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Abstract
With the wide application of automated guided vehicles (AGVs) in large scale outdoor scenari-

os with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.
The effective multi-agent path finding (MAPF) algorithm is urgently needed to ensure the efficiency
and realizability of the whole system. The complex terrain of outdoor scenarios is fully considered by
using different values of passage cost to quantify different terrain types. The objective of the MAPF
problem is to minimize the cost of passage while the Manhattan distance of paths and the time of pas-
sage are also evaluated for a comprehensive comparison. The pre-path-planning and real-time-conflict
based greedy (PRG) algorithm is proposed as the solution. Simulation is conducted and the proposed
PRG algorithm is compared with waiting-stop A∗ and conflict based search (CBS) algorithms. Re-
sults show that the PRG algorithm outperforms the waiting-stop A∗ algorithm in all three performance
indicators,and it is more applicable than the CBS algorithm when a large number of AGVs are work-
ing collaboratively with frequent collisions.

Key words: automated guided vehicle (AGV),multi-agent path finding (MAPF),complex
terrain,greedy algorithm

0　 Introduction

Automatic guided vehicle (AGV) has been widely
developed and applied with the rapid development of
the electronic technology and control theory. As a high-
ly intelligent mobile robot,AGV can realize safe,relia-
ble and efficient transportation. Hence it can replace
traditional manual transportation when necessary [1] . It
arises in many real-world applications, such as ware-
houses[2], outdoor hazardous environments and office
robots[3] . Further,driven by the demand for flexibility
and efficiency in those scenarios, it is expected that
more and more mobile robots will be deployed and work
collaboratively. Therefore,path planning for multi-AGV
cooperation is a key technology to support the applica-
tions.

Multi-agent path finding (MAPF) is a problem
that computes a set of collision-free paths for multiple
agents connecting their respective starting points and
destination while optimizing certain measures of paths.

Finding an optimal solution for MAPF problem is NP-
hard because the state space grows exponentially with
the number of agents[4] . To implement MAPF in real-
world applications,research on efficient algorithms is of
great significance. At present,the algorithms of multi-
agent path finding problem proposed by researchers can
be broadly classified into two categories: search-based
algorithms and learning-based algorithms.

Generally,the search-based MAPF algorithms for
AGV applications are based on heuristic search algo-
rithms. They can be divided into two main categories:
optimal path planning and approximate optimal path
planning.

In optimal approaches,the standard admissible al-
gorithm is proposed based on the A∗ algorithm for sin-
gle agent path planning,and the robot team is consid-
ered as a composite agent with a very high dimension,
which needs to find a solution for all agents[5] . Howev-
er,it suffers from an exponential growth in planning
complexity with the increase of the number of robots.
On this basis,the technology of operator decomposition
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and independent detection is introduced. Their combi-
nation can optimally solve the relatively large problem
in milliseconds [6] . Then,the standard admissible algo-
rithm is extended to the M∗ algorithm [7] and its vari-
ants. The path is planned for each agent in advance.
When the robot collides and blocks during path plan-
ning,the dimension of the search space will locally in-
crease to ensure that an alternative path can be found.
Because agents will coordinate only when it is necessa-
ry,the computing cost is greatly reduced. ODrM∗ algo-
rithm[8] further reduces the number of agents requiring
joint planning by decomposing the agents into inde-
pendent conflict sets, and the operator decomposition
method is also used to plan the path for each agent.

Unlike the above A∗-based methods that trans-
form the problem into a single joint agent model, the
conflict based search (CBS) [9-10] and its variants are a
tree search method. It plans for a single agent and con-
structs a set of constraints on nodes when illegal actions
are detected to find the optimal solution without explo-
ring high-dimensional space. In many cases,this refor-
mulation enables CBS to examine fewer states than A∗-
based methods while still maintaining optimality. How-
ever,CBS needs to plan a complete path for all agents
in advance,which has poor real-time performance and
scalability. Besides,an alternate iterative conflict-based
search (AICBS) algorithm is proposed,it saves search
time by checking whether there is a conflict at each
step of the extension to avoid invalid plans. However,
there are multiple suboptimal plans which occupy sys-
tem resources[11] .

