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Abstract

With the expansion of cities and emerging complicated application ,smart city has become an in-

telligent management mechanism. In order to guarantee the information security and quality of service
(QoS) of the Internet of Thing( IoT) devices in the smart city,a mobile edge computing (MEC) en-
abled blockchain system is considered as the smart city scenario where the offloading process of com-

puting tasks is a key aspect infecting the system performance in terms of service profit and latency.

The task offloading process is formulated as a Markov decision process (MDP) and the optimal goal

is the cumulative profit for the offloading nodes considering task profit and service latency cost,under

the restriction of system timeout as well as processing resource. Then,a policy gradient based task of-

floading (PG-TO) algorithm is proposed to solve the optimization problem. Finally,the numerical re-

sult shows that the proposed PG-TO has better performance than the comparison algorithm, and the

system performance as well as QoS is analyzed respectively. The testing result indicates that the pro-

posed method has good generalization.
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0 Introduction

Developed with the help of big data and Internet
of Thing (IoT) 17 the smart city is capable of the in-
telligence management in terms of smart grid, smart
community, smart hospitality, smart transportation,
smart warehouse and smart healthcare'”' . However,
most of the ToT devices in smart city are lack of inte-
grated security mechanisms and vulnerably exposed in
the open area, which brings challenges such as data
privacy and security into smart city[M].

Fortunately , blockchain , which is an intelligent de-
centralized system using distributed databases to identi-
fy ,disseminate and record information, makes it possi-
ble to guarantee the data security and establish a relia-
ble network system'>’. The core techniques of block-
chain are consensus mechanism and smart contract,
which are responsible for the development of trust
among distributed nodes and autonomic management of
the system, respectively. Due to the intervention of
blockchain , the security access'® | data privacy and se-
curity' ™™ and data integrity ") can be ensured in smart
city.

However, it is wildly acknowledged that the opera-
tion of consensus mechanism and smart contract of
blockchain requires substantial computation resource.
To further facilitate the implementation of blockchain in
smart city ,mobile edge computing (MEC) servers are
always deployed with the access points to provide high-
ly expandable computation resource'"®’ and reduce the
service latency!' .

In the MEC-enhanced smart city, the wireless re-
source allocation problem has been wildly studied. The
dynamic scheduling problem is researched in the Inter-
net of Everything, and a multiple scheduling algorithm
is proposed adopting round robin scheduling, propor-
tional fair scheduling and priority based scheduling, en-
hancing the resource allocation efficiency'*’. The joint
user association and data rate allocation problem is
modeled to optimize the service delay and power con-
sumption,and correspondingly solved by iterative algo-
rithm and bisection algorithm'"™'. Task offloading is the
most typical resource management problem in MEC,
and it is also widely studied in the scenario of smart

city. In a multi-user and multi-server MEC scenario, a
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joint task offloading and scheduling problem is studied
aiming to minimize task execution latency and solved
by a heuristic algorithm'"’. Aiming at the maximization
of offloading accomplish rate , problems restricted by the
power consumption of mobile equipment as well as the
deadline of offloading tasks are studied by adopting
deep reinforcement learning ( DRL) and convex opti-

115161 Considering the time cost, energy cost of

mization
[oT devices and resource utilization of cloudlets in
smart city, the computation offload problem is re-
searched ,and a balanced offload strategy is perceived
using Pareto optimization'"”’. By using game theory , the
comprehensive profit of mobile devices and edge serv-
ice providers are designed as optimization problems,
coming up with an offloading solution enhancing both
data privacy and system power efficiency '*.

When blockchain is enabled in smart city, the re-
source management problem is necessarily considered
with more variables such as task profit obtained from
the blockchain system,service latency and resource oc-
cupation. To optimize these multiple optimization objec-
tives with complex restrictions, DRL is efficient by the
perception ability of deep learning and the decision-
making ability of reinforcement learning''**’ . In block-
chain enabled MEC scenario, task scheduling and off-
loading problems are studied and modified as Markov
decision process ( MDP). Policy gradient method is a-
dopted to solve the optimization goal considering the
long-term mining reward, system resource and latency
cost while deep Q-learning ( DQL) optimizes the task
21221 - Another

