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Abstract
With the increasing demand of computational power in artificial intelligence (AI) algorithms,

dedicated accelerators have become a necessity. However, the complexity of hardware architectures,
vast design search space, and complex tasks of accelerators have posed significant challenges. Tra-
ditional search methods can become prohibitively slow if the search space continues to be expanded.
A design space exploration (DSE) method is proposed based on transfer learning, which reduces the
time for repeated training and uses multi-task models for different tasks on the same processor. The
proposed method accurately predicts the latency and energy consumption associated with neural net-
work accelerator design parameters, enabling faster identification of optimal outcomes compared with
traditional methods. And compared with other DSE methods by using multilayer perceptron (MLP),
the required training time is shorter. Comparative experiments with other methods demonstrate that
the proposed method improves the efficiency of DSE without compromising the accuracy of the re-
sults.

Key words: design space exploration (DSE), transfer learning, neural network accelerator,
multi-task learning

0　 Introduction

Artificial intelligence (AI) algorithms, particular-
ly deep neural networks, have demonstrated remarka-
ble results in various fields such as image recognition
and natural language processing. Initially, neural net-
works were executed on central processing unit
(CPU), but with the development of the algorithms, it
was discovered that graphics processing unit (GPU),
with their parallel computing capabilities, were better
suited for these calculations. To maintain computation-
al efficiency while reducing power consumption, dedi-
cated neural network accelerators such as Eyeriss[1],
Google tensor processing unit (TPU) [2], Tesla neural-
network processing unit ( NPU) [3], and others have
been proposed.

As algorithmic advancements continue, the archi-
tecture of dedicated accelerators must be updated to ac-
commodate these changes. Different accelerators have

varying memory levels, data flow, and mapping of pro-
cessing element (PE) arrays. To find a globally opti-
mal solution rather than a local optimal solution, these
configurations must be explored in the parameter
space. Consequently, researchers are seeking ways to
automate the design of neural network accelerators
while accounting for constraints. In recent years, many
studies have focused on the design automation of deep
neural network ( DNN) accelerators, including Dnn
Weaver[4], DNNBuilder[5], AutoDNNchip[6], Con-
fuciuX[7], among others.

Design space exploration (DSE) plays a critical
role in optimizing the performance and efficiency of
neural network accelerators, which are specialized
hardware devices designed to accelerate the computa-
tion of neural networks. DSE algorithms typically in-
volve exploring a large number of possible parameter
configurations, such as the number and type of pro-
cessing elements (PEs), memory sizes, and intercon-
nect architectures, to find the optimal set of parameters
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that meets certain design objectives, such as through-
put, power consumption, or area. Different DSE tools
and frameworks have been proposed to automate and op-
timize the process of exploring the design space, by
using various techniques such as simulation, modeling,
and machine learning. The work of DSE in recent years
includes Interstellar[8], simulating machine learning
applications using gem5-aladdin (SMAUG) [9], Accel-
ergy[10], dMazeRunner[11], and loop-order-based
memory allocation (LOMA) [12] . These DSE tools have
the potential to significantly reduce the design time and
cost of neural network accelerators, and enable the de-
sign of highly customized and efficient hardware for
specific neural network workloads. However, DSE also
presents some challenges, such as the large search
space, the complexity of the hardware design, and the
need to balance multiple conflicting design objectives.

In this work, the extension of the concept of trans-
fer learning to improve the performance of a target
learning task by reusing knowledge from a related
source task or domain is proposed. Unlike traditional
machine learning algorithms, transfer learning has the
advantage of reducing the training time of a pre-
trained model, which can be applied to similar pro-
cessor architectures. The parameters abstracted by
different processor architectures are reused, a part of
the hidden layer of the pre-trained model is re-
served, and the input hidden layer is retrained to
adapt to the target task.

