 5 bits of the
mantissa. At most w - 1 bits need to be extracted from
the following bits, so:

xq = f14-l f13-l… f16-w-l = ∑
w-2

i = 0
2 i f16-w-l+i (1)

scale = 2 -(E-15) × 2 l -5+w-1 = 29+l+w-E 　 　 　 (2)
x·scale - xq = (2 l +w-6 + 2 l +w-7 f9 + … + 2w-1 f15-l)

+ (2 -1 f15-w-l + … + 2l +w-16 f0) (3)
From Eq. (3), it can be noticed that:

bias = 2 l +w-6 + 2 l +w-7 f9 + … + 2w-1 f15-l (4)

err = 2 -1 f15-w-l + … + 2 l +w-16 f0 (5)
If l + w≥16 , there will be no quantization errors

for float16 numbers with this quantization prefix code.
(2) l < 6 . The quantization prefix code contains

only the high l bits of the exponent. The high w - 2 bits
of the mantissa should be extracted, so:

xq = 1 f9 f8… f12-w = 2w-2 + ∑
w-3

i = 0
2 i f12-w+i (6)

　 scale = 2w-2-b (7)
　 bias = 0 (8)
where, b is the upper bound of the exponent represen-
ted by the quantization prefix code, i. e. , b =
E | 25-l - 1( )( ) - 15 .

The quantization formula is x·scale - bias = xq .
The round mode is consistent with IEEE 754, i. e. ,
rounding to even. Besides, EWQ avoids the problem of
the long-tail-distributed data naturally because it
groups data by proximity.

3　 Cambricon-QR architecture

In this section, the detailed architecture of Cam-
bricon-QR is presented. It follows the training frame-
work of Cambricon-Q, so this section mainly discusses
about the design of EWQ in Section 2 and the leverage
of sparsity of neural networks.

3. 1　 Overview
Fig. 1 shows the overall architecture of Cambricon-

QR which is modified based on Cambricon-Q. While
the NDP Engine is used for training, the acceleration
core is mainly discussed here, which is mainly com-
posed of three parts: 5 on-chip buffers, a PE array and
a scalar functional unit( SFU). The 5 buffers include
NB in(for fixed input neurons), NB out (for float out-
put neurons), SB (for fixed weights), NIB (for group
index of input neurons) and SIB ( for group index of
weights) . The PE array performs vector / matrix compu-
ting, and the SFU performs scalar operations.

Fig. 1　 Architecture overview of Cambricon-QR
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The acceleration core gets quantized data and cou-
pled group indexes from NDP Engine through the mem-
ory controller, and stores them in the on-chip buffers.
The PE array gets data from buffers, computes and de-
quantizes the result, which is sent to SFU. Then, SFU
performs scalar operations, of which the result is stored
in NBout and then sent back to DRAM.

3. 2　 Quantization support
The quantization unit ( QU) supports different

quantization granularity by configuring quantization
prefix codes and quantization bit-width which are stored
in registers.

From the quantization formula in Section 2, it can
be noticed that it is very easy for the hardware to im-
plement EWQ, as shown in Fig. 2 (not including roun-
ding and true form to 2’s complement). The quantiza-
tion group which the number belongs to can also be ob-
tained by performing XOR operation on the number and
each quantization prefix code.

Fig. 2　 Float16 quantization with prefix code len ≥ 6

3. 3　 Sparsity and irregularity support
The sparsity of data is leveraged by the PE array

which consists of several PE lines. As shown in Fig. 3,
each PE line contains several PEs, an accumulation u-
nit (ACCU) and a dequantization unit (DQU). Each
PE includes a data selecting unit(DSU), a data dis-
patching unit(DDU),several multipliers and an adder
tree.

For a dot-product operation, the compiler will di-
vide it into several parts according to the capacity of
one PE line. Each part is a task and dispatched to a
PE line according to the utilization of them. Because
one PE line may have more than one task and EWQ
splits one task into several parts, the hardware gives
each number a task ID to distinguish.

