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Abstract
Unmanned aerial vehicles (UAVs) are advantageous for data collection in wireless sensor net-

works (WSNs) due to its low cost of use,flexible deployment,controllable mobility,etc. However,
how to cope with the inherent issues of energy limitation and data security in the WSNs is challeng-
ing in such an application paradigm. To this end,based on the framework of physical layer security,
an optimization problem for maximizing secrecy energy efficiency (EE) of data collection is formula-
ted,which focuses on optimizing the UAV􀆳s positions and the sensors’ transmit power. To overcome
the difficulties in solving the optimization problem,the methods of fractional programming and suc-
cessive convex approximation are then adopted to gradually transform the original problem into a se-
ries of tractable subproblems which are solved in an iterative manner. As shown in simulation results,
by the joint designs in the spatial domain of UAV and the power domain of sensors,the proposed al-
gorithm achieves a significant improvement of secrecy EE and rate.

Keywords:physical layer security,energy efficiency (EE),power allocation,unmanned aerial
vehicle (UAV),data collection,wireless sensor network (WSN)

0　 Introduction

Wireless sensor networks (WSNs) are widely ap-
plied into commercial and military fields. In the com-
mercial field,the WSNs are deployed for farmland mo-
nitoring,intelligent transportation,ecological monitoring
and disaster warning,etc. In military field, the WSNs
are deployed for battlefield surveillance and awareness,
target detection and location, hazardous environment
measurement, and so on. In those applications, the
WSNs are deployed with infrastructure for long-term
needs or deployed without infrastructure for temporary
or short-term needs. In the latter case,the data collec-
tion is an issue needing to be addressed due to the lack
of infrastructure. Unmanned aerial vehicles ( UAVs)
are advantageous for data collection in such scenarios
because of their advantages of low cost of use,control-
lable mobility and on-demand deployment[1] .

Much existing literature concerns the UAV-ena-
bled data collection in the WSNs,and focuses on inves-
tigating the efficiency of data collection,the timeliness
of the delay-sensitive data, the sleep and wake-up
mechanism of sensors, etc. As in Ref. [2], the data

collection efficiency is improved by maximizing the
minimum average rate,while in Ref. [3],the data col-
lection efficiency is improved by maximizing the aver-
age data-rate throughput. In Ref. [4],the timeliness of
the delay-sensitive data collected from each sensor is
ensured by minimizing the oldest age of the sensing da-
ta among the sensors or the average age of the sensing
data of all the sensors. The sleep and wake-up mecha-
nism of sensors is studied in Refs[5] and [6] to save
limited energy and to prolong the lifetime of the WSNs.

However,to implement the UAV-enabled data col-
lection in the WSNs,other important issues such as the
energy limitation and data security also need to be con-
cerned. The critical issue is how to ensure the data is
collected by the UAV efficiently and securely under the
limited energy. On the one hand,the sensors are always
powered by batteries which is energy-limited and ad-
verse to secure data transmission. Thus,it is significant
to implement energy-efficient data transmission in the
WSNs[7] . On the other hand, the harsh environments
for open signal propagation and the progressive technol-
ogies for security attacks demand comprehensive con-
siderations for data security[8] . Physical layer security
is an alternative security technology which has attracted
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increasing attentions. Such a security technology utili-
zes the physical properties of wireless channels,i. e. ,
the difference between the main channels and the wire-
tap channels,to guarantee information security[9] . Com-
bined with other physical layer technologies[10],such as
power and carrier allocation,beamforming and precod-
ing,user scheduling and cooperation,the physical layer
security can ensure information security while impro-
ving the performances like transmission efficiency,en-
ergy efficiency (EE),etc.

In the WSNs, the UAV-enabled data collection
needs to be designed globally to guarantee the security
and reliability of data transmission. The good mobility
and controllability of the UAV provide the spatial de-
gree of freedom for optimal designs[11] . Specifically,the
UAV can adaptively adjust its positions to enhance the
main channels while to degrade the wiretap channels. It
is of particular significance in the scenarios that the
eavesdropper can intelligently move to improve its com-
munication quality. In addition, the transmit power of
the sensors can also be optimized adaptively to fully use
the limited energy.