The similarities in the design space of different
tasks performed by the unified intelligent processor ar-
chitecture are explored. Transfer learning can use ei-
ther hard parameter sharing or soft parameter sharing to
optimize the shared model. Hard parameter sharing
means that multiple tasks share a common model,
while soft parameter sharing allows each task to have its
own model and parameters, where some parameter val-
ues are shared among all tasks. To address the chal-
lenge of different input sizes, the use of hard parameter
sharing to connect sub-model structures is proposed,
where each task has its own sub-model.

The paper is organized as follows. In Section 1,
the computing task on a neural network accelerator and
how design parameters affect the latency and energy re-
sults are described. Section 2 is related work. Section
3 describes the proposed methodology for DSE based on
transfer learning. In Section 4, experimental results
demonstrate the effectiveness of the methodology are
presented. The concluded and future research direc-
tions are discussed in Section 5.

1　 Problem description

1. 1　 Convolutional neural networks (CNN)
accelerator

The applications of CNN are numerous and cross
many disciplines. They can be particularly useful in
the fields of robot control, image identification, and
natural language processing. CNN can help recognize
items in photos and categorize them by using image
recognition, it can recognize text and produce relevant
outputs in natural language processing, and it can also
aid robot navigation and object recognition in robot
control.

CNN uses convolution operations to process input
data. Convolution operation involves taking a small ma-
trix, known as a kernel or filter, and sliding it over the
input matrix to compute a new output matrix.

Fig. 1 depicts the convolution operation, where O
stands for the output matrix, I for the input matrix,
and W for the convolution matrix; CI denotes the num-
ber of input channels, CO denotes the number of out-
put channels, and WO and HO denote the width and
height of the output tensor, respectively, and KW and
KH denote the width and height of the convolution ker-
nel.

Fig. 1　 Convolutional computation written as a loop

A dedicated neural network accelerator is a hard-
ware device specifically designed to accelerate convolu-
tion operations in deep neural networks. These acceler-
ators leverage the parallelism inherent in convolution
operations to perform them faster and more efficiently
than general-purpose CPUs or GPUs.

The memory hierarchy in a neural network accel-
erator typically consists of several levels of memory as
shown in Fig. 2, ranging from on-chip registers and
caches to off-chip dynamic random-access memory
(DRAM). This hierarchy is designed to minimize
memory access time and optimize data transfer between
different levels of memory.
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Fig. 2　 In a neural network accelerator, the PEs usually
have dedicated registers that store intermediate re-
sults during computation

Design parameters in dedicated neural network ac-
celerators involve various hardware-level optimizations
to improve performance, energy efficiency, and accu-
racy. These parameters include the size of on-chip
memory, the number and type of processing units, the
dataflow and scheduling of computations, and the pre-
cision of data representation. The design parameters
can significantly affect the performance and power con-
sumption of the accelerator, as well as the accuracy of
the neural network inference. Therefore, exploring the
design space and identifying the optimal set of design
parameters is crucial for achieving high-performance
and energy-efficient neural network accelerators.

1. 2　 Spatial mapping and temporal mapping
The mappings determine the approach for execu-

ting the computation of a neural network on a hardware
accelerator, and can be classified into two distinct
types.

(1) Spatial mapping. The movement of operands
across PE arrays in the spatial dimension is governed
by spatial mappings. The selected mapping for a neural
network computation on a hardware accelerator can
greatly impact the level of data reuse per operand. As
a result, the frequency of accessing storage outside the
array can be reduced.

(2)Temporal mapping. Temporal mapping deter-
mines the order in which multiply-accumulate (MAC)
operations are executed within each PE of every neural
network layer. This is achieved by using a set of nested
for loops that operate on the operands of the MAC oper-
ations, which are distributed across the memory hierar-
chy. Each loop is mapped to a specific memory level,
such as different Static random-access memorys
(SRAMs). The order, size, and layer dimension of
the nested loops define the temporal map, which plays
a critical role in maximizing data reuse and minimizing
memory accesses.

Both spatial and temporal mappings are crucial

considerations for optimizing hardware and software de-
sign in terms of their impact on DNN accelerator per-
formance. Ultimately, the best mapping strategies will
depend on the specific requirements of the DNN being
accelerated, as well as the characteristics of the hard-
ware and software being utilized.

