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Abstract
To enhance the efficiency of warehouse order management, this study investigates a dual-com-

mand operation mode in the Flying-V non-traditional warehouse layout. Three dual-command opera-
tion strategies are designed, and a dual-command operation path optimization model is established
with the shortest path as the optimization goal. Furthermore, a genetic algorithm based on a dynamic
decoding strategy is proposed. Simulation results demonstrate that the Flying-V layout warehouse
management and access cooperation operation can reduce the operation time by an average of 25% -
35% compared with the single access operation path, and by an average of 13% - 23% compared
with the ‘deposit first and then pick’ operation path. These findings provide evidence for the effec-
tiveness of the optimization model and algorithm.
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0　 Introduction

Logistics optimization in warehouse management
can effectively reduce the operating costs for enterpri-
ses. Among all logistics processes, access operation is
the most labor-intensive and costly, with costs account-
ing for up to 55% of the total operating expenses of a
warehouse [1] . Previous studies have indicated that op-
timizing access operation is crucial for improving ware-
housing efficiency [2] . The time spent on access opera-
tion is a key indicator for measuring operational effi-
ciency, and it is closely associated with the selection of
access operation path. Therefore, reducing the travel
distance of access operation is capable of enhancing the
efficiency of warehousing management operations.

In recent years, researchers have studied access
operation paths in warehouse by taking into account
different warehouse layouts and order distributions un-
der the assistance of heuristic algorithms such as genet-
ic algorithms[3-4], ant colony algorithms[5-8], and parti-
cle swarm algorithms [9-12] . To reduce the access cost
of goods, Ref. [ 13 ] proposed the Flying-V layout
mode as an innovative warehouse layout, proving that
this non-traditional layout can shorten travel distance
by 10% - 20% compared with traditional layout in

terms of picking efficiency. However, most current
studies focus on single-command operation mode[14-19]

by maximizing their respective operational efficiency
without considering the association of access opera-
tions, where only deposit or picking operations are con-
ducted during a single operation trip. Although this
single-command operation mode is simple and easy to
execute, it leads to problems such as idle trips and re-
source waste, indicating the need for improving overall
operation efficiency. Therefore, this paper focuses on
optimizing the dual-command operation path of Flying-
V layout warehouse.

1　 Problem description and mathematical
model

1. 1　 Problem description
In this study, a batch of ordered goods required

depositing while another batch required picking, and
the objective is to complete the order operations with
the shortest total operation path. The warehouse layout
adopted Flying-V type layout, and the plane layout of
the entire warehouse is shown in Fig. 1. The P&D
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( pick and deposit) point is the entrance and exit of the
warehouse. To facilitate the study of warehouse man-
agement path optimization, certain assumptions have
been made.

(1) During the operation, the freight vehicle has
a load limit of Q , allowing for multiple operations to be
carried out.

(2) It is assumed that walking distance on both
the left and right sides of the passage are negligible.

(3) In addition, turning back and walking in the
passage is permitted.

(4) The demand for goods in every order is less
than that of the freight vehicle’ s load capacity, and
the freight vehicle can only access each location once.

Fig. 1　 Flying-V warehouse layout

1. 2　 Parameter design
Fig. 1 shows the picking area number and cargo

space number. The cargo space number ranges from 1
to 260, from left to right and bottom to top, with the
P&D point number being 0. The warehouse layout is
divided into four picking areas, starting clockwise from
the lower left corner of the warehouse, and is divided
into Zone 1, Zone 2, Zone 3 and Zone 4. Regardless
of the height of the cargo space, the length and width
of the shelf are l , the width of the picking channel is
l, and the width of the diagonal main channel is 2l .

To represent the corresponding cargo space num-
ber, a virtual coordinate system is utilized in the plane
layout. The array {k,x,y,z} is employed, where k(k
= 1,2,3,4) indicates the cargo area number, x(x =
1,2,3,. . . ,11) represents the number of channels,

y(y = 1,2,3,. . . ,ymax) depicts the number of rows of
shelves starting from the diagonal main channel, and
z( z = 1,2) indicates the left and right sides of the
channel; specifically, z = 1 denotes the left side of the
channel, and z = 2 represents the right side of the
channel. For example, {2,5,10,1} represents Zone
2, the 5 th channel, the 10 th space from the diagonal
main channel upward, the shelf on the left, i. e. , car-
go space number 102 in Fig. 1.

1. 3　 Distance matrix calculation
To optimize the distance to complete the order ac-

cess operation, it is necessary to calculate the dis-
tances between any two points, including the distance
between the P&D point and the cargo space point, as
well as the distance between two cargo space points.