Motivated by the above investigations,the issues of
energy limitation and data security in the WSNs are
jointly considered in this paper. Of particular note is
that we study the efficient use of energy based on the
framework of physical layer security. Specifically,The
UAV􀆳s three-dimensional ( 3D ) positions and the
sensors􀆳 power allocation are jointly designed to maxi-
mize the secrecy EE while ensuring the data security.
For this purpose,a nonconvex and complicated optimi-
zation problem is constructed,which focuses on optimi-
zing the UAV􀆳s positions and the sensors􀆳 power. An it-
erative algorithm based on the optimization methods of
fractional programming and successive convex approxi-
mation ( SCA) is then proposed, which converts the
original problem into a sequence of tractable subprob-
lems in iterations. Simulation results verify that the joint
optimization algorithm is effective for improving both
the secrecy EE and rate.

The rest of this paper is organized as follows. Sec-
tion 1 presents the system model and problem formula-
tion. The solution for energy-efficient and secure data
collection is elaborated in Section 2. In Section 3,the
performance of the proposed algorithm is evaluated nu-
merically. Finally, the conclusions are summarized in
Section 4.

1　 System model

Consider the scenario that a UAV flies in the sky
to collect sensing data from I ground sensors,as shown

in Fig. 1. An eavesdropper also moves in the sky to
wiretap the sensing data from the sensors,which may
be UAV, helicopter, controllable air balloon, etc. In
practice, the eavesdropper may be not malicious but
monitors the sensors􀆳 data unintentionally,and thus it is
viewed as a passive eavesdropper.

Fig. 1　 System model

Let (x,y,z) , (xe,ye,ze) and (ui,vi,0) denote
the positions of the UAV,the eavesdropper,and the ith
sensor in the 3D Cartesian coordinate system,respec-
tively. It is assumed that the positions of the eavesdrop-
per and the sensors are known in advance. In practice,
the location information can be obtained from basic lo-
cation database shared by other institutions,or meas-
ured by optical reconnaissance or radio direction-find-
ing and localization[12] . The distances from the ith sensor
to the UAV and the eavesdropper are respectively given
by

di = (x - ui) 2 + (y - vi) 2 + z2 (1)
li = (xe - ui) 2 + (ye - vi) 2 + z2e (2)
The work considers the flat rural terrain without

buildings where the line-of-sight ( LoS) links mainly
dominate the air-to-ground wireless channels [13-14] . In
accordance to the investigations in Refs[14,15],in ru-
ral environment there is more than 95% probability of
LoS links for the UAV at the altitude of 120 m and the
horizontal ground distance of 4 km. Thus, the free-
space path loss model is adopted to characterize the
wireless channels[13-14] . The power gains of the chan-
nels from ith sensor to the UAV and the eavesdropper
can be respectively written as h i = α0d -2

i and g i =
α0 l -2i ,where α0 is the channel power gain at a refer-
ence distance of 1 m.

Assume that orthogonal frequency division multi-
ple access (OFDMA) is adopted for the sensors to ac-
cess the UAV. All terminals are equipped with single
antenna. The transmit power of the ith sensor is denoted
as pi . The received signals at the UAV and the eaves-
dropper from the ith sensor are respectively expressed
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as[14]

yu
i = α0d -2

i pi si + nu (3)
ye
i = α0 l -2i pi si + ne (4)

where, si is the data transmitted by the ith sensor, nu

and ne are the additive white Gaussian noises (AWGN)
with zero mean and variance σ2 .

Thus,the achievable rate on the channels from the
ith sensor to the UAV and the eavesdropper can be re-
spectively given by

rui = log2 1 + β0pid -2
i

( ) (5)
rei = log2 1 + β0pi l -2i( ) (6)

where β0 = α0 / σ2 . The achievable secrecy rate from
the ith sensor to the UAV can be obtained as[9-10]

ri = rui - rei (7)
The secrecy rate throughput of the UAV can be

gotten as

R = ∑
I

i = 1
ri = ∑

I

i = 1
log2

d2
i + β0pi

l2i + β0pi

l2i
d2
i

( ) (8)

