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Abstract

With the increased emphasis on data security in the Internet of Things (IoT), blockchain has
received more and more attention. Due to the computing consuming characteristics of blockchain,
mobile edge computing (MEC) is integrated into IoT. However, how to efficiently use edge compu-
ting resources to process the computing tasks of blockchain from IoT devices has not been fully stud-
ied. In this paper, the MEC and blockchain-enhanced IoT is considered. The transactions recording
the data or other application information are generated by the IoT devices, and they are offloaded to
the MEC servers to join the blockchain. The practical Byzantine fault tolerance ( PBFT) consensus
mechanism is used among all the MEC servers which are also the blockchain nodes, and the latency
of the consensus process is modeled with the consideration of characteristics of the wireless network.
The joint optimization problem of serving base station (BS) selection and wireless transmission re-
sources allocation is modeled as a Markov decision process (MDP) , and the long-term system utility
is defined based on task reward, credit value, the latency of infrastructure layer and blockchain lay-
er, and computing cost. A double deep Q learning ( DQN) based transactions offloading algorithm
(DDQN-TOA) is proposed, and simulation results show the advantages of the proposed algorithm in

comparison to other methods.

Key words : Internet of Things(1oT) , mobile edge computing( MEC) , blockchain, deep rein-

forcement learning ( DRL)

0 Introduction

The Internet of Things (IoT) which is an impor-
tant technology supporting intelligent application sce-
narios such as smart cities, smart transportation, smart
medical care, and logistics has aroused lots of atten-
tion'"’. Due to the massively scattered terminals of ToT
and the large amounts of data collected by IoT devices,
data security and privacy has become key issue in this
field . Recent research shows that blockchain technol-
ogy is a promising solution as it has the characteristics
of decentralization, whole-process traceability, and
tlranspaurencyLSJ .

However, blockchain is a computing consuming
technology, which cannot be directly implemented on
resource-limited ToT devices'*'. Integrating mobile edge
computing (MEC) with IoT provides the close-to-user
computing capabilities to execute blockchain, the prob-
lem of computing task unloading decision is intro-

duced, and this problem is widely studied””’.

Generally, how to efficiently use edge computing
resources to process the computing tasks from block-
chain is a matter of prime importance, and auction-
based resource allocation algorithms are popular solu-
tions for this kind of problem'®'"’. Considering the
characteristics of wireless transmission, the optimiza-
tion of MEC-enhanced blockchain systems is further re-
searched. Energy efficiency is one of the hot research
topics, and a geometric programming method is used to
optimize the ratio of overall system throughput to system
average power consumption in blockchain-based
10T, With the constraints of probabilistic backhaul
and delay constraints, the computation and data cac-
hing rewards are optimized by an alternating direction
method of a multipliers-based algorithm'"'.

Moreover, both the performance measurements of
wireless transmission and blockchain systems are inte-
grated to form the optimization objective in the deep re-
inforcement learning ( DRL) based system optimization
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algorithms. Taking the cost of latency in the blockchain
system into the reward, a joint optimization algorithm
of caching and computation for delay-tolerant data in
machine-to-machine communications networks is pro-
posed based on dueling deep Q-network!"’. The re-
wards obtained by uploading data to the blockchain
system are also considered, and the scheduling of data
processing task requests'' and the node selection al-
gorithm of the computing resources providers are pro-
posed ! based on the policy gradient algorithm, re-
spectively. By modeling both the rewards of executing
smart contracts and the latency of the blockchain sys-
tem in the system reward, the joint optimization of the
offloading decisions, the allocation of computing re-
sources and radio bandwidth, and the smart contract
usage are studied''®’. Although the latency in the
blockchain system is modeled with the consideration of
different consensus processes, the communication
among different blockchain nodes which are also ac-
cessed points in the wireless access networks is not
modeled in detail.