The complete temporal and spatial mapping can
be constructed based on the level and characteristics of
the memory hierarchy that is provided. However, given
that there are potentially millions to billions of uniform
or uneven mappings in the very wide mapping space,
evaluating each mapping point to determine the best
one would be time-consuming (note that it is only map-
ping a neural network layer on a fixed architecture).
To address this issue, a neural network model based on
transfer learning is utilized to predict the architecture
parameter space for the next iteration, thus reducing a
significant amount of traversal work.

1. 3　 Pareto front in multi-objective optimization
The formal definition of the multi-objective optimi-

zation problem is as follows.
min / max fh(x), 　 h = 1,2,…,H

subject to g j(x)≥0, 　 j = 1,2,…,J (1)
hk(x) = 0,　 k = 1,2,. . . ,K
x( L)

i ≤ x i≤ x(U)
i ,　 i = 1,2,…,N

In above equations, the variable x denotes the de-
cision vector, where N denotes the number of inde-
pendent variables xi . fh(x) denotes the objective func-
tion, g j ( x) denotes the equation constraint, hk ( x)
denotes the equation constraint, and H, J, and K re-
present their quantities, respectively.

When x1 and x2 meet the requirements, x1 is said
to dominate x2 . For all objective purposes, x2 is not
worse than x1 . For at least one objective function, x1 is
strictly superior to x2 .

The Pareto optimal solution set is the set of all
possible undominated solutions, and the Pareto front is
the boundary of the Pareto optimal solution set. The
Pareto front is a useful tool for analyzing and visualizing
the trade-offs between different objectives in these
problems.

The concept of Pareto optimality is incorporated in
this work to maintain an undominated solutions set dur-
ing the search process. The main objective is to gener-
ate a set of solutions that are not dominated by any oth-
er solution in the search space in terms of multiple ob-
jective functions.

In each iteration of the algorithm, a new solution
is generated and evaluated based on one or more objec-
tive functions that measure its performance. If the solu-
tion is not dominated by any of the solutions in the cur-
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rent set, it is added to the set, and the dominated so-
lution is removed in the set. The Pareto front is used to
guide the search process, which is a set of solutions
that represent the optimal trade-off between different
objectives as shown in Fig. 3.

Fig. 3　 The scatter plot of latency and energy under differ-
ent design parameters

It is possible that the search algorithm may not
find a satisfactory result, meaning it may not converge
to a single optimal solution. In such a scenario, the
Pareto optimal solutions found during the search
process can still be output. These solutions are consid-
ered non-dominated and represent the trade-off between
the different objectives. Even though the search algo-
rithm did not converge to a single optimal solution, the
set of Pareto optimal solutions provides useful informa-
tion to users on the best trade-offs between different ob-
jectives (energy, latency, and area).

1. 4　 DSE
DSE is a process of searching for an optimal set of

architecture parameters and mapping parameters for a
given set of computation tasks, subject to certain con-
straints. The goal is to find a design that optimizes a
specific objective function, such as minimizing laten-
cy, maximizing throughput, or minimizing power con-
sumption.

In this work, the input to the DSE process in-
cludes the architecture parameters, such as communi-
cation bandwidths, memory hierarchy, and intercon-
nect topology, as well as the computation tasks, such
as the data size, the number of operations, and the
computational requirements of each task. The con-
straints may include resource limitations, power budg-
ets, and timing requirements.

The DSE process involves exploring the design
space to find the best architecture and mapping param-
eters that satisfy the constraints and optimize the objec-
tive function. The design space is defined by the possi-
ble values of the design and mapping parameters, and

can be very large and complex. The search can be per-
formed by using various techniques, such as brute-
force search, heuristic search, or optimization algo-
rithms.