The power consumed for data collection is com-
posed of the UAV-related power and the communica-
tion-related power. The UAV-related power consumed
for flying depends on its inherent properties, such as
aircraft􀆳s weight, wing area, rotor radius, air density,
etc. The details can be referred to Ref. [16]. There-
fore,the UAV-related power can be viewed as a con-
stant in practice,which is denoted by Pu . The commu-
nication-related power is consumed for transmitting data
at the sensors and receiving data at the UAV. The
transmit power of all sensors is ∑ I

i = 1
pi . The power

used for receiving data at the UAV is mainly consumed
by the hardware circuits of the UAV􀆳s receiver,which is
also a constant denoted by Pc . Therefore,the sum power
consumed for data collection can be formulated as

Q = ∑
I

i = 1
pi + Pu + Pc (9)

In order to measure the utilization efficiency of en-
ergy,define the EE under the consideration of data se-
curity,i. e. ,secrecy EE,that is the ratio of the secrecy
rate throughput to the total power consumption. The se-
crecy EE of UAV-enabled data collection can be for-
mulated as

Γ(X,P) = R(X,P)
Q(P) =

∑
I

i = 1
log2

d2
i + β0pi

l2i + β0pi

l2i
d2
i

( )

∑
I

i = 1
pi + Pu + Pc

(10)
where X 􀰛 (x,y,z) and P 􀰛 (p1,p2,…,pI) .

In practice, it is expected that the UAV-enabled
data collection is performed in an energy-efficient and

secure manner. Therefore,the secrecy EE is maximized
under the constraints of flying height and maximum
power. The problem is formulated as

max
(X,P)

Γ(X,P)

s. t. 0 ≤ pi ≤ pmax,i = 1,2,…,I
zmin ≤ z ≤ zmax

{ (11)

where, pmax denotes the maximum power of the sensors;
zmin denotes the minimum altitude of the UAV,which is
determined by the altitudes of ground obstacles in the
area of the WSN; zmax denotes the maximum altitude of
the UAV,which depends on the ceiling of the UAV.

2 　 Solution for energy-efficient and secure
data collection

2. 1　 Transformation for the objective function
The original problem Eq. (11) has an objective

function with fractional form, and thus falls into the
fractional programming. The fractional objective func-
tion can be decoupled into the subtraction of the nu-
merator and the denominator. Specifically,the problem
Eq. ( 11 ) can be associated with a parameterized
problem as[17-18]

max
(X,P)∈ 

R(X,P) - ΓQ(P){ } (12)
where Γ ∈ ℝ is viewed as a new auxiliary variable,
and  is the feasible domain defined by the constraints
of the problem Eq. (11). The optimal solution and the
maximum value of the problem Eq. (11) are respec-
tively denoted by (X∗, P∗) and Γ∗ ,which can be
achieved if and only if

max
(X,P)∈ 

R(X,P) - Γ∗Q(P){ } = R(X∗,P∗) -

Γ∗Q(P∗) = 0 (13)
Then,solving the problem Eq. (11) is equivalent

to finding the optimal solution of the problem Eq. (12)
under the condition Eq. (13). By using the Dinkelbach􀆳s
method[17],the problem Eq. (11) is solved in an iterative
manner. To be specific,at the beginning by initialing the
auxiliary variable Γ with a given value Γ(0) while setting
iterative index j = 0 ,the problem Eq. (11) is solved
by iteratively solving a series of inner subproblem as

max
(X,P)

R(X,P) - Γ( j)Q(P){ }

s. t. 0 ≤ pi ≤ pmax,i = 1,2,…,I
zmin ≤ z ≤ zmax

{ (14)

At the jth iteration, the subproblem Eq. (14) is
solved to get its solution (X( j),P( j)) and to calculate
the corresponding Γ( j) ,where Γ( j) is then updated by

Γ( j +1) = R(X( j),P( j))
Q(P( j))

(15)
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Γ( j +1) will be used for the next iteration. The itera-
tion will be stopped when the condition Eq. (13) is
satisfied. In practice, to mitigate the computational
cost, the iterative algorithm can be stopped with the
condition ΔΓ( j) ≤ τ ,where τ is an acceptable accura-
cy, ΔΓ( j) 􀰛 R(X( j),P( j)) - Γ( j)Q(P( j)) .