DRL method called asynchronous advantage actor-critic

execution delay and energy consumption

(A3C) is applied in the cooperative computation off-
loading and resource allocation scenario, enhancing the
computation rate and throughput as main factors of op-
timization function'>!. In the intelligent resource allo-
cation mechanism for video services, the system per-
formance is optimized by A3C in terms of throughput
and latency **'. Aiming at the system energy efficiency
in Internet of Vehicles (IoV) scenario, A3C is also a-
dopted to solve the optimization function composed of
energy and the computation overheads' >’ .
Specifically, in a related scenario proposed in
Ref. [ 26 ], where MEC provides users with sufficient
resources to reduce the computing pressure in the loT
system supported by blockchain,the node matching be-
tween users and edge computing servers in considera-
tion of wireless channel quality and QoS is studied, the
simulation results show excellent performance with the
help of reinforcement with baseline algorithm. Howev-
er, different from the common IoT, the smart city has

diverse requirements in application layer, and the de-
mand of high restrictions on latency in applications
such as high definition (HD) mapping and intelligent
driving decision in smart traffic service is one of the
most important factors'”’'. In this perspective , the ap-
plication implied in the smart city dabbles in a wider
range and ensures more latency restriction in compari-
son with common IoT services,which has not been fully
studied.

In order to realize the data security and ensure the
quality of service ( QoS) requirements of smart city ap-
plications, both the blockchain and MEC technologies
are adopted to enhance the system. The secure process
and storage of original data from the smart city applica-
tions with latency constraint is considered as the task.
The task offloading problem maximizing the long-term
reward which consists of the profits of task processing
and the cost of task processing latency is the main con-
cern. The task offloading problem is formulated as a
MDP,and the DRL method which uses a deep neural
network as the decision agent is used to optimize the
long-term reward. The episodic simulation is built, and
the policy gradient (PG) with baseline algorithm is a-
dopted to train the decision agent. The performance
with different environment parameters are tested , which
respectively confirm the effectiveness and the generali-
zation ability of the policy gradient based task offload-
ing( PG-TO) algorithm.

The rest of this article is organized as follows. Sys-
tem model is formed in Section 1. The task offloading
problem is formulated in Section 2 with the definition of
the actions, states and rewards of the MDP. In Section
3,DRL is used to solve the task offloading problem.
The training and testing results are given in Section 4.
At last, this paper is concluded in Section 5.

1 System model

In this paper, the MEC-enhanced smart city sce-
nario is considered, and the blockchain technology is
adopted to ensure the secure process and storage of
original data from the smart city applications. As shown
in Fig. 1,the system is composed of physical layer and
blockchain layer, which is described in detail in this
section. Besides, the reputation model and the profit
model are also given in the following.

1.1 Physical layer

The physical layer of the proposed MEC-enhanced
smart city with blockchain management functions is
shown in Fig. 1. There are 3 classes of participants in
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the proposed physical layer, which are user equipment
(UE), access point ( AP ), and main access point

(MAP).
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Fig.1 Physical layer

(1) UE can be IoT device or mobile device which
has limited frequency and computing resources. It is the
user of various emerging applications in smart city,and
the key information of its applications or behaviors are
considered as the computation task which needs to be
uploaded to the blockchain for secure process and stor-
age. It is capable of operating the preset program ac-
cording to the smart contract in blockchain but does not
participate in the consensus process.

(2) AP is generally the small base station de-
ployed with MEC server. It performs as the blockchain
node which takes part in the consensus process in
blockchain and is responsible for uploading the offload-
ed tasks from UEs to the blockchain.

(3) MAP is the central control node which is in
charge of assigning the computation tasks form UEs to
appropriate APs. Besides, it has the similar property as
AP that it can participate in the consensus process and
maintain the blockchain system.

1.2 Blockchain layer

As the rules of blockchain nodes running in the
smart city, the smart contract defines the detailed re-
sponsibility of the nodes. Based on the smart contract,
the specific steps of the task offloading process are
shown below.

(1) UE adopts various applications in smart city
generating computation task and declares the average
task fee it can pay for the task.

(2) UE generates task offloading request inclu-
ding information of the average task fee and the latency
limitation ,and sends the requests to the MAP.

(3) MAP observes the frequency and computing
resource occupation of all the APs,the reputation value
of the APs and the arrived task offloading requests of
the UEs.

(4) MAP assigns the tasks to APs according to

the current system observation in step(3).

(5) APs allocate frequency and computing re-
sources to transmit and compute the offloaded tasks.