In approximate optimal path planning approaches,
many researchers have made improvements also based
on the A∗ algorithm. Cooperative A∗ (CA∗) searches
space-time for a non-colliding route. Hierarchical coop-
erative A∗(HCA∗) uses an abstract heuristic to boost
performance. Windowed hierarchical cooperative A∗

(WHCA∗ ) limits the space-time search depth to a
dynamic window,spreading computation over the dura-
tion of the route[12] . Flow annotation replanning(FAR)
implements a flow restriction idea inspired by road net-
works. The movement along a given row (or column) is
restricted to only one direction,avoiding head-to-head
collisions. The movement direction alternates from one
row (or column) to the next. After building the search
graph,an A∗ search is independently run for each mo-
bile unit[13] . Some also divide the map into subgraphs
with known structures, and then search in a smaller
subgraph configuration space [14] .

In recent years, with the rapid development of
deep reinforcement learning,the learning-based distrib-
uted multi-agent path planning algorithm has emerged.

Agents make decisions by inputting local observations
into neural networks. In pathfinding via reinforcement
and imitation multi-agent learning (PRIMAL) [15] and
its variants [16],deep reinforcement learning and imita-
tion learning are combined to alleviate the problem of
low sample efficiency and provide intensive rewards for
agents. However,imitation learning may lead to overfit-
ting problems. A distributed multi-agent routing method
based on deep reinforcement learning is proposed in
Ref. [17],which uses local and global guidance mech-
anisms and combines course learning to help agents
plan feasible paths.

At present, there has been an in-depth study of
path planning algorithms,but there is still a lack of re-
search on the MAPF in the new large-scale outdoor
hazardous application scenario,such as mining areas,
coking contaminated sites and natural disaster rescue
sites. Different from the dominating multi-AGV cooper-
ation scenarios, these scenarios have complex terrain,
which includes ramps or pits besides obstacles. By re-
finement modeling of complex terrain,the accuracy and
effectiveness of the paths planned by the algorithm can
be improved. There are also a large number of agents in
large-scale scenarios. Most graph-based search algo-
rithms will fail when the number of AGVs is large due
to the increase in computational complexity. Therefore,
an effective path planning method is still needed to en-
sure the efficiency of the whole system.

In this paper,the complex terrain and the coopera-
tion among a large number of AGVs in outdoor hazard-
ous scenarios are fully considered. The pre-path-plan-
ning and real-time-conflict based greedy (PRG) algo-
rithm is proposed to solve the multi-agent path finding
problem. The algorithm is evaluated from three aspects,
which are the cost of passage,the time of passage and
the distance of path. Experiments comparing the pro-
posed PRG algorithm, waiting-stop A∗ algorithm and
CBS algorithm are presented. The contribution can be
further summarized as following three points.

(1)The complex terrain of outdoor hazardous sce-
narios is fully considered. In the scenario model,differ-
ent terrains are quantified into three categories,which
are the impassable obstacle, the passable slopes and
pits and the flat area. Different values of passage cost
are defined for different terrain types. This makes the
modeling more relevant to the actual scenario.

(2)The objective of MAPF is designed as minimi-
zing the cost of passage, the time of passage and the
distance of the path considering the characteristic of the
complex terrain. As the outdoor area is not flat,the en-
ergy consumption and control complexity of pass-
through different terrain types are different. Therefore,
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in addition to the time of passage and the distance of
the path,the cost of passage becomes an important fac-
tor in the evaluation of the effectiveness of MAPF algo-
rithm. This is considered in the work for a more com-
prehensive comparison of different algorithms.