2. 2　 Introducing slack variables
The problem Eq. (14) is still complicated and is

thus needed to be handled further. The completed ob-
jective function of the problem Eq. (14) can be rewrit-
ten as
R(X,P) - Γ( j)Q(P)

= ∑
I

i = 1
log2 d2

i + β0pi
( ) - ∑

I

i = 1
log2 l2i + β0pi

( )

　 - ∑
I

i = 1
log2d2

i - Γ( j)∑
I

i = 1
pi + ∑

I

i = 1
log2 l2i

(16)

where the constants Pu and Pc are omitted in subsequent
contents for convenience without any affects on solving
the problem.

It can be verified that the components
log2 d2

i + β0pi
( ) and log2d2

i in the function Eq. (16)
are neither convex nor concave,which are adverse for
solving the problem. To make the problem Eq. (14)
tractable,several slack variables are defined as A =
a1,a2,…,aI

( ) and B = b1,b2,…,bI
( ) . The problem

Eq. (14) is then transformed into[19-20]

max
(X,P,A,B)

{∑
I

i = 1
log2ai - ∑

I

i = 1
log2 l2i + β0pi

( ) - ∑
I

i = 1
log2bi

　 　 　 　 　 　 　 - Γ( j)∑
I

i = 1
pi + ∑

I

i = 1
log2 l2i }

s. t.

d2
i + β0pi ≥ ai,i = 1,2,…,I

d2
i ≤ bi,i = 1,2,…,I

ai ≥ z2min,i = 1,2,…,I
bi ≥ z2min,i = 1,2,…,I
0 ≤ pi ≤ pmax,i = 1,2,…,I
zmin ≤ z ≤ zmax

ì

î

í

ï
ï
ïï

ï
ï
ïï

(17)
The validity of this approach has be verified in Ref.[20].

It is also ensured by the following proposition.
Proposition 1　 The problem Eq. (17) is solved

optimally when the conditions of equality are satisfied

in the constraints d2
i + β0pi ≥ ai and d2

i ≤ bi ,( i = 1,
2,…,I ). Then,the problems Eq. (14) and Eq. (17)
are equivalent in the sense of the same optimal solution
and maximum value[19-20] .

Proof　 The proposition is proved by the approach
of contradiction. Assume that the optimal solution of the
problem Eq. (17) is gotten with the strict inequality
conditions,i. e. , d2

i + β0pi > ai and d2
i < bi , i = 1,2,

…,I . Then, ai can still be increased and bi can still be
decreased to maximize the objective function value of
the problem Eq. (17) whereas the constraints are not
violated. That is to say,the optimal solution of the prob-
lem Eq. (17) is not really achieved with the strict ine-
quality conditions. This contradicts the assumption.
Thus,the proposition is true. When the equality condi-
tions are achieved, the problems Eq. ( 14 ) and
Eq. (17) have the same optimal solution and maximum
value[13] .

2. 3　 Successive convex approximation
In the problem Eq. (17), although the compo-

nents - ∑ I

i = 1
log2bi and - ∑ I

i = 1
log2 l2i + β0pi

( ) are
convex functions with respect to bi and pi ,they are not in
the standard form of convex optimization problem. To over-
come the difficulties,the approach of SCA is available[21] .

Based on the results in Ref. [22],a convex func-
tion can be bounded below by its first-order Taylor ex-
pansion. Therefore, the lower bounds of the convex
components - log2 l2i + β0pi

( ) and - log2bi can be giv-
en by

λ i(pi) = - log2 l2i + β0 p
~ (n)
i

( ) -
β0 pi - p~ (n)

i
( )

l2i + β0 p
~ (n)
i

( )ln2
(18)

γi(bi) = - log2 b
~ (n)
i -

bi - b
~ (n)
i

b
~ (n)
i ln2

(19)

where p~ (n)
i and b

~ (n)
i are given values of variables pi and

bi,respectively. It follows that λ i(pi) ≤ - log2( l2i +
β0pi) and γ(bi) ≤- log2bi ( i = 1,2,…,I ).