(6) If the task is offloaded and computed suc-
cessfully within the tolerable latency, the task is accom-
plished and task fee is paid to the APs as task profit.
Otherwise , AP does not get paid.

(7) MAP updates the reputation value of APs ac-
cording to the accomplish status of tasks.

1.3 Reputation model

In order to value the reputation and profit for each
APs ,the corresponding value model is proposed in the
following subsections. As the historical reputation of
each blockchain node reflects its competitiveness in the
consensus process, the credit model formulated in a
MEC enabled blockchain system'* is used in this pa-
per. The reputation is denoted by r, , which shows the
reliability of the i-th AP and is closely related to the
probability of accomplishing a task within the tolerable
latency. The value of r; is linear within a restricted
range r; € [ 1,5] ,whose initial value is set as 3. Every
time if the task is accomplished by the i-th AP, (r;, +
0.1), otherwise, (r; = 0.5) .

1.4 Profit layer

The profit of APs is only contributed by the task
fee paid from the offloaded tasks of UEs. In order to es-
tablish an incentive mechanism, it is supposed that APs
that have high reputation value will be paid with more
profit,which is a reward and approval for the high quali-
ty of service. When the i-th AP accomplishes the j-th of-
fload service,the practical profit can be described as

. r,—-r

1= f( +1) (1)

where f; stands for the expected task profit that is de-

;

fined once the j-th task is generated, and}é represents
the actual profit value that the i-th AP gains when the

J-th task is done. For easy understanding,use "' in this

article as the practical value of the original estimated

as the maximum value and '-’' as the aver-

value,’ ~'
age value. So, r and r respectively represents the aver-
age and the maximum reputation value ,where r = 3,7

= 5. Then, the overall profit that the AP could gain
can be described as Zf] , where J* denotes the set of

jEj‘l
tasks that are successfully completed by APs.

2 Problem formulation
In the blockchain enabled smart city scenario, the
frequency and computing resources of the APs are lim-
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ited. As the task offloading is a key process which can
affect not only the profit of the APs but also the overall
system performance, it is formulated as an optimization
problem. The target is set to be maximizing the long-
term cumulative profit gains from offloaded tasks for
APs while considering the limitation of the resources of
APs and the service latency constraint for QoS. The op-
timization problem is formulated as
max 2 f;(4)
x
jel
st <+ T (2)
d,(A) <D
f(A) S F
where Z f](A) is the key optimization goal. The opti-
jejd
mization variable is the offloading APs index matrix

=
=

which is defined as A = (a,,a,,":",a,,*+) ,where a,

= (a,,,a,,,"",a,,, ) stands for the offloading ac-

tion at time step ¢ ,and a,, means the x-th offloading

action at time step . ¢; is the expected process latency

of the task j and T is the maximum service latency
threshold of each task. d,(A) and f,(A) represent the
computing resource and frequency resource occupation
in AP by the offloaded tasks, respectively. D and F re-
spectively denote the maximum resource storage of
computing and frequency in each APs.

According to the system model described in Sec-
tion 1, as MAP only observes the situation of current
time step, the task offloading process has the Markov
property, which is modeled as a Markov decision
process (MDP). The MDP is denoted as (S,A,P,R) ,
where S stands for state space,and A represents the ac-
tion space. Specifically, P is defined as P(s" | s,a) to
describe the probability of the system state transition
froms € Stos’ € S after taking actiona € A ,while R
is defined as R(a,s) which is the reward from taking
action @ when state is s. The detailed definition of
state , action and reward is shown below.

2.1 State

The design of state should consider those elements
including S, , S , S,and S, . S, represents the state of
the APs, which includes the frequency and computing
resource occupation situation of the current time and
the next (T - 1) time steps. S denotes the state of the
processing tasks in the system,including the index and
reputation value of the AP where the tasks are offload-
ed,and the practical profit gain for AP when tasks are
accomplished. S, and S, give the state of tasks which
have arrived and are waiting to be offloaded. S, denotes

the tasks which can be observed in detail ,including in-

formation of the required frequency resource in each
APs if offloaded to,the related transmission latency and
the expected profit. And S, denotes the extra unobserv-
able tasks that have arrived at the system,including the
arrival time, expected profit and the expected service
latency of these tasks. The state structure detail is
shown in Fig. 2.