The output of the DSE process is a set of architec-
ture parameters and mapping parameters that satisfy the
constraints and optimize the objective function. The ar-
chitecture parameters determine the hardware resources
and organization, such as the number and size of pro-
cessing elements, RAM sizes, and configurations. The
mapping parameters determine how the computation
tasks are mapped onto the hardware resources, such as
the allocation of data to memory, the assignment of
processing elements to tasks, and the scheduling of da-
ta transfers between the memory and the processing el-
ements.

Let D denotes the design parameters, M denotes
the mapping parameters, and T denotes the computa-
tional task. Let E(D, M, T) denotes the energy con-
sumption of the accelerator with design parameters D
and mapping parameters M and executing computation-
al task T. Let L(D, M, T) denotes the latency of the
accelerator with design parameters D, mapping param-
eters M and executing computational task T.

The goal of the design space exploration is to find
the optimal set of design parameters and mapping pa-
rameters (D, M) that minimize the energy consump-
tion and latency of the accelerator, subject to any con-
straints on the design parameters and mapping parame-
ters.

This can be expressed as the following optimiza-
tion problem.

min
D,M

E(D,M,T)
　 　 　 　 　 　 min

D,M
L(D,M,T) (2)

subject to D ∈ D,M ∈ M
where D and M are the sets of valid design parameters
and mapping parameters, respectively.

Solving this optimization problem requires explo-
ring the design space by evaluating the energy con-
sumption and latency for different combinations of de-
sign parameters and mapping parameters, and selecting
the optimal set of parameters that satisfies the con-
straints and minimizes the objective function. This can
be done by using various optimization techniques, such
as simulated annealing(SA), heuristic search, or the
proposed transfer learning-based approach.

2　 Related work

Design space exploration is a critical step in opti-
mizing the performance and efficiency of hardware ac-
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celerators for deep neural networks. However, explo-
ring the design space can be time-consuming and com-
putationally expensive.

Traditional methods, such as exhaustive
search[13], random search[14], and SA[15], often re-
quire extensive search iterations to find the optimal de-
sign parameters and mapping parameters. This can re-
sult in long wait times and limited scalability, particu-
larly when exploring complex design spaces.

To address this challenge, researchers have pro-
posed several methods to accelerate design space explo-
ration. Refs [16, 17] introduced a fast approach for
micro-architectural design space exploration and later
improved the robustness of design space modeling.
Chen et al. [18] explored the microprocessor design
space by using unlabeled design configurations. Addi-
tionally, there are also some work exploring the design
space of field programmable gate array (FPGA)-based
accelerators, such as the design space exploration of
FPGA accelerators for convolutional neural networks
proposed by Rahman et al. [19] and the exploration of
FPGA-based accelerators with multi-level parallelism
presented by Zhong et al. [20] . The proposed methods
for micro architectural design space exploration may
have limited applicability due to their focus on specific
aspects of design optimization.

Zig-Zag[21] designed a mapping search engine by
using heuristic search strategies to locate the optimal
mapping points on energy and performance. Heuristics
are problem-solving techniques that use practical meth-
ods to solve problems in a reasonable amount of time.

In this case, mapping search engines use heuristics to
guide the search towards more promising areas of the
design space, rather than searching the entire space
exhaustively.

AIRCHITECT[22] described a novel approach to
design space exploration that involves using multilayer
perceptron (MLP) to learn the optimization task and
predict optimal parameters for custom architecture de-
sign and mapping space. This approach bypasses the
iterative sampling of the design space using simulation
or heuristic tools, which can be a costly process.

Confuciu X[7] leveraged the reinforcement learn-
ing (RL) method to guide the search process. The RL
agent generates resource assignments as ‘actions’ that
are evaluated by a fast analytical model for DNN accel-
erators called MAESTRO, and the environment outputs
‘rewards’ that are used to train the underlying policy
network.

3　 Methodology

3. 1　 Overview
A novel approach based on transfer learning is

proposed in this work to conduct design space explora-
tion accurately and quickly as shown in Fig. 4. The op-
timal design parameters and mapping parameters are
predicted by utilizing an MLP based on previously
learned experiences. Compared with traditional meth-
ods, using MLP can greatly reduce the number of itera-
tions and can be accelerated by GPU.

