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Abstract
Spatially-coupled low-density parity-check (SC-LDPC) codes are prominent candidates for fu-

ture communication standards due to their ‘ threshold saturation’ properties. However, when facing
burst erasures, the decoding process will stop and the decoding performances will dramatically de-
grade. To improve the ability of burst erasure corrections, this paper proposes a two-dimensional SC-
LDPC (2D-SC-LDPC) codes constructed by parallelly connecting two asymmetric SC-LDPC coupled
chains for resistance to burst erasures. Density evolution algorithm is presented to evaluate the as-
ymptotic performances against burst erasures, by which the maximum correctable burst erasure
length can be computed. The analysis results show that the maximum correctable burst erasure
lengths of the proposed 2D-SC-LDPC codes are much larger than the SC-LDPC codes and the asym-
metric SC-LDPC codes. Finite-length performance simulation results of the 2D-SC-LDPC codes over
the burst erasure channel confirm the excellent asymptotic performances.
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0　 Introduction

Burst erasures occur in many common practical
communication scenarios, such as deep fading in wire-
less communications, intense transient noises in mag-
netic data storage systems, packet losses in Internet
transmission systems, collisions in coded slotted ALO-
HA and so on, which will dramatically affect the com-
munication reliability. Designing a good error-correcting
code to mitigate the adverse effects of burst erasures is
still a challenging problem.

Recently, spatially-coupled low-density parity-
check (SC-LDPC) codes have attracted much attention
since their belief propagation ( BP) thresholds can
achieve the maximum a posterior (MAP) thresholds of
the underlying LDPC block codes. Refs[1,2] named
this phenomenon ‘ threshold saturation’ and proved it
rigorously for the binary erasure channel (BEC) [1] and
the binary memoryless symmetric (BMS) channel[2] .
Afterwards, many new SC-LDPC code structures have
emerged to further improve the thresholds[3 - 4] . Howev-
er, when facing burst erasures, the decoding chain of

SC-LDPC codes will break up and the decoding error
probability will remain strictly positive from the position
where the burst erasures occur. In other words, the ex-
cellent decoding performances of SC-LDPC codes will
degrade seriously when transmitted over the burst era-
sure channel. More detailed analysis on the burst era-
sure correction capabilities of SC-LDPC codes can be
found in Refs[5,6] and finite-length analysis over the
burst erasure channels was done in Ref. [7].

To combat burst erasures, multi-dimensional SC-
LDPC codes constructed by expanding the one-dimen-
sional edge-spreading to multiple dimensions were pro-
posed in Ref. [8] and the analysis results showed that
multi-dimensional SC-LDPC codes are more robust
against the burst erasures compared with the conven-
tional SC-LDPC codes. In Ref. [9], a band-splitting
permutation for SC-LDPC codes was proposed to realize
the asymptotic optimality in terms of burst erasure cor-
rection. Asymmetric SC-LDPC ( ASC-LDPC ) codes
against multiple-burst erasures was proposed in
Ref. [10], which proved that the multiple-burst era-
sure correcting performances of SC- LDPC codes can be
greatly improved by introducing the asymmetric struc-
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ture. Protograph-based folded SC-LDPC (FSC-LDPC)
codes constructed by folding the spatial structure of SC-
LDPC codes were proposed in Ref. [ 11 ], which
showed that the FSC-LDPC codes performed better than
the SC-LDPC codes over single and multiple random-
burst erasure channels. Different from modifying the
structure of the conventional SC-LDPC code, spatially
coupled generalized LDPC ( SC-GLDPC) codes were
considered in Ref. [ 12 ] to combat bust erasures,
which improved the capability of the burst erasure cor-
rections by introducing the linear block codes as the
super check nodes instead of the standard single parity
check constraints.