S N N S,

R B A 0

E N

Fig. 2 The state observation of each time step ¢

2.2 Action

In the researched scenario,as MAP is capable of
observing state information of APs,the definition of ac-
tion is to select the suitable APs for UEs to offload their
tasks. In time step ¢ ,if the await offloaded tasks num-
ber is D, and the APs amount is N* ,the action space
size is (N* + 1) D, ,for the reason that the task could
be either offloaded to any of the APs or not. Therefore ,
the action space is so huge that the efficiency of the
proposed algorithm would decrease. As a result, simpli-
fy the action space by observing the first K number of a-
wait tasks at each time step and offload them adopting
first-in-first-out ( FIFO) method.

As the intellectual property of task offloading, the
optimization of long-term accumulation value by serial
decision could be realized the same as the parallel de-
cision. Hence, it is considered that the parallel action
decisions are decomposed into serial decisions in the
same time step. The decision times in time step ¢ is de-
noted as X, and all the action in the time step ¢ is deno-
ted as

at = (ar,l7ar,2"" a

bty ) (3)

In this method could the action space be reduced,
whose space size is N* + 1 ,denoting as {1,2,--- ,N*,
Ol where a,, = i means that the first await task will
be processed by the i-th AP in the x-th step at time ¢ .
Specifically , if the first task is the j-th task in the system

task process list, @, , = i stands fora, ; = 1.

2.3 Reward

As the optimization problem is defined in Eq. (3),
the computing and frequency resources are easily imple-
mented that MAP will not offload tasks to the APs
whose frequency and computing resources are insuffi-
cient. As for the service experience,the service latency
restriction of tasks in Eq. (3) can be defined as a pen-
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alty function in the reward to guarantee the accomplish
rate of the scheme. Therefore, the reward can be de-

fined based on Eq. (3) as

maxg(A) = a7 (4) Y (210 (4
4 jesd jeso 4 T

where a and B are weight integers of task profit and laten-
cy cost,respectively. J* is the set of tasks that are sched-
uled by APs. The practical transmission latency of the j-th

tasks that is allocated is denoted as tf ,and tll-' , t}l respec-
tively stands for the expected transmission and computa-
tion latency. As for the MDP, the objective function can
be decomposed into rewards k, in each time step.

(o) =a ¥ (i) =1y gy L

jeli) g * b, jern bia Ty
(5)

where J, (t) denotes the tasks that have been sched-
uled and will be completed successfully at ¢, and J,(#)
denotes all the tasks that have been scheduled at i.
Hence, the optimization function could also be ex-
pressed as a cumulative function of each time step

starting from initial state s, described as

™ .
g(A) = > 8%k(a,) (6)
where the discount factor is 8 = 1 ,and T" denotes the
maximum time step number of one episodic simulation.

3 Policy gradient based task offloading al-
gorithm

This section introduces the PG with baseline
which is one of the DRL algorithms,to develop the pol-
icy gradient-based task offloading algorithm ( PG-TO)
for the proposed optimization problem. The PG-TO al-
gorithm is illustrated in detail including the adoption of
the PG with baseline method and the episodic simula-
tion process in the following.

3.1 The adoption of PG with baseline

The adoption of PG with baseline algorithm in the
proposed optimization problem and the data flow of
state, action and reward in the training process are
shown in Fig. 3. The PG agent, which is the policy net-
work 7, , outputs the probability distribution of action
according to the input state ,and then randomly chooses
the action based on the probability distribution. The
network parameter 6 in 7, is continuously optimized af-
ter each training iteration. In this way, the probability
distribution of actions under each state can be estab-
lished and approach the optimal strategy of probability
distribution of action.

Through the training, Q) samples will be generated
as worksheets of the offloaded tasks, which will be re-
spectively episodically simulated E times at each itera-
tive training. Hence,a set of episodic simulation trajec-

tories denoted as {s,, .,a,,.,r;, .| can be generated in

each iteration,wherei € [1,I] , I =ExQ ,t e [0,
™71 ,x e [1,X,] and X, is the total number of deci-

sion step in one time stept. Whenx = X, , r,,  can be

t 9 Vit

= 0. The [ traj-

ectories obtained by the E times of episodic simulation

calculated by Eq. (5) ,otherwise r,

i,

for each sample are regarded as training samples. Con-
sidering a series of decisioning process in each time

step,introduce a new decisioning step index ! € L,, and
™ .
L, = z z:oX' , which turns {s