The nonconvex constraint d2
i + β0pi ≥ ai of the

problem Eq. (17) can be handled by a similar way.
The lower bound of the convex component d2

i + β0pi can
be expressed as

φi(x,y,z,pi) = x~ (n) - ui
( )2 + y~ (n) - vi( )2 + z~ (n)( )2 + β0 p

~ (n)
i

+ ∂f
∂x~ (n) ,

∂f
∂y~ (n) ,

∂f
∂ z~ (n) ,

∂f
∂p~ (n)

i
[ ]

x - x~ (n)

y - y~ (n)

z - z~ (n)

pi - p~ (n)
i

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

(20)
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where, x~ (n) , y~ (n) , z~ (n) and p~ (n)
i are the given values

corresponding to variables x , y , z and pi ,respectively;
∂f

∂x~ (n) , ∂f
∂y~ (n) , ∂f

∂z~ (n) and ∂f
∂p~ (n)

i

denote the partial deriv-

atives of the convex component f(x,y,z,pi) 􀰛 d2
i + β0pi

with respect to (x,y,z,pi) at (x~ (n),y~ (n),z~ (n),p~ (n)
i ) ,

which are given as
∂f

∂x~ (n) ,
∂f

∂y~ (n) ,
∂f

∂ z~ (n) ,
∂f

∂p~ (n)
i

[ ]
= 2 x~ (n) - ui

( ),2 y~ (n) - vi( ),2 z~ (n),β0[ ]

(21)

In accordance to the conclusions in Ref. [22],the
convex or concave functions can be approximated by
their first-order Taylor expansions at given points. There-
fore,by using Eq. (18),Eq. (19) and Eq. (20),an
approximated problem of the problem Eq. (17) can be
formulated as

max
(X,P,A,B)

{∑
I

i = 1
log2ai + ∑

I

i = 1
λ i(pi) + ∑

I

i = 1
γi(bi) -

Γ( j)∑
I

i = 1
pi + ∑

I

i = 1
log2 l2i }

s. t.

φi(x,y,z,pi) ≥ ai,i = 1,2,…,I
d2
i ≤ bi,i = 1,2,…,I

ai ≥ z2min,i = 1,2,…,I
bi ≥ z2min,i = 1,2,…,I
0 ≤ pi ≤ pmax,i = 1,2,…,I
zmin ≤ z ≤ zmax

ì

î

í

ï
ï
ïï

ï
ï
ïï

(22)

It can be verified that the approximated problem
Eq. (22) is convex in regard to (X,P,A,B) .

Based on the idea of SCA,the problem Eq. (17)
can be solved by solving the approximated problem
Eq. (22) in an iterative manner,where n denotes the
iterative index. To be specific,by giving an initial value

(X
~

(0),P
~
(0), A

~
(0), B

~
(0)) of variables (X,P,A,B) at

the beginning,at the nth iteration of the SCA algorithm,
the problem Eq. (22) is solved to obtain its optimal so-

lution (X
~

(n),P
~
(n),A

~
(n),B

~
(n)) which is used to update

the problem Eq. (22) for the next iteration until con-
vergence. The stop condition is given by Δ F(n) ≤ μ ,
where μ is a acceptable accuracy of the solution, Δ F(n)

􀰛 F(n) - F(n-1) ,and F(n) is the objective function
value of the problem Eq. (17) obtained at the nth itera-
tion.

2. 4　 Algorithm summary
The proposed algorithm for solving the original

problem Eq. (11) is a nested structure of the fractional
programming and SCA. Due to the fractional form,the
objective function of the original problem Eq. (11) is
decoupled into the subtraction of the numerator and the
denominator, and then a parameterized problem

Eq. (12) is associated with the original problem by
viewing the secrecy EE Γ as an auxiliary variable. Via
solving the parameterized problem Eq. (12) under the
condition Eq. (13),the original problem Eq. (11) can
be solved. Based on the idea of fractional programming,
the parameterized problem Eq. (12) is solved in an iter-
ative manner, and the slack subproblem Eq. (17) is
solved at each iteration. It is worth noting that the slack
subproblem Eq. (17) is equivalently transformed from
the inner subproblem Eq. (14) by variable relaxing.
After that,the slack subproblem Eq. (17) is solved it-
eratively by the SCA,in which the approximated prob-
lem Eq. (22) is solved at each iteration. The details of
the proposed algorithm are shown in Algorithm 1,where
the inner loop is the steps of SCA to solve the slack
subproblem Eq. (17) and the outer loop is the steps of
fractional programming to solve the parameterized prob-
lem Eq. (12).