The decoding chain of SC-LDPC codes abort when
facing burst erasures. Since this problem cannot be
solved by increasing the chain length, a two-dimen-
sional SC-LDPC ( 2D-SC-LDPC) codes is proposed
constructed by parallelly connecting two SC-LDPC cou-
pled chains for resistance to burst erasures in this pa-
per. Asymmetric structure is also introduced in each
coupled chain to further improve the capability of the
burst error correction, because the ASC-LDPC codes
possess larger minimal cardinality of stopping sets,
which is beneficial to the burst erasure corrections.
The connection structure is realized by edge exchanges
between these two coupled chains, by which two cou-
pling chains can provide support for each other to avoid
the decoding termination when either of the coupling
chains encounters the burst erasures. Moreover, this
connection way can maintain the degree distributions of
each SC-LDPC code unchanged, which means the de-
coding complexity cannot be increased. To evaluate the
asymptotic performances against burst erasures, the
density evolution algorithm for the proposed 2D-SC-LD-
PC codes is derived to obtain the maximum correctable
burst erasure length. The analysis results show that the
maximum correctable burst erasure lengths of 2D-SC-
LDPC codes are much larger than the ASC-LDPC codes
and SC-LDPC codes. To verify the asymptotic perform-
ances, the finite-length performances of 2D-SC-LDPC
codes are also simulated over the burst erasure channel
along with the ASC-LDPC codes and SC-LDPC codes
for comparisons. Simulation results demonstrate that the
finite-length performances are consistent with the as-
ymptotic performances obtained by density evolution.

1　 2D-SC-LDPC codes

1. 1　 SC-LDPC codes
A ( J, K, L) SC-LDPC coupled chain is con-

structed by coupling L identical and disjoint ( J, K)
regular LDPC protographs, where L denotes the cou-

pling length. Each LDPC protograph is placed at one
position in order and denote each position by u(u = 1,
2, …, L). A conventional fully-connected coupling
pattern is considered to couple these L protographs.
Specifically, let ω = gcd( J, K) be the greatest com-
mon divisor of J and K, there are J′ check nodes and
K′ variable nodes at each position, where J′ = J / ω and
K′ = K / ω. To couple these L protographs, J edges of
each variable node at position u are spread to all adja-
cent check nodes at position u + i( i = 1, 2, …, ω -
1). In turn, for each check node at position u, K ed-
ges will be connected to all nearby variable nodes at
position u - i ( i = 1, 2, …, ω - 1). To terminate the
coupled chain, ω - 1 extra positions only including ad-
ditional check nodes will be added at the end. A (3,
6, L) SC-LDPC coupled chain is illustrated in Fig. 1,
where the circles denote the variable nodes and the
squares denote the check nodes.

Fig. 1　 A (3, 6, L) SC-LDPC coupled chain

For a clear description, the definitions of the SC-
LDPC codes are given from the viewpoint of the proto-
graph. A ( J, K, L) SC-LDPC coupled chain can be
viewed as a protograph and its associated incidence ma-
trix also called as base matrix is denoted as BSC . Denote
the base matrix of the underlying LDPC code as B with
a size of J′ × K′. The base matrix BSC is given in
Eq. (1).
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L + ω - 1( )J’ × LK’

(1)
where the submatrices Bi ( i = 1, 2, …, ω - 1)has the
same size of B. It means that the base matrix B is decom-
posed into ω submatrices and they must satisfy Eq. (2).

∑
ω-1

i = 0
Bi = B (2)

A (J, K, L, M) SC-LDPC code can be obtained
by taking an ‘M-lifting’ operation on the (J, K, L)
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SC-LDPC coupled chain, where M is the lifting fac-
tor[13] . The parity check matrix of the SC-LDPC code
can be generated by replacing each nonzero entry in BSC

by one M ×M random permutation matrix and each zero
entry in BSC by one M ×M all-zero matrix.

The design rate of the ( J, K, L, M) SC-LDPC
code is given as follows.

RSC = 1 - L + ω - 1( )J′M
LK′M (3)

1. 2　 Construction of 2D-SC-LDPC codes
The proposed 2 D-SC-LDPC codes are constructed

by parallelly connecting two coupled chains, where the
connection structure is realized by exchanging the ed-
ges for each position between these two chains. To fur-
ther improve the ability to combat burst erasure errors,
the asymmetric structure is embedded into each cou-
pled chain. In the following, the ASC-LDPC codes are
introduced briefly.

A( J, K, L) ASC-LDPC coupled chain is con-
structed by changing the edge spreading in the SC-LD-
PC coupled chain. For a clear description, the variable
nodes at each position is first divided into two types
with equal fractions:the upper layer variable nodes and
the lower layer variable nodes, where the edges of the
upper layer variable nodes are connected to the interval
check nodes and the edges of the lower layer variable
nodes are connected to the consecutive check nodes.
Specifically, at position u, J edges of each upper layer
variable node are spread to the check nodes at position
u + 2i( i = 0, 1, …, ω - 1) . While for each lower lay-
er variable node, the edges are connected to the check
nodes at position u + i( i = 0, 1, …, ω - 1). The same
operation is made for each variable node at each posi-
tion, then a (J, K, L)ASC-LDPC coupled chain can
be constructed.