( 3 ) PRG algorithm is proposed to solve the
complex MAPF problem for a large number of AGVs
in large outdoor scenarios. As more AGVs work col-
laboratively in the scenario, more conflicts will oc-
cur. This dramatically increases the complexity of
MAPF problem. Hence, the existing algorithms may
face the problem of efficiency or effectiveness. Taking
both aspects into account, the pre-path-planning in-
formation which reduces the calculation cost of im-
plementation and the real-time collision information
which improves the effectiveness are used to design
PRG algorithm.

The rest of this paper is organized as follows. The
model of MAPF problem in large-scale outdoor hazard-
ous scenarios is given in Section 1. In Section 2, the
PRG algorithm is proposed to generate the optimal
path. Then,the simulation results and analysis are dis-
cussed in Section 3. Finally,conclusions are drawn,and
future work is discussed in Section 4.

1　 Scenarios and models

1. 1　 Map model of the working area
In this paper, the applications which require a

large number of AGVs cooperatively working in outdoor
hazardous scenarios are considered,and MAPF problem
for those AGVs is the main concern.

Inspired by the existing MAPF model,the map of
the working area is modeled by grids. As shown in
Fig. 1,the map with M ×M grids is used. Different ter-
rains in the working area are quantified into three cate-
gories,which are the impassable obstacle,the passable
slopes and pits and the flat area. These terrains are
respectively colored in Fig. 1. As the energy consump-
tion and control complexity of pass-through different
terrain types are different,the cost of passage is defined
to represent the terrain type of the grid. The cost of
passage of the grid in the i-th row and the j-th column
is denoted by sij,and the value of sij is selected from
{CO,CP,CF} representing the passage cost of the im-
passable obstacle,the passable slopes and pits and the
flat area,respectively. Thus,the grid map of the work-
ing area is modeled as an M ×M matrix.

S =
s00 … s0M
︙ ⋱ ︙
sM0 … sMM

( )
M ×M

(1)

As only the unchanged terrain is modeled,S is al-
so called the static map. Define the density of obstacle
grids and the density of slopes and pits grids in the
static map are ρO and ρP,respectively.

Fig. 1　 Map of working area

Assume that there are N AGVs U = {U1,…,Un,
…,UN} cooperatively working in the area,and the N
pairs of start grids and goal grids (Pn,Qn) n = 1,…,N are
randomly selected from the girds representing flat area.
It makes sure that each goal grid is reachable from its
start grid in the static map, and there is no overlap
among the 2N selected grids. As shown in Fig. 1, the
circles are the starting grids of AGVs and the grids of
the same color are the corresponding goals.

For ease of description, the system time is dis-
cretized into time steps. At each time step,AGVs move
simultaneously to neighboring grids or wait at their cur-
rent grids. If a grid is occupied by an AGV,it can be
considered as an impassable obstacle for other AGVs.
Therefore,for the grid in the i-th row and the j-th col-
umn at time step t ,aij,t is used to denote the occupan-
cy. If the grid is occupied,aij,t = CO . Otherwise,aij,t =
sij . Thus,the real-time map of the working area is deno-
ted by

At =
a00,t … a0M,t

︙ ⋱ ︙
aM0,t … aMM,t

( )
M ×M

(2)

In practice,the environmental information can be
continuously updated through sensors and broadcast to
all the AGVs in the area. Hence, assume that each
AGV can obtain both the static map and the real-time
map.

1. 2　 Definition of MAPF problem
In this paper,the classical MAPF problem is con-

sidered. As the outdoor area is not flat,the energy con-
sumption and control complexity of pass-through differ-
ent terrain types are different. Therefore,in addition to
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conventional path planning metrics which are the time
of passage and the distance of path,the cost of passage
becomes an important factor to evaluate the selected
path. Hence, the optimization objective of the MAPF
problem is defined as minimizing the cost of passage,
the time of passage and the distance of the path.