(1) Distance between the P&D point and the cargo space point i.
1) When the cargo space is located in Zone 1 (the same for Zone 4), that is, ki = 1 :

d0i = min
2 × 6 - xi × 3l - yi × l

2 × 6 - xi × 3l + yi × l - 2 2 l{ (1)

2) When the cargo space point is located in Zone 2 (the same for Zone 3), that is, ki = 2 :
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d0i = 2 × 6 - xi × 3l + yi × l (2)
(2) Distance between any two cargo space points:

1) When two cargo space points are in Zone 1 (the same for Zone 4), ki = k j = 1 :

dij =
yi - y j | × l,xi = x j

min
2 × 6 - xi

( ) × 3l - (yi + y j - 2) × l

2 × x j - xi | × 3l + (yi + y j - 2 2 ) × l{ 　 　 xi ≠ x j

ì

î

í

ïï

ïï
(3)

2) When two cargo space points are in Zone 2 (the same for Zone 3), ki = k j = 2 :

dij =
yi - y j | × l,xi = x j

min
2 × xi - 1( ) × 3l - (yi + y j - 2) × l
　 2 × x j - xi | × 3l + (yi + y j - 2 　 2 ) × l{ 　 　 xi ≠ x j

ì

î

í

ïï

ïï
(4)

3) When two cargo space points are located in Zone 1 and Zone 2 respectively (the same for Zone 3
and Zone 4), ki = 1,k j = 2 :

dij =

yi + y j
( ) × l, xi = x j

min
x(
i + x j - 2 + x j - xi | ) × 3l + (yi - y j + 2) × l

(12 - xi - x j + x j - xi | ) × 3l - (yi - y j - 2) × l
　 2 × x j - xi | × 3l + yi + y j - 4 　 2( ) × l, xi ≠ x j

ì

î

í

ïï

ïï

ì

î

í

ï
ïï

ï
ï

(5)

4) When two cargo space points are located in Zone 1 and Zone 3, respectively (the same for Zone
2 and Zone 4), ki = 1,k j = 3 :

dij = min
2 × x j - xi × 3l - (yi - y j

) × l + 2l
10 × 3l + (yi - y j) × l + 2l
2 × x j - xi | × 3l + yi + y j

( ) × l - 6 2 - 4( )l

ì

î

í

ïï

ïï
(6)

5) When two cargo space points are located in Zone 1 and Zone 4, respectively, ki = 1,k j = 4 :

dij = min

2 × x j - xi × 3l - (yi + y j
) × l + 2l

(2 × 6 - xi + 2 × x j - 6 ) × 3l - (yi - y j) × l - 2 2 l

( 2 × 6 - xi + 2 × x j - 6 ) × 3l + (yi - y j) × l - 2 2 l

2 × x j - xi | × 3l + (yi + y j) × l - 8 2 - 4( )l

ì

î

í

ï
ïï

ï
ïï

(7)

6) When two cargo space points are located in Zone 2 and Zone 3, respectively, ki = 2,k j = 3 :

dij =
yi - y j | × l,xi = x j = 6

min
10 × 3l - (yi + y j) × l + 2l
2 × x j - xi | × 3l + (yi + y j) × l - (4 2 - 4) l{ 　 x j ≠ xi ≠6

ì

î

í

ïï

ïï
(8)

1. 4　 Modeling
The goal of optimization is to minimize the dis-

tance to complete the order access process while retur-
ning to the entrance for multiple operations. The math-
ematical model for the path problem can be designed as
follows.

Objective function is

S = min∑
i≠j∈Ω

xij dij (9)

Constraints:
∑
i∈Ω

xij = 1,∀j ∈ Ω (10)

∑
j∈Ω

xij = 1,∀i ∈ Ω (11)

xij ∈ 0,1{ },∀i,j ∈ Ω (12)

Qi ≤ Q,∀i ∈ Ω (13)

Qi = Qi -1 + fi qi (14)

fi = - 1 deposit
1　 　 pick{ (15)

　 　 Decision variables:

xij = 1　 go to j after completing point i task
0　 do not go to j after completing point i task{

(16)
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where,
S: total traveling distance when all order opera-

tions are completed;
i,j ∈ Ω : all cargo spaces to be picked and the

starting point; and i = 0 indicates the P&D point;
dij : the shortest distance between cargo space i

and cargo space j , calculated according to Eqs (1)–
(8);

Qi : load when starting from point i ;
Q0 : initial load from P&D point;
Q : maximum load;
qi : required weight at cargo space point i ;
The objective Eq. (9) seeks to minimize the dis-

tance required to complete all orders; Eq. (10) and
Eq. (11) guarantee that each picking point has one
and only one previous and subsequent task; Eq. (12)
defines the range of values for the decision variables;
Eq. (13) and Eq. (14) prohibit overloading during
the operation.