A(J, K, L, M)ASC-LDPC code can be obtained
by applying an ‘M-lifting ’ on this coupled chain.
Fig. 2 shows a 3, 6, L( )ASC-LDPC coupled chain,
where the coupling widths for the upper and lower layer
variable nodes are 2ω - 1 and ω respectively.

Fig. 2　 A 3, 6, L( ) ASC-LDPC coupled chain
The base matrix BASC of a (3, 6, L) ASC-LDPC

coupled chain is given as follows.

BASC =
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(4)

The design rate of the resulting 3, 6, L, M( )

ASC- LDPC code is

RASC = 1 - L + 2ω - 2( )J′M
LK′M (5)

Based on the ASC-LDPC code structure, the 2D-
SC-LDPC codes will be constructed. Assume that there
are two independent and unconnected identical ASC-
LDPC coupled chains:one is a J1, K1, L( ) ASC-LD-
PC coupled chain with the base matrix BASC, 1 and the
other is a J2, K2, L( ) ASC-LDPC coupled chain with
the base matrix BASC, 2 . At each position of the kth
chain, there are J′k check nodes and K′k variable
nodes, where J′k = Jk / ωk, K′k = Kk / ωk, ωk = gcd(Jk,
Kk) and k = 1, 2. Let n = min J′1, J′2{ }, m = min
K′1, K′2{ }.

To connect these two chains, randomly select m var-
iable nodes and n check nodes at each position j in the
J1, K1, L( )ASC-LDPC coupled chain. Then cut the ed-

ges between these selected m variable nodes and n check
nodes, and connect them to n check nodes at position j in
the J2, K2, L( )ASC-LDPC coupled chain. The same op-
eration is made for the J2, K2, L( )ASC-LDPC coupled
chain and the broken edges are connected to the
J1, K1, L( )ASC-LDPC coupled chain. Denote this con-

nection structure as a J1, K1, J2, K2, L( )2D-SC-LDPC
coupled chain. Taking an ‘M-lifting’ operation on it, a
J1, K1, J2, K2, L, M( )2D-SC-LDPC code can be ob-

tained.
Fig. 3 shows a 3, 6, 3, 6, L( ) 2D-SC-LDPC

coupled chain. Here J′1 = 1, K′1 = 2, J′2 = 1, K′2 = 2
and n = 1, m = 2, where the dashed lines denote the
edge exchanges.

Fig. 3　 A 3, 6, 3, 6, L( ) 2D-SC-LDPC coupled chain
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The basis matrix B2D of a J1, K1, J2, K2, L( ) 2D-
SC-LDPC coupled chain is

B2D =
B′ASC, 1 L2

L1 B’
ASC, 2

é

ë
ê
ê

ù

û
ú
ú (6)

where B′ASC, k denotes the remaing matrix after subscri-
bing the exchanging edges from the base matrix BASC, k,
and Lk denotes the interconnections between these two
coupled chains, k = 1, 2.

The design rate of a J1, K1, J2, K2, L, M( )

2D-SC- LDPC code is given as follows.

R2D = 1 - 2L + 2ω - 1( )J′M
2LK′M (7)

2　 Density evolution analysis
This section analyzes the thresholds of the pro-

posed 2D-SC-LDPC codes transmitted over the burst
erasure channel under BP decoding algorithm. Consider
that the single and consecutive burst erasure model and
define the threshold as the maximum correctable burst
erasure length. Here, a modified density evolution algo-
rithm is proposed to compute the threshold and denote
the threshold is denoted as eBP .

When a 2D-SC-LDPC code is transmitted over the
burst erasure channel under the single and consecutive
burst erasure model, it means that the messages within
the range of the burst erasures will be erased with prob-
ability 1 and the remained messages will be received
correctly. For a clear description, the following symbols
are defined.

p l( )

i, k denotes the erasure probability of the message
from the variable node at position i of the kth chain to
the check node at the lth iteration, where k = 1, 2 and
i∈ 1, 2, …, L{ }.

q l( )

i, k denotes the erasure probability of the message
from the check node at position i of the kth chain to the
variable node at the lth iteration.