DSU takes both neurons and weights with their
group indexes and task IDs as inputs, and gives the
needed pairs of neuron-weight and the scales of their
products, as shown in Fig. 4. The pair of neuron and
weight can be deserted if either of them is zero (i. e. ,
the group index is zero. ), so an AND operation is ap-

plied to neurons and weights to get a bitmap for filter.
The scales of the products are just summation of the
scales of neurons and weights. Additionally, to avoid
the transmission of offsets, the neurons and weights
here are actually the summation of quantized results
and offsets, i. e. , xq + bias . The task IDs are used in
the adder tree and ACCU to distinguish different tasks
because the PE can be dispatched more than one task.

Fig. 3　 PE array

Fig. 4　 Data selecting unit

DDU takes the filtered neurons, weights, scales
and task IDs as inputs, and outputs the grouped data,
which means neurons / weights with the same scales of
the products and task IDs are placed contiguously for
the convenience of the following computing unit. As
shown in Fig. 5, the scales are compared with every
possible value to get corresponding bitmaps, and then
the neurons and weights are filtered by these bitmaps
and concatenated as a whole. It can also be regarded
as reordering the data by the scales and task IDs.

The adder tree gets data from multipliers and ac-
cumulates them as the final fixed result of this PE .
However, the adder tree usually gives one result,
which means the operands fed to it must have the same
scale and task ID. When performing small convolutions
(e. g. , depth-wise convolution in MobileNet[20], small
parts of irregular sizes split by EWQ), the PE may
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have operands of many different scales or task IDs.
Thus, the data must be splited to parts, leading to low
utilization of this PE. One simple improvement is to al-
low each adder node in the adder tree to give the re-
sult. But this way still has its limitation, as the oper-
ands must be placed aligned according to the number of
them. For example, there is a 16-input adder tree,
and 4 dot product operations of size 3. The operands
are allocated to the multipliers whose indexes are (0,1,
2), (4,5,6), (8,9,10), (12,13,14) respectively. In
this case, the utilization of this PE is still only 75% .

Fig. 5　 Data dispatching unit

To maximize the utilization of the PE, the forward
adder network ( FAN ) proposed by SIGMA[19] is
adopted. It settles the drawback of low utilization
caused by irregular size of dot-product operations by
connecting low-level adders to high-level adders. As
shown in Fig. 6, each node in FAN is not only an ad-
der which performs addition operation, but also a
switch which bypasses the two inputs. The routing al-
gorithm will decide whether a node is an adder or a
switch, and which result is to be selected by high-level
nodes for addition.

Fig. 6　 Forward adder network[19]

ACCU is used to aggregate the results of all PEs of
this PE line, and accumulates them by task IDs. The
outputs of each PE may contain partial sums of the
same task but with different scales, so they are first
requantized and then added, to make them belong to
different tasks. The parts of the same task may also be
dispatched to different PEs, so previous results of all
PEs are requantized and added again, to get the final
sum of each task. The results are then sent to DQU.

Fig. 7　 Accumulation unit

4　 Experimental methodology

In this section, the experimental setup is listed,
including the benchmarks and the configurations of
hardware platforms for comparison.

4. 1　 Benchmarks
The benchmarks include several CNNs listed in

Table 1. The datasets are all TinyImageNet which is a
subset of ImageNet.

Table 1　 Benchmarks

Model Batch size Learning rate

AlexNet[22] 16 0. 08

ResNet-18[23] 16 0. 08

SqueezeNet[24] 16 0. 60

MobileNet-V2[25] 16 0. 50

4. 2　 Hardware configurations
The training performance and hardware cost of

Cambricon-QR with TPU and Cambricon-Q are com-
pared.

The performance of TPU is obtained by a simula-
tor based on SCALE-sim[26] . It is modified to make
TPU have the same configurations with Cambricon-Q
and Cambricon-QR, i. e. , 2 Tops @ Int4, 256 kB
NBin, 512 kB SB and 256 kB NBout, and
17. 06 GB / s memory bandwidth. The quantization
technique is consistent with Cambricon-Q, i. e. , the
dynamic statistic quantization.