Fig. 4　 Flow chart for design space exploration

　 　 The design rationale for using transfer learning in
this work is based on the principle that models trained
on a particular task can be transferred to improve learn-
ing on a new, related task. By pre-training the MLP on
a set of similar design problems, the learned knowledge
can be used to guide the search process for a new prob-
lem.

Furthermore, it is demonstrated that the proposed

method is superior to existing approaches that uses
MLPs. MLP-based approaches require a large amount
of data and are prone to overfitting, resulting in limited
scalability and slower training times. In contrast, the
transfer learning-based approach can use previously
learned experiences to train the model, resulting in fas-
ter and more efficient training.

The algorithm is designed to provide optimal de-
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sign and mapping parameters for a given processor ar-
chitecture and computing task to achieve minimum
power consumption and latency. It consists of four
main phases: the parser phase, training phase, explo-
ration phase, and evaluation phase.

In the parser phase, the input processor architec-
ture and computing task information are translated into
specific cycle scales, memory hierarchy, latency, and
power consumption of different cell modules for further
processing.

In the exploration phase, the algorithm generates
candidate design parameter combinations to explore the
design space. These combinations are either initialized
at the start of the algorithm or updated based on the
output of the neural network in the training phase.
Once the candidate combinations are generated, the al-
gorithm runs various mapping strategies in the simulator
to calculate the latency and power consumption values
for each combination.

In the training phase, a neural network model is
trained and weighted based on the design and mapping
parameters and their corresponding latency and power
consumption. The neural network model is then used to
make predictions, and the best candidate obtained is
used as input for the next iteration of the exploration
phase.

In the evaluation phase, the obtained candidate
points are evaluated to determine whether the delay and
power consumption meet the requirements. If the re-
quirements are met, the design and mapping parame-
ters are directly output. Otherwise, the algorithm en-
ters the training phase. This process is iterated until
the evaluation phase meets the exit criteria.

3. 2　 Parser phase
In the initial phase of the algorithm, the input

accelerator architecture parameters are processed, in-
cluding information on the memory structure from
DRAM to PE, the optional calculation modes, and the
power consumption and latency of each component
during the calculation process. Based on this informa-
tion, a processor object is instantiated in the simulator
and the required design parameters can be deter-
mined.

Next, the layer information of the neural network
is considered. This includes the size of the input and
output matrix, the shape of the convolution kernel,
step size, padding, dilation rates, and other relevant
parameters. This information is then converted into a
computational task in the form of a loop to facilitate lat-
er operation and evaluation.

3. 3　 Exploration phase
During the exploration phase, the accelerator pa-

rameters are initialized for the first run. This includes
the size of each level of memory, the choice of compu-
tation mode, and other factors that depend on the given
accelerator architecture.

The initialization of the accelerator parameters can
be performed using a completely random initialization,
or a pre-trained model can be used to estimate the opti-
mal merit of the architecture based on the results of the
previous design.

If it is not the first run, the candidate design pa-
rameter points can be obtained from the training phase,
where the neural network has been trained on previous
design parameters and mapping parameter combinations
and their corresponding latency and power consumption
results. Then a neural network can be used to predict
the most advantageous design parameters combinations
for the next iteration of the exploration phase.

Different mapping strategies are run in the simula-
tor by using the initialized or candidate design parame-
ters. Each mapping strategy generates a set of mapping
parameters combinations and their corresponding laten-
cy and power consumption results. The mapping pa-
rameters combinations are the parameters used to map
the computation onto the hardware accelerator, such as
the choice of loop unrolling factors, tiling factors, and
parallelization factors.

Once the mapping strategies are executed, the al-
gorithm evaluates the results and selects the mapping
parameters combination with the optimal latency and
power consumption. Then the mapping parameters
combination is used as input for the training phase.
The exploration phase continues until the exit criteria
are met, such as achieving the desired latency and
power consumption targets or reaching a maximum
number of iterations.