Next, the updated equations of the density evolu-
tion for the lth iteration are derived.

Firstly, the initial error probability is given in
Eq. (8), where estart and eend denote the start position
and the end position of the burst erasures. Denote the
burst erasure length as elenand elen = eend - estart .

p 0( )

i, k =
1 　 estart≤i≤eend
0　 otherwise{ (8)

Secondly, update for the check nodes. The com-
putation of q ℓ( )

i, k consists of two parts:one is for the se-
lected check nodes with the fraction n / J′k and the other
is for the non-selected check nodes with the fraction
1 - n / J′k . Therefore, the calculation of q ℓ( )

i, k is given in
Eq. (9).

q ℓ( )

i, k = 1 - n
J’
k
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1
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1
2 ∑
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i - b, k( )( )
Kk - 1

( ) +

n
J’
k
× 1 - 1 - 1

ω

1
2 ∑

ω - 1
p ℓ - 1( )

i - 2b, k + p ℓ - 1( )

i - 2, z( ) +

1
2 ∑

ω - 1
p ℓ - 1( )

i - b, k + p ℓ - 1( )

i - 1, z( )( )( )
Kk - 1

( )
(9)

where z = k mod 2( ) + 1.
Finally, update for the variable nodes. Similarly,

the computation of p ℓ( )

i, k also consists of two parts:one is
for the selected variable nodes with the fraction m/ K′k
and the other is the non-selected variable nodes with the
fraction 1 -m/ K′k . The calculation of p l( )

i, k is given by

p ℓ( )

i, k = 1 - m
K′k

( ) ×

p 0( )

i, k
1
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+ m
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×

p 0( )

i, k ( 1
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2 ∑
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a = 1
a≠0
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i +2a, k + q ℓ( )

i +2, z( ) +

1
2 ∑

ω-1
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a≠1

q ℓ( )

i +a, k + q ℓ( )
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(10)

The threshold eBP can be defined as the maximum
correctable burst erasure length to ensure that p ℓ( )

i, k con-
verges to zero for all variable nodes when l tends to in-
finity.

3　 Numerical results

3. 1　 Threshold analysis results
Based on the above derived density evolution algo-

rithm, the maximum correctable burst erasure lengths
for the proposed 2D-SC-LDPC codes, SC-LDPC codes
and ASC-LDPC codes can be computed. Set the maxi-
mum iteration number as 104and the breakout condition
of the erasure probability for each variable node as
10 -6 . The stopping criterion is that the erasure probabil-
ity for each variable node reaches the breakout condi-
tion or the iteration reaches the maximum iteration
number.

As demonstrated in Ref. [10], the theoretical up-
per bound on the maximum correctable burst erasure
length for the SC-LDPC code is the number of rows of
its base matrix. Therefore, the Shannon limit eSL can be
defined as the number of rows of the base matrix. The
(3, 6, 3, 6, 30) 2D-SC-LDPC code is first consid-
ered and the base matrix has the size of 68 × 120. The
threshold analysis results obtained by the density evolu-
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tion algorithm are shown in Table. 1, which also lists
the thresholds of the (3, 6, 30) ASC-LDPC code and
the (3, 6, 30) SC-LDPC code for comparisons. The
gap in Table 1 represents the difference between the
Shannon limit eSLand the threshold eBP .

Table 1　 Threshold results for different code ensembles
Code ensembles eSL eBP gap

(3, 6, 3, 6, 30)2D-SC-LDPC code 68 59 9
(3, 6, 30)ASC-LDPC code 34 7 27
(3, 6, 30)SC-LDPC code 32 3 29

From Table 1, it can be observed that the gap to
the Shannon limit of the 2D-SC-LDPC code is much
smaller than the ASC-LDPC code and SC-LDPC code
with the same coupling length and degree distributions.
The ASC-LDPC code benefiting from its asymmetric
structure is slightly better than the conventional SC-LD-
PC code. The results show that the proposed 2D-SC-
LDPC codes are more robust against burst erasures than
ASC-LDPC codes and SC-LDPC codes.