Focusing more on the characteristics of block-
chain, the historical reputation and the accumulated
credit of blockchain nodes have an important impact on

(7-197, However, in the blockchain and

service quality
MEC-enhanced IoT, only a few studies have consid-
ered this in the computing offloading and task schedu-
ling problems' """,

In this paper, the MEC-enhanced IoT is consid-
ered, and the blockchain is enabled to provide secure
and traceable management of IoT applications. The
transactions recording the data or other application in-
formation are generated by the IoT devices. And they
are offloaded to the base stations ( BSs) and MEC serv-
ers in the heterogeneous network ( HetNets) to be pro-
cessed and packaged in a block to join the blockchain.
The selection of serving BS and the allocation of wire-
less transmission resources are jointly optimized. To en-
sure the enthusiasm of blockchain nodes to serve the
IoT applications, the system utility is defined consider-
ing task reward, the credit value, latency of the infra-
structure layer and blockchain layer, and computing
cost. A double deep Q learning ( DDQN) based trans-
action offloading algorithm is proposed, and simulation
results show the advantages of the proposed algorithm
in comparison to other methods. The main contribution
of this paper is further summarized in the following.

The communication latency among different block-
chain nodes is modeled in detail. Due to the large num-
ber of BSs in the blockchain-enhanced HetNets, the
X2 interface which can forward messages to other BSs
may not be built between any two BSs. Therefore, a
time-varying angular symmetric matrix is used to model

the real-time direct connection status of the BSs, and
the real-time communication latency among different
BSs is approximately measured by the number of hops
of the shortest path.

The credit weight of each BS is defined based on
the counter of successfully processed transactions, and
this weight is used in the reward to model the impact of
credit on service quality. The counter increases if the
transaction is successfully uploaded to the blockchain.
Otherwise, the counter decreases. Then, the credit ra-
tio is defined with the average counter as the reference.
Finally, an exponential function of this ratio is used in
the definition of credit weight which is used in the cal-
culation of the profit of uploading a transaction.

The joint optimization of the selection of serving BS
and the allocation of wireless transmission resources is
modeled as an Markov decision process (MDP), and the
solution is designed based on DDQN. To ensure the en-
thusiasm of blockchain nodes to serve the IoT applica-
tions, the cumulative reward is defined based on the long-
term system utility relating to task reward, credit value,
the latency of the infrastructure layer and blockchain lay-
er, and computing cost. To facilitate the design of the so-
lution, the states and the actions are also unified, respec-
tively. The proposed DDQN-based transactions offloading
algorithm is described in detail and evaluated through
comparison.

The rest of this paper is organized as follows. First,
the system model is proposed in Section 1. Then the
problem formulation is proposed in Section 2. And in
Section 3, the algorithm flow is proposed. Besides, Sec-
tion 4 is the simulation result and test result of the algo-
rithm. Finally, Section 5 is the summary of the paper.

1 System Model

1.1 System architecture
In this paper, the system is divided into two layers,
i. e. the infrastructure layer and the blockchain layer ™,

and the system architecture is shown in Fig. 1.
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The HetNets with mobile edge computing ( MEC) is
the infrastructure layer. There are N base stations
(BSs) which are N, macro BSs ( MBSs), pico BSs
(PBSs) and N, femto BSs (FBSs). The frequency re-
sources are quantified as resource blocks (RB), and
the initial number of RBs allocated to the three kinds of
BSs are f,,, f, and f;, respectively. Assume each BS
deploys a MEC server ( MECS), and the computing
capability of the three kinds of BSs are ¢
respectively. The n-th BS in the system is denoted by
B,
bility is denoted by f, and ¢

The IoT applications in the system are managed by

m» €, and ¢,
and its initial number of RBs and computing capa-
., respectively.
blockchain. The transactions recording the data or other
application information are generated by the IoT de-
vices. Due to the limited capabilities of the IToT de-
vices, these transactions are offloaded to the BSs, and
then, processed in the MECS to be packaged in a
block to join the blockchain. Therefore, the blockchain
layer consists of all the MECS in the system. Assume
the practical Byzantine fault tolerance ( PBFT) consen-
sus mechanism is used. The MECS of the MBS is the
primary node, and the other MECSs are the common
nodes. Any MECS which wants to upload a block to the
blockchain is considered as the client node of the cor-
responding consensus process, and the remaining
MECSs are the replica nodes.