{s.;,a;,,r:,} . The [-th decision value of the i-th traj-

a r

it 9 it

I into

it,x

. L“ - . .
ectory is v, ; = 2 t:'yt lri,, , where 7y is the discount
factor and y = 1 . According to the PG with baseline,
the update equation of the neural network parameter 6

after each training iteration is described as follows
Ly 1

0 = Z Z Voo, (s, ,a;,) (v,

1=0 i=1

- bﬁ/EM)

(7)
where the baseline is denoted as b, , .
b o
2, ()
E wiZha "

As the average profit of each time step for the ¢-th

wau =

sample , the baseline is calculated for each E times of
episodic simulation in one iteration. The variance is re-
duced and the efficiency of policy training is enhanced
by the deduction of baseline from v, , .

1 Observation

S,:(SA"SR'SH’*SE)
PG Agent 7, Einvironment

3 Reward @ s UE

o— & ' /Qf ‘
r@a) |\ e MAP
& AP
Policy Network
2 Action T

a

Fig.3 The data flow in the training of the proposed
PG-TO algorithm

3.2 Simulation design

The overall episodic simulation design of the pro-
posed PG-TO algorithm is shown as Algorithm 1. The
total iteration number is set as P and the policy network



300

HIGH TECHNOLOGY LETTERSIVol. 29 No. 31Sep. 2023

7, is trained based on the PG with baseline.

Algorithm 1 PG-TO

1. Establish UEs, APs and MAP in the simulation environ-
ment, initialize the related system parameters.

2. Generate () worksheets.
Randomly initialize the neural network parameters 6 by nor-
mal distribution.

4. for iterationp < P do
5. for episodic simulation i < / do
6: get the initial states, , = s,
7. while time step ¢ < ™ do
8. based on 7, and 5, , get a, ,
9. if action a,; = 5 then
calculate k, according to Eq. (5)
updatet = ¢ + 1
10, else
Offload the j-th task to the
a;, -th APs
k=0
acquire ]i J g
11. end if
12 store s, ;,a; ;,r, ; in the trajectory
13. update J, () , J,(t)
14 update state s,
15 end while
16 end for
17. Calculate the baseline b, , by Eq. (8)
18 Update parameters of network by Eq. (7)
19. end for

In the beginning of each time of episodic simula-
tion , the policy network 77, takes observation of current
simulation environment getting s, , and output the proba-
bility distribution of action. Then, action a, , is selected
randomly according to the output probability distribu-
tion of action. If @, , =(, there is no task offloaded to
any APs at current time step, is obtained according to
Eq. (5) and then the system time step moves on. If the
related task is offloaded to the a; ,-th AP for process-

ing, while f; and i, are counted, and r;;, =0. Then,
{s.,,a;,,r;,}is recorded as one sample in the trajecto-
ry. Afterwards, the related task setsare updated and the
next state s, ;,

peated to obtain a complete trajectory sample of a

, is obtained. The above steps are re-
whole episodic simulation as long ast < TV .

4 Simulation and performance evaluation

4.1 Training performance
The training parameters are defined in Tablel. Re-

fer to the scenario setting in Ref. [ 26 ], which adopts
NB-IoT service model specified in 3GPP 36. 752 %/
The bandwidth is set as 180 kHz, and the number of
frequency resource units is 48 as 3.75 kHz single-tone
is adopted. The size of task and the corresponding profit
for APs are classified into small and big referring to
Ref. [ 26 ]. The transmission frequency resource re-
quirements of tasks are also defined according to the
subchannel classifications in NB-IoT. The observable
future time T is set as 300 times steps as the system
performance indicators are more reasonable when the
system reaches a steady state and to avoid excessive re-
dundant simulation experiments. The number of APs N*
in the simulation makes trade-off between system state
complexity and reasonable service pressure. The numer-
ical setting of N'makes a reasonable size of input state
space while the number of NY comprehensively consid-
ers the APs’ numbers,overall system tasks quantity and
job density.