To investigate it more thoroughly, the thresholds
for different 2D-SC-LDPC code ensembles with different
degree distributions are also compared. The (4, 8, 4,
8, 30) 2D-SC-LDPC code and the (5, 10, 5, 10, 30)
2D-SC-LDPC are taken into consideration. Their thresh-
old analysis results are shown in Table 2 and Table 3 re-
spectively.

Table 2　 Threshold results for different code ensembles
Code ensembles eSL eBP gap

(4, 8, 4, 8, 30)2D-SC-LDPC code 72 59 13
(4, 8, 30)ASC-LDPC code 36 9 27
(4, 8, 30)SC-LDPC code 33 3 30

Table 3　 Threshold results for different code ensembles
Code ensembles eSL eBP gap

(5, 10, 5, 10, 30)2D-SC-LDPC code 76 59 17
(5, 10, 30)ASC-LDPC code 38 11 27
(5, 10, 30)SC-LDPC code 34 3 31

From Table 2 and Table 3, it can be seen that the
thresholds of the proposed 2D-SC-LDPC codes are
much better than the ASC-LDPC codes and SC-LDPC
codes. Moreover, the maximum correctable burst era-
sure lengths are almost the same for different 2D-SC-
LDPC codes with different degree distributions, which
indicates that the 2D-SC-LDPC codes with low degrees
are good enough for combating burst erasures.

The 2D-SC-LDPC code proposed in this paper has
stronger robustness in the face of burst erasures than

ASC-LDPC codes and SC-LDPC codes, and its superi-
or performance is due to two reasons. First, the ASC-
LDPC coupling chain is used in each dimension during
the construction of the 2D-SC-LDPC code, because the
base matrices of the ASC-LDPC codes possess larger
minimal cardinality of stopping sets, which is benefi-
cial for improving the error correction capability of
burst erasures and making it more robust to burst era-
sures than the conventional SC-LDPC code. The 2D-
SC-LDPC code constructed with the asymmetric struc-
ture is more robust in the face of burst erasures. Sec-
ond, it benefits from the two-dimensional construction
method, which is a parallel connection of two ASC-LD-
PC coupling chains by means of edge exchanges. When
faced with a burst erasure, the two coupling chains can
provide information support to each other and avoid the
situation that the decoding terminates when one of the
coupling chains undergoes a burst erasure and thus en-
hances the ability to combat burst erasures. At the same
time, it does not change the degree distribution of each
coupling chain itself and also does not increase the de-
coding complexity.

3. 2　 Finite length performances
To confirm the asymptotic performances obtained by

density evolution, the finite-length performances of the
2D-SC-LDPC codes over the burst erasure channels are
simulated. First the proposed (3, 6, 3, 6, 30, 50) 2D-
SC-LDPC code is compared with the (3, 6, 30, 50)
ASC-LDPC code and (3, 6, 30, 50) SC-LDPC code. The
code lengths of these three codes are 6000, 3000, 3000
and the design rates are 0. 4333, 0. 4333, 0. 4667. The
code lengths are computed by the denominators of
Eq. (7), Eq. (5) and Eq. (3) respectively. The design
rates are obtained by Eq. (7), Eq. (5) and Eq. (3) re-
spectively. To further investigate the performance for re-
sistance to the burst erasures, the SC-GLDPC codes is al-
so considered for comparison. SC-GLDPC codes combat
the burst erasures by introducing the linear block codes
with error-correcting capabilities to replace the traditional
single parity codes without error-correcting capabilities.
Specifically, consider a (2, 7, L, M) SC-GLDPC code
with choosing the (7, 4) Hamming code as the compo-
nent code. Assume the coupling length L =30 and the lift-
ing factor M =30 and then the code length is 6300. The fi-
nite-length performance of the 2D-SC-LDPC code trans-
mitted over the burst erasure channels is shown in Fig. 4,
along with the simulation results of the SC-GLDPC code,
ASC-LDPC code and the SC-LDPC code.
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Fig. 4　 Finite-length comparisons between the (3, 6, 3, 6,
30, 50) 2D-SC-LDPC code, the (2, 7, 30, 30)
SC-GLDPC code, the (3, 6, 30, 50) ASC-LDPC
code and the (3, 6, 30, 50) SC-LDPC code over
the burst erasure channels