Cambricon-Q has 64 × 64 4-bit PE array working
at 1 GHz, providing a peak performance of 8 Tops @
Int4 or 2 Tops @ Int8. The performance is obtained by
the simulator.

A simple implementation of Cambricon-QR is ac-
complished in Verilog register transfer level (RT)L. It
is synthesized, placed and routed under TSMC 45 nm

75　 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024



technology to get the area and power. The performance
is still obtained by the simulator. Cambricon-QR has a
PE array working at 1 GHz which has 8 PE lines, and
each PE line contains 8 PEs, each of which includes
16 8-bit multipliers, thus providing a peak performance
of 2 Tops @ Int8, consistent with Cambricon-Q. The
units which deal with sparsity are designed to support
at most 50% sparsity. Besides, it also has two index
buffers to place neuron group indexes and synapse
group indexes, i. e. , 128 kB NIB and 256 kB SIB.

5　 Experimental results

In this section, the power and area of Cambricon-
QR are evaluated. Its performance is also compared
against graphics processing unit ( GPU), TPU and
Cambricon-Q.

5. 1　 Hardware characteristics
Table 2 lists the hardware characteristics ( area

and power of each unit, and their proportions in total
area and power) of Cambricon-QR. The acceleration
core of Cambricon-QR occupies 16. 10 mm2 area and
consumes 964. 80 mW. Compared with Cambricon-Q,
Cambricon-QR has much larger area and a little higher
power consumption, which is mainly attributed to the
units which deal with sparsity (DSU, DDU, ACCU).
Besides, the extra buffers for indexes also contribute a
little to area.

Table 2　 Hardware characteristics
Area
/ mm2

Proportion
/ %

Power
/ mW

Proportion
/ %

Acceleration
Core 16. 10 100. 00 964. 80 100. 00

SFU 2. 11 13. 11 483. 88 50. 15

NBin 0. 72 4. 47 4. 43 0. 46

NIBin 0. 54 3. 35 3. 32 0. 34

SB 1. 52 9. 44 9. 65 1. 00

SIB 1. 08 6. 71 6. 65 0. 69

NBout 0. 72 4. 47 4. 43 0. 46

DSU 2. 81 17. 46 122. 82 12. 73

DDU 1. 72 10. 68 83. 80 8. 69

FAN 2. 01 12. 50 138. 44 14. 35

ACCU 2. 78 17. 27 101. 26 10. 50

DQU 0. 09 0. 54 6. 12 0. 64

NDP engine 1. 50 100. 00 113. 84 100. 00

QU 1. 43 95. 34 97. 57 85. 71

NDPO 0. 07 4. 66 16. 27 14. 29

5. 2　 Performance
Table 3 lists the training accuracy of EWQ against

full-precision training. Various configurations of EWQ
are tested, of which n is the number of quantization
groups and w is the bit-widths of fixed data. EWQ
achieves ≤ 1% accuracy loss, and performs even bet-
ter on AlexNet and ResNet-18. Only for n = 16, w =
8, EWQ suffers obvious accuracy loss, which may be
attributed to fewer parameters. Though MobileNet-V2 is
also a light-weight neural network, its activation func-
tion is ReLU6 while that of SqueezeNet is ReLU. The
former leads to the greater robustness at low bit-width.

Table 3　 Training accuracy results(% )

Model FP32 n = 64
w = 10

n = 32
w = 10

n = 32
w = 9

n = 32
w = 8

n = 16
w = 8

AlexNet 31. 29 31. 27 31. 55 31. 41 31. 50 31. 32

ResNet-18 45. 82 45. 89 46. 15 45. 71 45. 68 45. 59

SqueezeNet 33. 50 34. 11 33. 80 34. 41 34. 05 27. 06

MobileNet-V2 29. 51 28. 58 29. 16 29. 03 28. 63 28. 46

Fig. 8 (a) shows the performance improvement of
Cambricon-QR against TPU and Cambricon-Q. The av-
erage speedup of Cambricon-QR on four neural net-
works is 3. 54 × against TPU and 1. 61 × against Cam-
bricon-Q. The performance is mainly due to the sparsi-
ty. Table 4 lists the neuron and weight sparsity of these
four neural networks during forward and backward pass
(pruning on weights is not performed, so the weight
sparsity is rather low). Though AlexNet is of high
sparsity, the speedup is still only 1. 98 × because
Cambricon-QR is designed to support at most 50%
sparsity. MobileNet-V2 has only 15. 9% average spar-
sity but its speedup against Cambricon-Q is 1. 44 × ,
which is due to the support of small convolutions of
Cambricon-QR.