Due to the large number of BSs in the blockchain-
enhanced HetNets, the X2 interface which can forward
messages to other BSs may not be built between any
two BSs. Thus, a time-varying angular symmetric ma-
trix ¥, = [y, ; ,]y.yis used to denote the real-time di-
rect connection status of the BSs in the system.y, . =
y; i, =1 means there is a direct connection between B,
and B; at time step ¢, otherwise, y;, ; , =y, , , =0. The
e and B; under the
condition of Y, is used to represent the corresponding

number of hops ¢ between B,
transmission latency between the MECSs of B; and B; in

the consensus process approximately.

1.2 Transactions model

Assume the arrival of the transactions in the sys-
tem follows the Poisson process with arrival rate A. Be-
sides, the IoT devices are randomly scattered in the ar-
ea, and each device only generates one transaction at a
location. The unserved transactions and the newly
coming transactions are recorded in the queue of the
system. M, = {M, ,, M, ,, -, M -+ } denotes the

queue at the beginning of time step ¢, where M, | is the

1,19 it

i-th transaction in the queue. Define M., =

1,1
{Li,z9 Di,r’ Ci,t9 Ti,m Ri,z}’ Where Li,x9 Di,t, Ci,t’

7, , and R,

;.. are the location, the data size, the re-
quired computing resources, the maximum tolerable la-

tency and the expected profit of transaction M, ,.

1.3 Latency in the infrastructure layer

The latency of transaction M, , in the infrastruc-

t

ture layer mainly consists of the queuing time 7!, and

the wireless transmission time 7. , from the IoT device

i,t
to the selected serving BS.
The wireless transmission time of M, , can be esti-

mated as

D.
(1)

v

i
where v; , is the wireless transmission rate between the
IoT device generating M, , and the selected serving BS
ai’, ,=B,, and
-a
v; =af bt log, [ 1+ ]zi' LNRACRNY -
’ ’ o+l , ,(N-1)a;,
where a! , is the number of RBs allocated for transmit-

ting M, ,, b is the bandwidth of a RB, P, , is the

i, i, 1

(2)

transmitting power of M, ,, t_is the interval of a time

is the average co-
and (li, t, n,) o
are the Rayleigh fading coefficient and the path-loss of

2 . .
step, o~ is the noise power, [

i,t,n

channel interference on each RB, h,

i, t,n

the channel between the loT device generating M; , and
the BS B

To approximately calculate [/

respectively.

n
i.1.n» it can be as-

sumed all the remaining tasks in the queue are served
in the system, and thus

/ _ zMj_,th_j#in, ;hj, ‘ n(lj, ‘ n) -
i, t,n Nmfvm_"_prpJ’_ler_af

[

(3)

To quantify the data size of M; , by the total num-
ber of required RBs, the wireless transmission rate be-
and an arbitrary

tween the loT device generating M, ,

base station B, is also calculated as

’ Pi,[h‘i,t,n(li,t,n)_ﬂ

, =bt 1 1+ 4
vl,t,n sOgZ 0_2+Ii’[,n(N_1) ( )
thus, the total number of RBs required by M, , if ac-
cessing to B, can be estimated as
Di t
8i, t,n == (5)
v

i,t,n

Based on the above-mentioned estimation, the
’ Si, t,no tty, 81" t, /\] iS de—

fined as an important characteristic of M;

vector &, , = [, , , "
, considering

the wireless transmission environment.

1.4 Latency of the consensus process
Generally, the PBFT consensus process consists of
five phases, i. e., the request phase, the pre-prepare
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phase, the prepare phase, the commit phase, and the
reply phase.

(1) Request phase;the client node signs the RE-
QUEST message and sends it to the primary node. In
this phase, the delay is £, , ,, where B, and B, are the
client node and the primary node, respectively.

(2) Pre-prepare phase :the primary node receives
the REQUEST message and verifies that the REQUEST
message from the client node is signed correctly. Then,
the primary node broadcasts a PRE — REQUEST mes-
sage to all the replica nodes. Thus, the latency of the
where R, is the set of

pre-prepare phase is znaz({p. o
r&€fy

replica nodes of this consensus process.

(3) Prepare phase;the replica node receives the
PRE — REQUEST message from the primary node and
verifies whether the signature and information are cor-
rect. If they are correct, the replica node broadcasts the
verification information which is a REQUEST message
to all the nodes except the client node. The latency of

the prepare phase is then calculated as max
B, cR,, B,eB,

{r ,..» where B, =R, UB,.