At time step t,the AGV Un can obtain a real-time
graph Gn,t = (Vn,t,En,t),in which Vn,t is the set of ver-
texes indicating the grids,and En,t is the set of weighted
edges indicating the comprehensive cost between any
two directly connected vertexes. According to the map
model,there are four types of grids in Vn,t,which are
free vertexes, obstacle or occupied vertexes, ramps or
pits vertexes and goal vertex. Obviously,the goal verte-
xes for different AGVs are different. Hence, the real-
time graphs obtained by different AGVs are different.
Like most of the classic MAPF problems,four adjacent
vertexes of each vertex are defined to have direct con-
nections to the current vertex ( except for vertexes at
the edge of the area). The weights of edges are defined
by different path-finding algorithms.

Based on Gn,t,Un selects to move to one of the ad-
jacent vertexes or stay at the current vertex to avoid
collision. Therefore,the MAPF problem can be mathe-
matically defined as

d∗
n,t = F Gn,t( ) (3)

where F is the path finding function,d∗
n,t∈{U,D,L,

R,∅} is the action of Un at time step t. If Un arrives at
it goal vertex,it will stay there until all the other AGVs
arrive at their goal vertexes.

Further,to define the collision clearly,assume all
the AGVs make routing decisions successively. A colli-
sion between AGVs is either a vertex collision or an
edge collision. The vertex collision is represented by a
tuple 〈Ui,U j, v, t〉 which means AGV Ui decides to
move to the vertex v but AGV U j has already reached
the vertex v at time step t. The edge collision is repre-
sented by a tuple 〈Ui,U j,u,v,t〉 which means AGVs
Ui and U j traverse the same edge u,v( ) in opposite di-
rections at time step t. A solution to MAPF problem is a
set of collision-free paths,each of which for each AGV.

2　 PRG algorithm for MAPF problem

Finding an optimal solution for the MAPF problem
is a typical NP-hard problem,which is difficult to be
solved by traditional mathematical programming algo-
rithms. Moreover,AGVs in large outdoor complex ter-
rain scenarios need to make decisions in real-time,
which requires the path planning algorithm to be imple-
mented efficiently. Therefore, PRG algorithm is pro-

posed in this paper.
In MAPF problem,the state of the area is changed

at every time step due to the movement of AGVs.
Hence,if the path from the current vertex to the goal
vertex is calculated at each decision step,only the cur-
rent step is optimal,and the rest of the path will not be
optimal due to the change of state at each time step.
Taking both the optimality and efficiency into account
and inspired by the Bellman equation in reinforce
learning, PRG algorithm combines the real-time-con-
flict-based accurate passage cost of the current step and
the static-map-based estimation of the passage cost of
the rest of the path to form the decision metric. Then,
the current action is selected based on this decision
metric using the greedy algorithm.

In the following,the three stages of PRG algorithm
are described in detail. The first stage is estimating the
static passage cost from each vertex to the goal vertex.
The second stage is calculating the accurate passage
cost of the current step using the real-time dynamic
map. The third stage is conducting the decision metric
and making the greedy-based decision.

2. 1　 Preprocess to estimate the static passage cost
As the static map S remains unchanged in the

process of path planning,the static passage cost is pre-
estimated based on S using Dijkstra algorithm. For
AGV Un,its goal vertex is Qn . The static passage cost
from all the vertexes in S to Qn is recorded in a static
matrix denoted by

Bn =
b00,n … b0M,n

︙ ⋱ ︙
bM0,n … bMM,n

( )
M ×M

(4)

where bij,n is the static passage cost from the vertex in
the i-th row and the j-th column to the goal vertex Qn .
If the vertex in the i-th row and the j-th column is an
obstacle,bij,n is designed to be a very large value.