Tablel Training parameters
Symbol  Parameter Setting
D Maximum frequency resource units 48
number
P Maximum computing resource units 64
number
Frequency resource requirement and {(4,8),
transmitting time of j-th data package in  (1,8),
each time step (big) (48,1) 1
( Dl > Fl )
Frequency resource requirement and {(24,2),
transmitting time of j-th data package in (12,4),
each time step (small) (4,2)}
T Time steps that can be observed to the 300
future
Expected task profit of the j-th task (10, 15]
/ (big)
! Expected task profit of the j-th task (15, 207
(small)
T Maximum latency of tasks 25
N* Number of APs 5
AT Maximum number of observable pro- 25
cessing tasks of each AP
AV Maximum storage number for await allo- 125
cate tasks arrived of each AP
o Weight for task profit 1
B Latency cost weight for each task 5
A Tasks arrival rate 0.8
R Proportion of small tasks in all tasks 0.8

The policy network used by PG-TO method has 2
fully hidden layers,each of which has 32 neurons. Mo-
reover,, max-SINR , max-credit, max-resource and ran-
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dom are set as the comparison methods. Max-SINR al-
ways selects the AP which has the maximum SINR to-
wards UEs. The max-credit prefers the AP with the
maximum reputation value r, while the max-resource
tends to offload tasks to APs with the maximum availa-
ble frequency and computing resources.

T T T T

9500 |-
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y X ol v
Y WY vy X L. I i
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Fig. 4 Mean reward ¢

6500

Fig. 4 shows the average value of mean reward ¢
which is the average g(a) of I samples in each itera-
tion. For training efficiency, the learning rate is set as
0.001. And then, it is decreased to 0. 0005 after 20-th
iteration for better convergence performance. The ¢ of
PG-TO rises rapidly and surpasses the value of the
max-credit after only 5 iterations,and finally converges
to about 9100. The ¢ of PG-TO is about 16. 6% better
than the second-best max-credit strategy, while max-
SINR strategy is in the third place, about 7180. The
random strategy and the max-resource strategy perform
worst, both of which range from 6500 to 6800.

As two important components in ¢ , the average
task profit and the average latency cost of APs are
shown in Fig.5,and their calculation formula is shown
in Table 2. In Fig. 5(a), the max-credit strategy ob-
tains the largest income among all the comparison algo-
rithms as it always picks the AP with the highest repu-
tation and earns higher task profit for each completed
task according to Eq. (1). Meanwhile, max-SINR ob-
tains the lowest latency cost due to the good quality of
wireless transmission referring to Fig. 5(b). In Fig. 5
and Fig. 4 it can be found that there is a contradiction
between the profit of APs and the latency performance
of UEs. However,the advantage in task profit surpasses
the shortage of latency cost, so the max-credit reaches
the second-best strategy. Specifically for PG-TO, the
optimal performance in ¢ is contributed by a little bit
better task profit and about 40% less latency cost com-

pared with max-credit.

Table 2 Calculation formula of other indicators

Indicators Calculation formula Figure
(a
Task profit a Z M Fig.5(a)
jeld) Rty + 1y
Latency cost B 2 ] Fig.5(b)
JjeJa(t) ’/' + t’il

Overtime rate z/_eﬁl(/) (if,,- +1,,)/(t; +1,;)  Fig.6(c)

, r/f i
Overfee rate zjejdmf/ f; Fig.7
11500 f- > "
w) "'" Yy Ty wrx
11000 T Yv
ﬂw.-‘.“ 'i‘-""--\-;...b
_ 10500 |
=
=] .
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= y ®  max-SINR
5 9500 p A max-resource
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= 9000 ¢ random
8500 p
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iteration
(a) Mean task profit
3000 [’ ol —
& max-credit
®  max-SINR
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(b) Mean latency cost
Fig.5 Mean task profit and latency cost

Moreover, the indicators which closely related to
the system performance are also calculated and ana-
lyzed in Fig. 6, and the related calculation formula of
Fig. 6 (¢)
Fig. 6(a) ,the frequency resource occupation of PG-TO

is shown in Table. 2. As shown in

is on the same level as the comparison strategies except
for max-SINR. This is because the max-SINR strategy
causes load imbalance among APs, and thus restricts

the utilization rate of frequency resources.
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Fig. 6 System performance

As shown in Fig. 6(b) and Fig. 6 (d), the per-
formances of computing resource occupation and the
complete rate are consistent. Specifically,in Fig. 6(d) ,
the mean complete rate is calculated in the simulation
program, which is the ratio of the number of finished
tasks to the total number of tasks in the system. It can
be observed that the max-credit strategy completes the
fewest tasks while the other comparison algorithms
complete more amount of tasks and consumes more
amount of computing resources.