(4) Commit phase ;the primary node and the rep-
lica nodes receive the REQUEST message and check
whether the signature is correct. If the primary node or
the replica node receives more than 2 (N -2)/3 RE-
QUEST messages that have passed the verification, it
broadcasts a COMMIT message and records the re-
ceived REQUEST messages. The latency of the commit

gr" L, Lt

(5) Reply phase:the primary node and the repli-
ca node receive the COMMIT message and check
whether the signature and information are correct. If the

replica node receives more than 2(N -2)/3 COMMIT

messages that have passed the verification, most of the

phase is  max
B, eB;, B,eB,

nodes in the system have reached a consensus. The RE-
PLY message is executed, and a message is returned to

the client node. The latency of the reply phase is max

B,eR,
é/r, c,t*
Taking all the phases into account, the latency of

the consensus process of M, , can be calculated as .
b

T, = + max + max , +

i, 1 gf,]),t B,ER, gp. r,t B,’ER[.B,EB, Zr s Tyt
max , + max 6

B, B, B,Eg,gr M B,ER;" €12 ( )

1.5 Credit model

As the historical reputation of the blockchain node
affects its performance in the blockchain system, the
credit model is defined, and the reward of successfully
uploading a transaction to the blockchain is affected by

the credit value.

Generally, the credit of each node increases if a
transaction is successfully uploaded to the blockchain.
Otherwise, the credit decreases. Use H, , to denote
the counter of B, at time step t. When the consensus

process is accomplished, H, , is updated before the

t, n
next time step. If B, successfully completes the trans-
action, H,  increases 1. Otherwise, H, , decreases 1.

To restrict the range of credit, the credit ratio is de-

fined as
H[ _ znez"\“'Hl, n
M= (7)
’ ZII,EEVH{, n
N

when the transaction M, ,

the blockchain through B, at time step ¢, the credit
weight

is successfully uploaded to

1

0]

n,t

is used to calculate the real profit. According to the

definition of w its growth gradually slows down with

n,t’

the increase of credit value.
2 Problem formulation

According to the system model, the selection of
serving BS and the allocation of wireless transmission
resources for transmitting the transaction to the ser-
ving BS is the main factor affecting the service quali-
ty. Thus, these two problems are jointly optimized.
To ensure the enthusiasm of blockchain nodes to
serve the loT applications, the optimization problem
aims at maximizing the system utility related to task
reward, credit value, the latency of the infrastruc-
ture layer and blockchain layer, and computing
cost. The detailed formulation of the problem is given
in the following.

2.1 Optimization problem

Assume each observation period of the system
lasts for T time steps. The optimization problem is for-
mulated as
max G =Gy —peGe —p Gy —py Gy —ppGy
sctoTl, 4T T, <7

it

(9)

where, wp, we, o, py and uy are weights, G, is the
task profit obtained by all the blockchain nodes, G, is
the computing cost, G, is the queuing cost, Gy and Gy
are the cost of wireless transmission time and the cost
of blockchain layer latency, respectively. The defini-
tions of G, G¢, G,, Gy and Gy are given as
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Go=3, % n[R 0, (1-€ )& ]
Ge=% i C (1-£)]

ENED YD W S (10)
Gy=3, X, (1-£ )]
Gy=2,rZiem, L7 (1=& )]

where & and & | are the indicators of queueing status

and service status of M, ,, respectively. £, =1 means
that M, , has not been offloaded to any MECS by the
end of time step ¢, otherwise, &', =0.¢; , =1 means

M; , is offloaded to the BS B, at time step ¢, otherwise,
&.=0.

2.2 Markov decision process( MDP) model

Assume the MBS oversees the offloading decision
of all the transactions generated by the IoT devices in
the area. Both the offloading target BS and the number
of RBs allocated for transmitting each transaction need
to be selected to maximize the system utility.

As the arrival of the transactions in the system fol-
lows the Poisson process for a long time and the availa-
ble transmission and computing resources are updated
every time step, the transactions offloading decision
problem can be modeled as an MDP which is defined
as a tuple (S, A, P, R), where S and A denote the
state space and the action space, respectively. P(s, a,
s") is the state transition probability from the state s e
S to the state s" € S by taking the action @ € A. R is the
reward function and r =R(s, a, s') is the reward ob-
tained by taking the action @ € A at the state s € S and
transiting to the state s’ e S.