If Un is located in i-th row and the j-th column at
time step t,the estimated static passage cost is calculat-
ed as

CS,n,t(dn,t) =

bi - 1,j,n 　 　 dn,t = U
bi + 1,j,n 　 dn,t = D
bi,j - 1,n 　 dn,t = L
bi,j + 1,n 　 dn,t = R
bi,j,n 　 dn,t =∅

ì

î

í

ï
ï
ï

ï
ïï

(5)

2. 2 　 Calculate the accurate passage cost of the
current step

As all AGVs make routing decisions successively,
the order is defined as {U1,…,Un,…,UN}. Since the
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decision of each AGV will change the state of the map,
further define

At,n =
a00,t,n … a0M,t,n

︙ ⋱ ︙
aM0,t,n … aMM,t,n

( )
M ×M

(6)

as the real-time map observed by Un at time step t.
If Un is located in i-th row and the j-th column at

time step t,the accurate passage cost of the current step
is calculated as

CR,n,t(dn,t) =

ai - 1,j,n,t 　 　 dn,t = U
ai + 1,j,n,t 　 dn,t = D
ai,j - 1,n,t 　 dn,t = L
ai,j + 1,n,t 　 dn,t = R
CW dn,t =∅

ì

î

í

ï
ï
ï

ï
ïï

(7)

where,dn,t =∅ means Un stay at the current location,
and CW is the corresponding cost.

2. 3　 Greedy-based decision
Combining the two kinds of cost together,the deci-

sion metric for Un located in i-th row and the j-th col-
umn at time step t can be calculated as

Cn,t(dn,t) = wSCS,n,t(dn,t) + wRCR,n,t(dn,t) (8)
where wS and wR are the constant coefficients.

Based on the decision metric,the action for Un at
time step t is selected by

d∗
n,t = argmin

dn,t∈{U,D,L,R,∅}
Cn,t(dn,t){ } (9)

2. 4　 Algorithm procedure
Based on the above analysis,the specific algorithm

procedure is given in Algorithm 1.

Algorithm 1　 The procedure of PRG algorithm
Input: the grid map with impassable obstacle, the passable
slopes and pits and the flat area,and assign start and goal ver-
tices to agents.
1 Initializes the static map S and the real-time map A0,1 .
2 for n∈ 1,N[ ],do

3
　 Calculate static passage cost matrix Bn using Dijkstra

algorithm
4 end for
5 for t∈ 0,T[ ],do
6 　 for n∈ 1,N[ ],do
7 　 　 if Un reaches the goal vertex Qn,then
8 　 　 　 dn,t =∅.
9 　 　 else
10 　 　 　 Observe At,n .

11
　 　 　 Calculate {Cn,t(dn,t)} dn,t∈{U,D,L,R,∅} for all the

possible actions using Eqs(7) and (8).
12 　 　 　 Select the action d∗

n,t using Eq. (9).

13
　 　 　 Execute the action and update the real-time map

At,n + 1 .

14
　 　 　 Calculate and record all the performance indica-

tors of Un at time step t.
15 　 　 end if
16 　 end for
17 　 At + 1,1 = At,n + 1 .
18 　 if all agents reach their goal vertexes
19 　 　 break
20 　 end if
21 end for

3　 Results and analysis

To evaluate the performance of PRG algorithm,a
simulation environment is conducted,and the waiting-
stop A∗ algorithm[18] and CBS algorithm[9] are also im-
plemented for comparison. Three performance indicators
which are the time of passage,the distance of path and
the cost of passage are compared. The detailed simula-
tion setting and the results are given in the following.

3. 1　 Simulation setting
The simulation environment is Python 3. 8. The

configuration parameter of the PC is as follows. The
processor is Intel(R) Core (TM) i5-9300H CPU @
2. 40 GHz 2. 40 GHz. The memory is RAM 8. 00 GB.
The system type is a 64 bit operating system based on
the X64 processor,and the operating system version is
Windows 10. Simulation parameters are shown in Ta-
ble 1.