2　 Algorithm solution

To solve the aforementioned model, a dynamic de-
coding genetic algorithm is implemented. Algorithm 1
provides the corresponding pseudo-code, and the cor-
responding elaboration for the following steps are shown
in subsections 2. 1 - 2. 6.

Algorithm 1 The dynamic decoding-based genetic algorithm

Input:

Population size: N , Crossover probability: Pc ,
Mutation probability: Pm , Number of orders:
Num_orders , Required weight at each point:
q , Operation type: label , Maximum load: Q

Output: Optimal individual: xbest

1. Initialize population with random candidate solu-
tions, shown in subsection 2. 1.

2. Decode (using Algorithm 2) and evaluate each
candidate solution shown in subsection 2. 2.

3. g = 0
4. While terminate condition is not satisfied do
5. Select parents shown in subsection 2. 3.
6. Crossover operation shown in subsection 2. 4.
7. Mutation operation shown in subsection 2. 5.

8. Decode (using Algorithm 2) and evaluate new
candidate solution shown in subsection 2. 2.

9. Select individuals for the next generation shown
in subsection 2. 3.

10. g = g + 1
11. End while

2. 1　 Initialization
To initiate the optimization process, the value for

the population size N , cross probability Pc and muta-
tion probability Pm are defined. The chromosome code
is randomly generated as 1 × No, where No refers to the
order quantity. This process is repeated N times to gen-
erate an N × No population.

2. 2　 Decoding
The natural number code is used, with numbers

ranging from 1 to No and 0 for the P&D point number.
The sequence of codes indicate the access sequence of
the cargo space points.

If there is no load limit, the problem could be
simplified into a standard TSP problem, which only
requires visiting each cargo space point in sequence
and returning to the starting P&D point without the
need for additional decoding. However, due to the
load limit, it is necessary to go back and forth to the
starting point during the access operation. Therefore,
0 is inserted into the code sequence and the load is
dynamically calculated to determine the position where
0 is inserted. The dynamic decoding steps are as fol-
lows.

(1)Considering the limit state, at a certain time
during the access operation, all goods ordered in all
cycles are on the freight vehicle and are decoded ac-
cording to the load limit of the freight vehicle. If the
freight vehicle carrying 1 - i orders is not overweight,
the first cycle of decoding is (0,p1,p2,. . . ,pi,0) .

(2)Cargo space point i + 1 is added to the deco-
ding cycle to simulate the load of the previous i + 1 car-
go space points. The order weight to be warehoused is
taken as the initial load to simulate the access operation
of each cargo space point and calculate the load of each
cargo space point. If a middle point is overweight, it
means that the decoding fails, and the first decoding
cycle is still (0,p1,p2,. . . ,pi,0) . If no overweight
occurs during the intermediate process, it means that
the decoding is successful, and the decoding is (0,p1,
p2,. . . ,pi,pi + 1,0) . Then cargo space point i + 2 is
added to the decoding cycle, and the above steps are
repeated until point i + n becomes overweight in the
simulation process. At this point, the decoding is con-
sidered as failure, and the next cycle of decoding
starts.

(3)Steps (1) and (2) are repeated until all or-
der points are decoded successfully.

Algorithm 2 presents the process of dynamic deco-
ding.
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Algorithm 2　 The dynamic decoding algorithm

Input:
Individual: x , Number of orders: Num_orders ,
Required weight at each point: q , Operation
type: label , Maximum load: Q

Output: Decoded individual: x_d
1. For i = 1 to Num_orders
2. Calculate the initial load of the first i orders Q0 .
3. x_d = 0
4. For j = 1 to i 　
5. x_d = [x_d,x( i)]
6. If label( j) = = 1
7. Qi = Qi-1 + q( j)
8. Else
9. Qi = Qi-1 – q( j)
10. End if
11. If Qi < = Q
12. Continue
13. Else
14. 　 x_d = [x_d,x( i - 1)]
15. 　 save decode fragment x_d
16. break
17. End if
18. End for
19. End for

20. Restores the decoded fragment to a one-dimen-
sional array x_d

2. 3　 Selection operation
The fitness value is the value of the objective

function. To optimize the population and improve the
fitness of individuals, the principles of ‘survival of the
fittest’ in nature are followed. Inspired by the replica-
tion operation in bacterial foraging algorithms, half of
the individuals with poor fitness value are directly elim-
inated, while the other half individuals with good fit-
ness values are copied. To prevent the subsequent
crossover and mutation operations from degrading the
individuals with the best fitness value, an elite reten-
tion strategy is adopted. This strategy ensured that the
fittest individuals are preserved in the population and
not lost during the optimization process.