From Fig. 4, it can be observed that the starting
points corresponding to the waterfall region of the 2D-
SC-LDPC code, ASC-LDPC code and SC-LDPC code
are about 2944, 346 and 145 respectively. Since the it-
erative decoding threshold is well known that it corre-
sponds to the starting point of the waterfall region in the
BER curve, the starting points of the waterfall region
can be estimated by the threshold eBP multiplying the
lifting factor M, that is eBP × M. Therefore, according
to the threshold results shown in Table 1, the estimated
starting points can be obtained and they are 2950, 350
and 150 respectively. The comparison results indicate
that the finite-length simulation results are roughly con-
sistent with the threshold analysis results. As for the
simulation results, it can be seen that although the
codelength of the 2D-SC-LDPC code is twice as long as
the ASC-LDPC code and the SC-LDPC code, the maxi-
mum correctable burst erasure length of the proposed
2D-SC-LDPC code is approximately eight times larger
than ASC-LDPC code and twenty times larger than SC-
LDPC code, which indicates that the capability of cor-
recting burst erasures can be improved dramatically by
the proposed code structure. One possible reason is that
the edge exchange is introduced in constructing the 2D-
SC-LDPC code, which can provide the information
support to each other when either of them faces with
the burst erasures. Besides, each dimension adopts the
asymptotic structure in the construction of 2D-SC-LD-
PC code. Since the base matrices of the ASC-LDPC
code possess larger minimal cardinality of stopping
sets, it is beneficial for improving the error correction
capability of burst erasures. Moreover, the perform-

ances of the proposed 2D-SC-LDPC codes for comba-
ting the burst erasures are much better than the SC-
GLDPC codes in the case of a comparable code lengths
as shown in Fig. 4.

In the following, the finite-length performances of
the (4, 8, 4, 8, 30, 100) 2D- SC-LDPC code and
the (5, 10, 5, 10, 30, 100) 2D-SC- LDPC code are
also simulated. The comparison results of the proposed
2D-SC-LDPC codes with the ASC-LDPC codes and SC-
LDPC codes are shown in Fig. 5 and Fig. 6.

Fig. 5　 Finite-length comparisons between the (4, 8, 4, 8,
30, 100) 2D-SC-LDPC code, the (4, 8, 30, 100)
ASC-LDPC code and the (4, 8, 30, 100) SC-LDPC
code over the burst erasure channels

Fig. 6　 Finite-length comparisons between the (5, 10, 5,
10, 30, 100) 2D-SC-LDPC code, the (5, 10, 30,
100) ASC-LDPC code and the (5, 10, 30, 100)
SC-LDPC code over the burst erasure channels

From Fig. 5, it can be observed that the starting
points corresponding to the waterfall region of these
three codes are 5898, 897, 295 and the predicted ones
are 5900, 900, 300, which shows that the finite-length
performances for resistance to burst erasures can fit
well with the asymptotic performances obtained by den-
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sity evolution. As for the (5, 10, 5, 10, 30, 100)
2D-SC-LDPC code, similar results can be concluded,
where the starting points corresponding to the waterfall
region of these three codes are 5890, 1094, and 296 in
simulations while the estimated ones are 5900, 1100
and 300. From the above simulation results, it can be
observed that the proposed 2D-SC- LDPC codes per-
form better than the ASC-LDPC codes and the SC-LD-
PC codes for combating burst erasures either in the
asymptotic performances or the finite-length perform-
ances.

4　 Conclusion

In this paper, a 2D-SC-LDPC codes to combat the
burst erasures is proposed. To evaluate the perform-
ances against burst erasures, the density evolution al-
gorithm for 2D-SC-LDPC codes over the burst erasure
channels is proposed to compute the maximum correct-
able burst erasure length. Density evolution analysis
shows when transmitted over the burst erasure channel,
the proposed 2D-SC-LDPC codes are more robust
against burst erasures than the ASC-LDPC codes and
SC-LDPC codes. Moreover, the finite-length perform-
ances of the proposed 2D-SC-LDPC codes along with
the ASC-LDPC codes and SC-LDPC codes over the
burst erasure channels are also simulated to confirm the
asymptotic performances obtained by density evolution.
Simulation results show that the finite-length perform-
ances of the proposed 2D-SC-LDPC codes are consist-
ent with the asymptotic performances and they perform
much better than ASC-LDPC codes and SC-LDPC
codes.
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