Table 1　 Simulation parameters
Parameter Value
Map sizes M 50,80{ }

Density of obstacles ρO
{0. 05,0. 10,0. 15,

0. 20,0. 25}

Density of slopes and pits ρP 0. 1
Number of AGVs N 16,32,…,144{ }

Cost of passage {CO,CP,CF,CW} 160,3,1,3{ }

Coefficients in decision metric wS,wR{ } 1,1{ }

A sample in the performance evaluation is consid-
ered as a map with randomly generated obstacles,
ramps,pits and AGVs. The simulation parameters are
given in Table 1. For each group of simulation parame-
ters,50 samples are generated and simulated to obtain
convincing results.
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3. 2　 Comparison algorithms
The proposed PRG algorithm is compared with the

waiting-stop A∗ algorithm [18] and CBS algorithm [9] to
reveal its advantages. The waiting-stop A∗ algorithm
uses the A∗ algorithm to plan the shortest path for all
AGVs in advance. When two AGVs are about to col-
lide,the conflict is resolved by waiting or giving way.
Specifically,when a vertex conflict occurs,that is,the
next position of the current AGV has been occupied,
AGV will choose to wait and then enter the next posi-
tion. When an edge conflict occurs,that is,two AGVs
are moving towards each other,then an AGV will ran-
domly select an accessible adjacent vertex and give way
to another AGV. CBS algorithm[9] consists of two layers
of the search process,and the low-level searches an ef-
fective path for each AGV. The high-level search is re-
sponsible for checking path collisions and selecting the
least costly branch to re-search the low-level path until
the high-level search finds a valid path.

To facilitate the interpretation of simulation re-
sults,the complexity of the three algorithms is also ana-
lyzed in advance. The complexity indicator used here is
the total number of floating-point operations (FLOPs)
required to carry it out. As for the waiting-stop A∗ al-
gorithm,its computational complexity is mainly deter-
mined by the A∗ algorithm. The time cost for the A∗

algorithm is Ο p3( ) ,where p = M2 is the number of
vertexes in the map. Since it is necessary to plan a path
for each AGV in advance,and the number of AGVs and
p are of the same order of magnitude,the computational
complexity of the waiting-stop A∗ algorithm is Ο p4( ).
The computational complexity of the proposed PRG al-
gorithm is similar to the waiting-stop A∗ algorithm. It is
mainly determined by the Dijkstra algorithm,which is a
variation of the A∗ algorithm. Hence,the computational
complexity is also Ο p4( ). However,in CBS algorithm,
the computational complexity of the high-level search
process is Ο 2q( ),where q is the number of collisions
encountered during the solving process of high-level
search tree of CBS. The low-level search algorithm is
A∗ algorithm,so the computational complexity of CBS
is Ο 2qp4( ),which means it is more difficult for CBS to
compute results in real time especially when the num-
ber of AGVs is large. 　

3. 3　 Simulation results
First, the performance of the three algorithms is

tested when the number of AGVs is fixed as N = 25 in

the map of size 50 × 50. To test the adaptability of the
algorithms to changes in the static environment, the
density of obstacles varies as ρO = {0. 05,0. 1,0. 15,
0. 2,0. 25},which accordingly means the numbers of
obstacles grids in the map are {125,250,375,500,
625}. Under these situations, the paths between two
connected vertexes in the static map are different. Be-
sides, the probability of dynamic collisions increases
with the increase in the density of obstacles due to the
reduction in the passable vertexes although the number
of AGVs is fixed. Results are shown in Figs 2,3 and 4.

Fig. 2　 Average distance of paths with various ρO

Fig. 3　 Average time of passage with various ρO

Fig. 4　 Average cost of passage with various ρO

Obviously,as an optimal centralized path planning
algorithm,CBS algorithm performs the best in all the
three performance indicators evaluated here. However,
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with the increased density of obstacles,the number of
collisions encountered increased. When the density of
obstacles reaches 0. 25,CBS algorithm is no longer ap-
plicable in the simulation environment due to the ex-
tremely high computational complexity caused by the
frequently triggered high-level search processes.

In contrast, PRG algorithm and the waiting-stop
A∗ algorithm are less complex and easier to implement
even when there are a large number of collisions. The
two algorithms obtain a similar performance of the aver-
age distance of paths measured in Manhattan distance
as both are based on the pre-searched path. However,
they handle dynamic collisions differently. Results show
that PRG algorithms can solve collisions more effective-
ly and perform better in terms of the average time of
passage and the average cost of passage. The perform-
ance gain obtained by PRG algorithm is between 1. 0%
and 4. 0% when the value of ρO varies.