Algorithm 1　 The algorithm for UAV􀆳s 3D deployment and
sensor􀆳s power allocation

Input: I , (ui,vi) , (xe,ye,ze) , α0 , σ2 , pmax , zmin , zmax ;
Output: (X∗,P∗) , Γ∗

1: Initialize Γ by a suitable value Γ(0) ;
2: j: = 0 , ΔΓ( j) : = Γ(0) ;
3: While ΔΓ( j) > τ do
4: j: = j + 1 ;

5: Initialize (X,P,A,B) by some suitable values (X
~

(0) ,

P
~
(0) ,A

~
(0) ,B

~
(0) ) ;

6: Calculate F(0) with (X
~

(0) ,P
~
(0) ,A

~
(0) ,B

~
(0) ) ;

7: n: = 0 , ΔF(n) : = F(0) ;
8: While ΔF(n) > μ do
9: 　 　 　 n: = n + 1 ;

10:

By using the given value Γ( j -1) along with (X
~

(n-1) ,

P
~
(n-1) ,A

~
(n-1) ,B

~
(n-1) ) ,solve the problem Eq. (22) to

obtain its optimal solution (X
~

(n) ,P
~
(n) ,A

~
(n) ,B

~
(n) ) based

on the approaches of convex optimization;
11: 　 　 Calculate F(n) with (X

~
(n) ,P

~
(n) ,A

~
(n) ,B

~
(n) ) ;

12: ΔF(n) : = F(n) - F(n-1) ;
13: end
14: (X( j) ,P( j) ) = (X

~
(n) ,P

~
(n) ) ;

15: UpdateΓ( j) based on Eq. (15) by using (X( j) ,P( j) ) ;

16: ΔΓ( j) : = | R(X( j) ,P( j) ) - Γ( j)Q(P( j) ) | ;
17: end
18: return (X∗,P∗): = (X( j) ,P(j) ) , Γ∗: = Γ( j) .

3　 Simulation results

In this section,numerical simulation is performed
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to evaluate the performance of the joint optimization al-
gorithm for the UAV􀆳s positions and the sensors􀆳 power.
Specifically,the proposed joint optimization algorithm is
compared with a benchmark strategy which deploys the
UAV to ensure that more sensors can transmit data se-
curely and reliably. To this end,more sensors should
achieve positive secrecy rate,that is the distances be-
tween the sensors and the UAV are smaller than the
distances between the sensors and the eavesdropper.
Therefore, the optimization problem related to the
benchmark strategy is formulated as

min
(x,y,z)

max
i = 1,2,…,I

di - li{ }

s. t. zmin ≤ z ≤ zmax

(23)

where di - li denotes the difference between the dis-
tance from the ith sensor to the UAV and the distance
form ith sensor to the eavesdropper. To guarantee that the
UAV can cover more sensors, the maximum distance
difference is minimized by optimizing the position of the
UAV. This optimization problem can be easily solved by
variable relaxation and SCA[21 - 22] . The algorithm for
solving the optimization problem Eq. (23) of the bench-
mark strategy is referred to as maximum minimization.

Let (x,y,z) be the acquired solution by solving
the problem Eq. (23),which does not ensure that all
sensors can transmit data securely. In other words,some
sensors would achieve a negative secrecy rate due to
that di(x,y,z) ≥ li(x,y,z) . Therefore,based on the
algorithm of maximum minimization,the sensors select-
ed to transmit data should satisfy that di(x,y,z) <
li(x,y,z) . The selected sensors are allocated with the
maximum power pmax to transmit data.