Further, the overtime rate is defined as
Z]_Ejam(i‘j + t;{)/(t; + t]d) , which is the practical
service latency and the expected service latency ratio.
According to the performance of overtime rate shown in
Fig.6(c) ,it can be known that PG-TO smartly offloads
a moderate number of tasks to trade off the acquired
task profit and latency cost.

Besides, the ratio of practical task profit to expec-
ted task profit is further counted as the overfee rate.
Accordingly , the overfee rate range of each strategy is
shown in Fig. 7, which marks the corresponding maxi-
mum and minimum overfee rate of each iteration and
the related calculation formula is shown in Table. 2.
Generally, the mean overfee rate of PG-TO algorithm
fluctuates in the range of 1. 16 to 1.27,and its mean
overfee rate is 14. 2% higher than the second-best
max-credit strategy, lower than any other comparison
strategies. Moreover, it is easily spotted that the vari-
ance overfee rate of max-credit and that of PG-TO are
at a significantly high level compared with other strate-
gies. The reason is that max-credit strategy always se-
lects the AP with the maximum reputation value ,which
causes tasks backlogs in the high credit value APs
whose reputation declines due to the timeout of tasks.
However,as shown in Fig. 5(a) and Fig 6 (d) , max-
credit strategy has greater advantages than other com-

parison strategies with the lowest complete rate. Hence,
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' ) - ——PG-TO
13 max-SINR
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o —— max-resource
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&
2
2 e e N A
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]
&
=)
o
3 10
0.9
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iteration

Fig.7 Overfee rate range



HIGH TECHNOLOGY LETTERSIVol. 29 No. 31Sep. 2023

303

it could be indicated that tasks with relatively high ini-
tial task fee are opportunistically offloaded to the higher
reputation APs while tasks with lower initial task fee
are selectively abandoned. Similarly, the intelligent task
offloading scheme learned by PG-TO is shown by the
training results that it can gradually learn the advanta-
ges of the max-credit and alleviate the huge cost of la-
tency as shown in Fig.5(b).

4.2 Test performance

For the policy network trained under the situation
that the proportion of small tasks is 0. 8, the perform-
ance with proportion of small tasks chaning is tested. In
the test of each small tasks proportion, 100 samples dif-
ferent from the training samples are generated for simu-
lation.

Fig. 8 shows the test results in the proportion of
small tasks from 72% to 88% with 2% interval. As the
small tasks proportion increases , the total task profit de-
creases , then ¢ values of random strategy , max-resource
strategy , max-SINR strategy and PG-TO all show a
downward trend as a whole accordingly except for the
max-credit strategy.

For the max-credit strategy, ¢ is positively related
to the increase proportion of the small tasks. That is be-
cause the overtime problem caused by the unbalanced
offloading scheme can be slightly alleviated when the
overall load of the system reduces,and then the advan-
tage of choosing the maximum reputation to get the
maximum practical task profit becomes obvious. Addi-
tionally , PG-TO obtains the highest ¢ when the small
tasks proportion ranges from 0. 72 to 0. 86, which indi-
cates a good generalization.
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Fig. 8 Test result of mean reward ¢

In all,the proposed PG-TO algorithm has a signifi-
cant advantage in the optimization goal over the other 4
comparison algorithms. The PG-TO algorithm is capable
of providing APs with more task profit while maintai-
ning an acceptable latency cost. The resource occupa-

tion of PG-TO is at an average value,and the overtime
rate along with complete rate are well balanced. Moreo-
ver, PG-TO shows a good generalization facing with dif-
ferent level of system tasks load. This means that the
proposed PG-TO algorithm is capable of intelligently
selecting proper APs to have the tasks offloaded in
comprehensive consideration of APs’ state, wireless en-
vironment ,and tasks set while ensuring the latency re-
quirements.

5 Conclusion

This article researches the task offloading process
in a MEC-enhanced smart city with blockchain man-
agement functions. The task offloading process is mod-
eled as a MDP and an optimization problem is devel-
oped focusing on the profit gain for APs and QoS re-
quirement of UEs. The proposed optimization problem
is solved by the PG method using the reinforce with
baseline algorithm, and its training performance is
16.7% better than the second-best comparison strate-
gy. The test performance with various small task propor-
tion indicates that the proposed PG-TO algorithm has a
good generalization.
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