3. 4　 Training phase
In order to anticipate the optimum performance

and power consumption for the optimal mapping case in
architectures with various design parameters, a transfer
learning model is trained.

The neural network model consists of seven fully
connected layers. The input layer will determine the
width of the input according to the design parameters
required by the accelerator architecture obtained in the
parser stage, and the output layer will output the laten-
cy and energy corresponding to the architecture param-
eters.

Before the training process starts, the 1st, 2nd,
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6th, 7th and 8th layers need to be randomly initial-
ized, and after pruning and fine-tuning the weights of
pre-trained models trained under other architectures,
they are applied to the 3rd, 4th, and 5th layers as
shown in Fig. 5.

Fig. 5　 The transfer learning neural network structure consists of
various layers that accept design parameters and task in-
formation as input and output corresponding energy and
latency

Pruning and fine-tuning can improve the perform-
ance of the pre-trained model on the new task while re-
ducing the amount of new data needed for training. By
removing unimportant or redundant parameters through
pruning, the model becomes more efficient and easier
to train. Fine-tuning allows the pre-trained model to be
adapted to the new task by adjusting its existing
weights and biases to fit the new data, which can lead
to better performance on the new task. A method simi-
lar to PAC-Net[23] is used.

Suppose fws
:X → Y is a model trained on the

source data set, its weight vector is ws, using minimi-
zing the standard negative log-likelihood method for
fine-tuning the pre-training model.

LT(w) = - ∑
NT

i = 1
log pw(yi

T | xi
t)

　 　 w( t + 1) = w( t) - η �
︿

w LT w( ) (3)
w(0) = wS

Then, for the weight vector w = (w1, w2,. . . ,
wN) , the mask m = (m1,m2,. . . ,mN) is used to re-
move smaller weights.

　 　 　 mi = 1　 　 w i > w t

0　 　 otherwise{ (4)

where w t is a manually set threshold.
Next, the remaining unpruned vectors are embed-

ded with the remaining information, which is represen-

ted as wU = w☉m .

wU( t + 1) = wU( t) - η �
︿

wU
Ls(wU)

　 　 　 　 wU 0( ) = wS☉m (5)
Finally, adjust the pruned vector wP = w☉(1 -

m).

wP t + 1( ) = wP t( ) - η �
︿

wP
[LT(w) + Ω(wP)]

　 　 　 w 0( ) = wU (6)

Ω(wP) = λ | wP | = λ∑
D-K

i = 1
wi

P
2

The target weight vector fwt
is obtained by adding

wu and wP .
Since it is a multi-objective optimization, the loss

function needs to use a balanced loss function:

Loss = 1
N∑α· eni - en︿ i + lai - la︿ i (7)

where N represents the total number of samples, eni re-
presents the predicted energy of the i-th sample, en︿ i re-
presents the actual energy of the i-th sample, and lai

represents the i-th sample. The predicted latency of the
i sample, la︿ i represents the actual latency of the i-th
sample, because the magnitude of the two is different,
so the weight α needs to be set.

According to the results of the exploration phase,
substitute the accelerator parameters and optimal delay
power data of this iteration into the model for training,
and adjust the transfer learning model network weights.
Then use the network to predict the energy and latency
of other points, so as to select the next batch of candi-
date parameters for the optimal solution. This iteration
is repeated until the evaluation phase is successfully
completed.

3. 5　 Evaluation phase
In this phase, it is determined whether the search

process can be terminated by judging whether the out-
put satisfies a predetermined threshold for latency and
power consumption.

If both energy and latency are less than the target:
lai < latar

　 　 　 　 　 　 eni < entar (8)
the search can be ended immediately.

However, this situation is difficult to obtain di-
rectly during training, so it cannot be used to evaluate
the quality of results. The following formula is used for
comparison:

Qor lai
( ) = 0　 　 　 　 　 lai ≤ latar

lai - latar 　 　 lai > latar
{
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Qor eni
( ) = 0　 　 　 　 　 　 eni ≤ entar

eni - entar 　 　 eni > entar
{ (9)

Qor i( ) = α·Qor eni
( ) + Qor lai

( )

If results that simultaneously meet the objectives
have not been achieved, the number of iterations can
be set to force the algorithm to stop and output the re-
sult with the highest Qor achieved until that iteration.