In simulation,consider a square area of 1000 m ×
1000 m. To comprehensively measure some parameters
in the area,the sensors are distributed in a regular grid
manner. It is emphasized that the proposed algorithm is
suitable for any random distributions of the sensors. For
simplicity without loss of generality,it is assumed that
the eavesdropper intelligently moves along the curve ye

= 1
250 (xe - 500) 2 + 160 ,while its altitude is kept

constantly at 70 m. The UAV thus has to change its po-
sitions accordingly. The proposed algorithm is also ap-
propriate for arbitrary positions of the eavesdropper.
The other simulation parameters are set as follows: I =
25 , σ2 = - 100 dBm, α0 = - 30 dB, pmax = 2 W, zmax

= 500 m, zmin = 50 m.
The positions of all terminals are depicted in

Fig. 2. Simulation results show that the UAV􀆳s altitudes
obtained by the both algorithms are always the mini-
mum altitude. That is because the UAV wants to get
closer to the sensors. Therefore,all positions are projec-

ted into the horizontal plane to observe the changes. It
can be seen that, for guaranteeing data security, the
UAV􀆳s positions obtained by the both algorithms are adap-
tively changed with the changes of the eavesdropper􀆳s
positions.

Fig. 2　 The horizontal positions of all terminals
In Fig. 3,the secrecy EE of the both algorithms is

compared versus the position changes of the eavesdrop-
per. The x-axis is the horizontal coordinates of the
eavesdropper that corresponds to the eavesdropper􀆳s po-
sitions. It can be observed that the secrecy EE achieved
by the joint optimization outperforms that achieved by
the maximum minimization. At the outermost points of
the figure, the joint optimization algorithm achieves
more higher secrecy EE than the maximum minimiza-
tion does. The reason is that the relative positions of the
UAV,eavesdropper,and sensors result in better chan-
nel qualities to support the energy-efficient and secure
data collection.

Fig. 3　 Secrecy EE versus the position changes of
the eavesdropper

Fig. 4 plots the secrecy rate throughput versus dif-
ferent positions of the eavesdropper. It can be seen that
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the total secrecy rate of the joint optimization is also
higher than that of the maximum minimization. The
curve of the secrecy rate throughput fluctuates violently
because the move of the eavesdropper leads to signifi-
cant variations of channel qualities. Just because of the
optimized positions of the UAV and optimized power of
the sensors against channel variations,the joint optimi-
zation achieves a better performance of the secrecy rate
throughput.

Fig. 4　 Secrecy rate versus the position changes of
the eavesdropper

In Fig. 5,the total power consumed by the two al-
gorithms is illustrated under different positions of the
eavesdropper. It can be seen that,although the secrecy
EE and total secrecy rate of the joint optimization out-
perform that of the maximum minimization, the total
power consumed by the joint optimization is not always
more than that consumed by the maximum minimiza-
tion. Especially at the outermost points of Fig. 5, the
joint optimization algorithm consumes less power but
achieves higher secrecy rate and EE.

Fig. 5　 Total power versus the position changes of
the eavesdropper

In Fig. 5,the power curve obtained by the maxi-

mum minimization fluctuates dramatically because only
a part of sensors are sometimes selected to transmit da-
ta and the residual sensors keep sleeping to save ener-
gy. But such a simple strategy of sensor selection for
saving energy is suboptimal from the perspective of se-
crecy EE. The joint optimization algorithm can achieve
higher secrecy EE due to the global designs of spatial
domain and power domain. It is worth noting that the
proposed algorithm also has the implicit function of
sensor selection. To be specific, it is revealed by the
simulation results that,if the channel quality of a sensor
is too bad to support secure data transmission,the sen-
sor would not be allocated any power.

4　 Conclusions

Using the UAV to collect data in the WSNs faces
two critical issues of energy limitation and data securi-
ty. To cope with these issues, this paper proposes a
joint optimization algorithm for the UAV􀆳s 3D positions
and the sensors􀆳 power allocation to improve the secrecy
EE and to ensure the data security simultaneously. The
resulting optimization problem is nonconvex and diffi-
cult to solve. The optimization approaches of the frac-
tional programming and SCA are then adopted to trans-
form the original problem into a series of tractable sub-
problems which are successively solved in iterations.
Duo to the global designs of spatial domain and power
domain, the proposed optimization algorithm can im-
prove the secrecy EE and the secrecy rate of the data
collection. Simulation results show that both the secrecy
EE and secrecy rate achieved by the joint optimization
algorithm are higher than that achieved by the maxi-
mum minimization.
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