Table 4　 Sparsity of neural networks on TinyImageNet

Model Fwd.
neuron

Fwd.
weight

Bwd.
neuron

Bwd.
weight Average

AlexNet 0. 617 1. 21e-6 0. 903 1. 23e-6 0. 802

ResNet-18 0. 490 1. 07e-6 0. 454 1. 08e-6 0. 466

SqueezeNet 0. 455 4. 51e-7 0. 275 4. 61e-7 0. 336

MobileNet-V2 0. 229 1. 34e-6 0. 124 1. 34e-6 0. 159

As is done in Cambricon-Q, the training process
is broken down into six parts, which include forward
pass (FW), backward pass ( computing gradients on
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neurons ( NG ), computing gradients on weights
( WG)), statistical analysis ( S ) and quantization
(Q). The results are shown in Fig. 8 (b).

5. 3　 Energy
Fig. 8 (c) shows the energy comparison of Cam-

bricon-QR against TPU and Cambricon-Q. Cambricon-
QR achieves 1. 69 × and 0. 90 × energy efficiency
against TPU and Cambricon-Q. Fig. 8 (d) shows the
energy breakdown of each module, including accelera-
tion core ( ACC), on-chip buffer ( BUF), memory
standby ( DDR-SB ) and memory dynamic ( DDR-
DY). Energy efficiency of Cambricon-QR differs from
that of Cambricon-Q in two parts. One part is that the
acceleration core needs to get quantization indexes from
the quantization unit in NDP engine, which causes ex-
tra data transferring on DDR bus, and this is the same
as the on-chip buffers. The other part is that the accel-
eration core of Cambricon-QR consumes less power
than Cambricon-Q due to the addressing of sparsity,

Fig. 8　 Performance / energy comparison and breakdown

but this cannot completely compensate for the in-
creased power of DDR bus and on-chip buffers.

5. 4　 Discussion
As mentioned in Section 2, the proposed quanti-

zation technique can utilize different data distributions
of neural networks by using quantization prefix codes of
different lengths, in which case, the grouping is non-
uniform. The training accuracy is tested on ResNet-18
and SqueezeNet whose training accuracy drops rapidly
at low bit-width. As shown in Table 5, while uniform
grouping ( quantization prefix codes are of the same
length) causes severe accuracy loss at low bit-width,
non-uniform grouping still maintains the accuracy com-
parable with full-precision training. Notice that when w
= 4, the accuracy of non-uniform grouping is even
higher than FP32 a lot on SqueezeNet, a reasonable
explanation is that quantization can be regarded as a
regularization method[27] to prevent overfitting.

Table 5　 Training accuracy with variable data ranges
Model ResNet-18 SqueezeNet

FP32 45. 82 33. 50

w = 6
uniform 45. 28 27. 47

non-uniform / 34. 85

w = 4
uniform 37. 27 22. 31

non-uniform 43. 69 36. 85

Considering the area of DSU which now takes
17. 46% area of acceleration core, Cambricon-QR only
support 50% sparsity currently. If aiming to leverage
more sparsity, the number of inputs fed to DSU will be
larger and the area of DSU will increase a lot. Optimi-
zing the design and reducing the area to support higher
sparsity will be the future work.

6　 Conclusion

In this work, an algorithmic-deterministic quanti-
zation technique is proposed to guarantee the reproduc-
ibility of quantization errors with negligible accuracy
loss. The acceleration core of Cambricon-Q is also re-
designed as Cambricon-QR to support sparse neural
networks. It fits well for small convolutions. Experi-
ment results show that Cambricon-QR outperforms
Cambricon-Q by 1. 61 × on average with about 10%
energy increase.
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