4　 Experiments

4. 1　 Overview
In this article, the experiment uses Python, tak-

ing AlexNet, VGG, and other networks as benchmarks
to explore the design parameters of Google TPU, Eye-
riss, and Tesla prototype architectures, the design pa-
rameters are shown in Table 1. The running example
decomposes the network into layer-by-layer convolution
or vector operations. Taking AlexNet as an example,
the main computing tasks include different convolution-
al layers.

Table 1　 The design parameters

Architecture parameters Range

PE number
SRAM to DRAM bandwidth
DRAM to SRAM bandwidth

SRAM read bandwidth
SRAM write bandwidth

Input SRAM size
Weight SRAM size
Output SRAM size

1 - 1024
10 - 200 GB / s
10 - 200 GB / s
100 - 2 TB / s
100 - 2 TB / s
64 kB - 64 MB
64 kB - 64 MB
64 kB - 64 MB

4. 2　 Comparison with other methods
To assess the effectiveness of this method, several

other methods are selected and modified to enable a
fair comparison. These methods are as follows.

SA: SA is used as a baseline comparison method.
SA iteratively explores the design space by making ran-
dom modifications to the current architecture, accep-
ting or rejecting changes based on a probability distri-
bution dependent on the current temperature. The tem-
perature decreases over time, becoming more restric-
tive and allowing the algorithm to converge towards a
minimum. The initial temperature is set as 2 × 10 - 8 .

Deep reinforcement learning (DRL): the policy
gradient approach is used in the DRL method, similar
to ConfuciuX[7] . An actor network is used to update
the policy network, with the current network parame-
ters and configurations as states and modifications to
the configurations as actions. Rewards are obtained
when the current action approaches the states that satis-
fy the objectives, with a bonus added if the current

state already satisfies the objectives. Hyper parameter
tuning is performed to obtain relatively better results.

Large multilayer perceptron ( Large MLP): the
results were tested by applying MLP alone, similar to
AIRCHITECT[22], and by applying the design selector
to improve the results. AlexNet was run on the Google
TPU architecture, and energy and latency were predic-
ted based on the design parameters, with k-fold cross-
validation used for training. Once training is complete,
a new training task is performed on Eyeriss architecture
to run VGG16, and the randomly initialized network is
compared with the network that had transferred the pre-
vious training results. As shown in Fig. 6, the training
efficiency of the transfer network is significantly im-
proved.

Fig. 6　 The training losses of the transfer learning model
and the MLP model without transfer learning

Heuristic method: similar to Zig-Zag[21], this is a
DSE algorithm that iteratively searches for promising
designs and refines them. The algorithm takes advan-
tage of the fact that a design can often be decomposed
into a set of sub-designs, each of which can be opti-
mized independently. An optimal solution can be even-
tually converted by iteratively refining these sub-de-
signs.

The transfer learning method is evaluated by run-
ning different convolutional network layers ten times
using different methods, allowing a margin of error of
1% for the resulting delay and power measurements.
This means that if the latency and power of the DSE
output are not worse than the user’ s target, the target
is still considered satisfied.

The starting point of design space exploration are
randomly initialized before the start of the DSE algo-
rithms, and different DSE algorithms are running until
they meet the conditions or the number of iterations
reaches the upper limit. The total running time of 10
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independent runs is then counted, and the average iter-
ations and number of satisfied results are displayed in
Table 2, source model trained on Google-TPU-like ar-
chitecture, CONV 1 -3 running on Eyeriss-like archi-
tecture, CONV 4 -6 running on Tesla-NPU-like archi-
tecture, CONV 7 - 9 running on Meta-prototype-like
architecture. These methods are run 10 times on 9 ca-
ses, for a total of 90 times, and count the number of
the final output results of the algorithm that satisfy the
requirements. The efficiency of different algorithms is
compared by comparing the total time to obtain a result
under a given constraint against a baseline of SA algo-
rithm, as shown in Fig. 7. The effectiveness of the
transfer learning method is demonstrated by the com-
parisons made with other DSE methods.