2. 4　 Crossover operation
To increase the diversity of the population and im-

prove the global search ability, double-point crossover
is adopted. This allows the same chromosome crossover
operation to generate new chromosomes, which further
enhances the optimization process. In double-point
crossover, two crossing points are randomly selected on

the two parent chromosomes. The chromosome between
the two points is copied to the corresponding chromo-
some of the other parent, and the previous duplicated
code is removed. This process increased the diversity
of the population and allowed for a more efficient
search for optimal solutions.

For example:
Parent 1:　 　 　 　 　 1 2 |3 4 5 6 7 8 |9
Parent 2:　 　 　 　 　 9 8 |7 6 5 4 3 2 |1
Copy intermediate codes and delete duplicate

codes:
1 2 3 4 5 6 7 8 9 7 6 5 4 3 2
9 8 7 6 5 4 3 2 1 3 4 5 6 7 8
Offspring 1:　 　 　 　 　 1 8 9 7 6 5 4 3 2
Offspring 2:　 　 　 　 　 9 2 1 3 4 5 6 7 8

2. 5　 Mutation operation
The mutation operation uses double-point ex-

change mutation, which further increases the diversity
of the population. In this operation, two point are ran-
domly generated in the chromosome. The codes of the
two points are then exchanged to complete the mutation
operation. This approach allowes for the exploration of
new solutions and prevents the population from getting
trapped in a local optimum. By introducing random
changes to the chromosomes, the algorithm is able to
search for more optimal solutions across the solution
space.

For example:
Before :　 　 　 　 　 1 2 |3 4 5 6 7 8 | 9
After :　 　 　 　 　 　 1 2 |8 4 5 6 7 3 | 9

3　 Simulation experiment

Experimental environment: Windows 10 operating
system, Intel ( R) Core ( TM) i5-10400 CPU @
2. 9 GHz processor, 32. 0 GB RAM, developed with
Matlab R2018a.

To demonstrate the effectiveness of the proposed
algorithm, a randomized example with 20 orders and
their corresponding demands are created, which is
shown in Table 1. The cargo space number is designed
according to the model parameters, and the maximum
load ( Q ) of the freight vehicle is set to 20 kg. For
example, the second order requires picking 4 kg of
goods from the No. 32 cargo space. To ensure a suffi-
cient population size to 200, which is 10 times the
number of orders, set the evolution times to 500. The
selection of crossover and mutation probability is deter-
mined through experiments. An orthogonal table is
used to select the crossover probability ranging from
0. 1 to 0. 9 with an interval of 0. 1 and the variation
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probability from 0. 01 to 0. 1 with an interval of 0. 01.
The optimal values are obtained by changing the pa-
rameters and running the process 20 times. Calculate
the average value and find that the optimal crossover
probability is 0. 8, and the optimal mutation probability
is 0. 1.

The reason for selecting a large probability of
crossover and mutation is analyzed. Since the replica-
tion is used for selection, the average fitness value of
the population, i. e. , the objective value, would de-
crease rapidly, but at the same time, the diversity of
the population and the global search ability decrease
rapidly. Therefore, selecting a large probability of
crossover and mutation can effectively increase the di-
versity of the population and the global search ability,
leading to better optimization results.

Table 1　 Order demand

SN Cargo space
No.

Demanded
weight / kg Operation type

1 22 2 Deposit

2 32 4 Pick

3 34 5 Deposit

4 40 1 Pick

5 91 6 Pick

6 92 2 Pick

7 99 4 Pick

8 112 6 Pick

9 119 3 Pick

10 123 3 Pick

11 127 6 Deposit

12 146 3 Pick

13 152 8 Deposit

14 165 10 Deposit

15 170 7 Deposit

16 174 3 Pick

17 175 6 Pick

18 190 1 Pick

19 241 9 Deposit

20 244 9 Deposit

Three different access operation schemes are
adopted, and genetic algorithms are used to solve the
optimal path.

Mode 1: separated deposit and picking opera-

tions, with the deposit order operation and picking or-
der operation conducted separately. The shortest opera-
tion distance calculated is 277. 55.