To further evaluate the ability of PRG algorithm
in handling dynamic collisions, the simulations with
different numbers of AGVs in a map are conducted.
The map size is 50 × 50 and ρO = 0 . 05 . The number
of AGVs varies as N = { 16, 32, 48, 64, 80, 96,
112} . Results are shown in Figs 5,6 and 7 .

Fig. 5　 Average distance of paths with different
number of AGVs (M = 50)

Fig. 6　 Average time of passage with different
number of AGVs (M = 50)

Fig. 7　 Average cost of passage with different
number of AGVs (M = 50)

Similar to the previous group of simulations,CBS
algorithm performs the best in all the three perform-
ance indicators evaluated here. Unfortunately, when
the number of AGVs is larger than 48,CBS algorithm
is no longer applicable in the simulation environment
due to the extremely high computational complexity.
Existing research also confirmed that using CBS algo-
rithm to compute an optimal solution when the number
of AGVs is larger than 50 is often intractable[19] . This
means CBS algorithm is not suitable for the scenario in
which a large number of AGVs are working collabora-
tively.

Compared with the waiting-stop A∗ algorithm,
PRG algorithm performs better in terms of the average
distance of paths,the average time of passage and the
average cost of passage, and the performance gains
peaked at 2. 4% ,8. 5% and 7. 5% ,respectively. When
collisions occur, PRG algorithm can make decisions
based on the real-time map of the working area,which
can reach the goal vertex more flexibly. Meanwhile,the
waiting-stop A∗ algorithm resolves collisions only by
two pre-defined rules which are waiting or giving way.
Therefore,with the increase in the number of AGVs,
collisions occur more frequently, and the performance
gain of PRG algorithm is more obvious. This means
PRG algorithm can well adapt to dynamic environments
with frequent collisions and maintain a low implementa-
tion complexity.

The performance of PRG algorithm in the large
working area is also evaluated. The map size is set as
80 × 80 with ρO = 0. 05. The number of AGVs varies as
N = 16,32,48,64,80,96,112,128,144{ }. Results
given in Figs 8,9 and 10 show the same trends as that
shown in Figs 5,6 and 7. Thus, the effectiveness and
efficiency of PRG algorithm are confirmed again.
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Fig. 8　 Average distance of paths with different
number of AGVs (M = 80)

Fig. 9　 Average time of passage with different number
of AGVs (M = 80)

Fig. 10　 Average cost of passage with different number
of AGVs (M = 80)

4　 Conclusions

This paper considers the MAPF problem for a
large number of AGVs in outdoor hazardous scenarios
with complex terrains and proposes the PRG algorithm
combining the real-time-conflict-based accurate pas-
sage cost of the current step and the static-map-based
estimation of the passage cost of the rest of the path to
form the decision metric. The objective of MAPF prob-
lem is to minimize the cost of passage while the Man-
hattan distance of paths and the time of passage are al-
so evaluated for comprehensive comparison. Simulation
results show that PRG algorithm performs better than

the waiting-stop A∗ algorithm in all three performance
indicators evaluated in this paper. Compared with CBS
algorithm,the performance of PRG algorithm is similar
when the number of AGVs is small. When the number
of AGVs is moderate,CBS algorithm performs the best.
However,CBS algorithm is not applicable to the scenar-
io in which a large number of AGVs are working col-
laboratively with frequent collisions. In all,PRG algo-
rithm is a practical solution for MAPF problem in large-
scale scenarios with a large number of AGVs. It obtains
a good trade-off between complexity and performance.
Its effectiveness and efficiency are confirmed through
simulation.

In the future,multi-agent cooperative path plan-
ning methods based on deep reinforcement learning
should be explored to further improve performance.
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