Fig. 7　 Comparison of runtimes of different DSE methods

Table 2　 Average iterations of different methods

SA DRL Heuristic MLP Proposed
method

CONV1 284. 3 96. 2 157. 9 65. 8 53. 6

CONV2 580. 6 197. 8 472. 5 164. 1 139. 8

CONV3 353. 4 122. 5 275. 7 82. 0 82. 1

CONV4 808. 2 260. 5 689. 3 214. 3 173. 4

CONV5 979. 4 361. 9 781. 7 215. 4 217. 8

CONV6 822. 1 288. 6 651. 4 193. 1 178. 1

CONV7 115. 2 37. 9 86. 1 25. 9 24. 5

CONV8 121. 0 37. 7 93. 6 24. 4 24. 0

CONV9 218. 0 69. 3 188. 2 50. 4 50. 2

Satisfied 88 / 90 86 / 90 84 / 90 87 / 90 88 / 90

4. 3　 Multi-task learning
Multiple tasks need to be handled by an accelera-

tor, so the situation of exploring multiple tasks simulta-
neously needs to be considered. Three different scenar-

ios are compared in this study.
Repeat: the DSE framework can be run repeatedly

for a variety of different inputs to obtain the optimal pa-
rameter configuration under their respective conditions.
The biggest advantage of this method is that it does not
need to change any framework and input.

Merge: the approach is to merge the computing
tasks of multiple problems into a single problem, which
increases the time per iteration but reduces the number
of iterations required. This results in a significant im-
provement in the method’ s operating efficiency com-
pared with repeated operations. Although there may be
inconsistencies in the length of input parameters, the
solution is to simply expand the input width.

Multi-task: to simultaneously evaluate the per-
formance of multiple tasks, a multi-task model based
on transfer learning is employed. To enable the model
to process different tasks simultaneously, the transfer
learning model is modified as shown in Fig. 8. Specif-
ically, an independent 1st layer is created for each in-
put, with no interference between the 1st layers of dif-
ferent tasks. This approach addresses the issue of dif-
ferent numbers of input parameters between different
tasks. Layers 2 - 6 remain the same as described in
Section 3, with the 2nd and 6th layers randomly initial-
ized and the 3rd, 4th, and 5th layers transferred from
the pre-trained model. The 7th and 8th layers are also
divided into independent modules, each corresponding
to the output of a different task.

Fig. 8　 The structure of transfer learning model in differ-
ent tasks

The efficiency of the three proposed scenarios is
evaluated by conducting multiple runs of the DSE algo-
rithm using each scheme with different test sets, and
the algorithm is terminated once the performance goal
is achieved. Specifically, the final results had to meet
the performance goal. Ten independent runs are con-
ducted for each scenario and the average performance
is calculated, as illustrated in Fig. 9. The results dem-
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onstrate that the multi-task model outperforms the re-
peat model and is marginally superior to the merge
model. The multi-task model significantly improves ef-
ficiency and enables a more comprehensive analysis of
design space.

Fig. 9 　 Comparison of DSE times using different methods in
multi-tasking scenarios

5　 Conclusion

In this study, a new DSE method is proposed for
neural network accelerator design based on transfer
learning. A new approach is presented that can accu-
rately predict energy and latency performance parame-
ters using neural networks that can learn from various
accelerator architectures and tasks. Compared with
other DSE tools, higher operating efficiency is achieved
by this method. Furthermore, improved performance is
achieved through the multi-task learning model, which
allows simultaneous evaluation of multiple neural net-
works run samples in design space exploration. The
framework is not limited to the simplified model used in
this study, it can also be applied to more complex
models, such as cycle-accurate electronic system level
(ESL) simulators, to explore design spaces. Future
work will focus on extending the scope of the framework
to various simulators.
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