Mode 2: ‘deposit first and then pick’ operation.
After all the goods on the freight vehicle are deposited,
the freight vehicle does not return to the entrance and
exit but continues with the picking operation. The
shortest operation distance calculated is 234. 68.

Mode 3: the deposit and picking operations are
completed simultaneously in an access collaboration op-
eration. The shortest operation distance calculated is
190. 40.

Calculation results are presented in Table 2 and
Figs 2 - 4.

Table 2　 Optimization results of three different modes

Mode 1 Mode 2 Mode 3

Path Load / kg Path Load / kg Path Load / kg
0 0 　 0
34 13 241 18 123 6
22 8 244 9 127 9
127 6 175 0 91 3
0 0 190 6 99 9

241 18 174 7 112 13
244 9 112 10 0 19
0 0 99 16 92 7

152 18 0 20 40 9
165 10 127 13 32 10
0 0 22 7 34 14

170 7 34 5 22 9
0 0 32 0 0 7

146 0 40 4 165 18
190 3 92 5 152 8
175 4 91 7 146 0
174 10 123 13 0 3
119 13 119 16 241 18
0 16 0 19 244 9

112 0 165 18 175 0
99 6 152 8 190 6
91 10 146 0 174 7
123 16 0 3 119 10
0 19 170 7 0 13
92 0 0 0 170 7
40 2 　 　 0 0
32 3 　 　 　 　
0 7 　 　 　
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Fig. 2　 Optimization path of Mode 1

Fig. 3　 Optimization path of Mode 2

　 　 Note: in the table, the freight vehicle follows the
path 0→34→22→127→0, starting from the entrance
and carrying 13 kg of cargo. When arriving at cargo
space No. 34, 5 kg of cargo is deposited, and when
reaching cargo space No. 22, 2 kg of cargo is deposi-
ted. Finally, 6 kg of cargo is deposited in cargo space
No. 127 before returning to the entrance and exit to
load cargo. In the figures, the dotted line indicates

picking cargo for stock out, while the solid line indi-
cates depositing of cargo.

The calculation results, Table 2, and the simula-
tion path diagrams show that all three modes are opera-
ted with maximum load to reduce trips to and from the
entrance and exit and shorten the operation path. Mode
1 has the longest path, while Mode 2 is slightly shorter
with some optimization. Mode 3 has the shortest path,
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which is 31. 4% shorter than Mode 1 and 18. 8% shor-
ter than Mode 2. The reason is that Mode 1 has no-
load when travelling to and from the entrance and exit.
After deposit, it returns to the entrance and exit with-
out any load, and when picking the cargo, it also goes

to the cargo spaces with no load. Although Mode 2 can
avoid no-load at the entrance and exit, it is not opti-
mized as a whole. Mode 3 is optimized as a whole
while avoiding no-load, resulting in the most optimal
outcome.

Fig. 4　 Optimization path of Mode 3

　 　 To prove the effectiveness of the algorithm for ac-
cess cooperative operation, numerous experiments have
been conducted. The orders between 20 and 100 are
randomly generated for calculation. For each example of
different order quantity, the calculation is repeated 100
times, and the average value is calculated, as shown in
Table 3 and Fig. 5. The experimental results show that
in the non-traditional Flying-V warehouse layout mode,
the operation in Mode 3 can be shortened by an average
of 25% – 35% compared with the operation path in
Mode 1, and 13%–23% on average compared with the
operation path in Mode 2. With an increase in order
size, the optimization effect of Mode 3 becomes better.

4　 Conclusion

This paper establishes a Flying-V layout ware-
house path optimization model for dual-command oper-
ation path optimization of Flying-V layout warehouse
management and proposes a dynamic decoding genetic
algorithm. The simulation optimization experiment is
conducted by randomly generating orders, and the opti-
mization paths of three solutions, namely, separated
operation of deposit and picking, ‘ deposit first and

then pick’ operation, and access collaboration opera-
tion, are calculated. The experimental results show
that the access collaboration of dual-command opera-
tion can effectively reduce no-load, shorten the path,
and improve efficiency.

Table 3　 The average of 20 independent runs of three
　 modes for different number of orders

Number of orders Mode 1 Mode 2 Mode 3

20 294. 55 238. 53 195. 43

30 415. 47 342. 46 283. 23

40 528. 34 467. 51 387. 63

50 658. 49 537. 46 483. 14

60 780. 15 716. 72 571. 09

70 957. 47 890. 08 720. 88

80 1116. 91 1051. 29 819. 65

90 1282. 01 1188. 09 955. 50

100 1450. 14 1386. 69 1100. 46
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Fig. 5 　 Average optimization results of three modes for
different number of orders
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