In the following of this section, the state, the ac-
tion, and the reward function are defined in detail.

(1)State

The state is defined as

si,l,:(tysfgas"r ST

[ i+1,19

) (11)

where # is index of time, S is the information of all the

BSs, S/, is the information of M, ,.
S} =[C,, F,, H] (12)
where H, =[H, ,, -=-, H, ,, -=-, Hy ,] is the array of

BS’ s credit value at the time step ¢, C, and F, are ar-
rays of the available computing and transmission re-
sources of all the BSs, respectively. To compromise be-
tween accuracy and complexity, the estimated available

resources from time step ¢ to ¢ +30 are observed.

T d
Si,l:[ti,l’Ai,l’ci,l’Ri,l] (13>

where ti , is the time remaining before the timeout of M; ,

occurs and A, [ =[8;, 1, ==, 8,0y 7y 8wl

(2) Action
The action consists of two parts which are the se-
lected offloading target BS a?r and the number of RBs
=L,
r

it

af’ , allocated for transmitting M,

i, and a;
af, , 1. In order to decrease the size of action space, a
is quantified into 5 levels.

(3)Reward

To be consistent with the system utility optimiza-
tion problem, the cumulative reward of the whole MDP
should be G given in Eq. (9). The system utility is de-
composed into the reward of each offloading decision at
each time step. For the offloading decision of transac-

tion M.

", t<ai’ ’) = [IU“PRi, Wy, tf: n,t ( (l:) t) _/-'LCCi, t _lu'WT;it
(ai.z) _MBT?,t<a?,t)]
[1-¢l,Ca ) ] -potl (al )W (14)

where the queueing status indicator &

i,t9

the corresponding reward is

the service

S

status indicator & the estimated wireless transmis-

i,n,t9

sion time 7, ,, and the latency of the consensus process

T?‘ , are affected by the action, W is the penalty of ever-

y queuing.

3  Deep reinforcement learning-based trans-
actions offloading algorithm

According to the MDP model-based transactions
offloading decision problem, the state space is extreme-
ly large, and the action space is also complicated.
Thus, it is difficult to use conventional methods to
solve the MDP. Luckily, recent researches show that
the DRL-based method can solve the complicated
MDP, and the Double DQN'*"*' is adopted as the
transactions offloading decision agent in this paper.

Generally, the number of transactions in M, varies
at each decision step. To ensure the stable structure of
the Double DQN, the state input to the neural networks
is modified as

$;,=(t, S, S

i, 19

e Sin ) (15)
which means only the first X transactions in M, are ob-
served for each decision. If the number of transactions
in M, is less than X, the corresponding positions in §;

will be filled with O.

As for the action, this work computationally maps

t

the two-dimensional decision action a; , to one-dimen-
sional action a, , to simplify the design of neural net-
works, where a, , =5a; , +a; ,.

The workflow of the proposed DDQN-based trans-
actions offloading algorithm ( DDQN-TOA) is shown in

Fig. 2 and the detailed pseudo-code is given in Algo-
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rithm 1. In Fig. 2, first, the state s, , is input to the Q-
evaluation network. And then, the action a, , is select-
ed using the g-greedy policy. Finally, the parameter 6
of the Q-evaluation network is updated as

O = 00 + a (y,-0Q0S,, ,50,)) V, 0
(8, a;50,) (16)
where () is the value function represented by the neural
network , « is the learning rate,
yi =r +yQ(Sy, argg:laxQ(&k s @3000)30"00)  (17)
where, 7 is the discount ratio, and @’ is the parameter
of the Q-target network. (§,, a,, r,, §,’ ) is obtained
by sampling from replay memory.

Environment

( si.l > ai‘l > rl.l > si.l ')

Replay Memory
Sis G
(00,1355 ')} ;
WDk2Tk2TkSOK ) Sampling
1 Network
a
a— 2.(s9:6) l
o T : Back- propagation o n
o 2
s, —> p———————> 2.(:%a8)
N Q-evaluation
Update every l Network
worksheet —- —— Jagmax, (0, (5,.4:8))
2.5%a8)
Q-target : f ¢
Network

Fig.2 DDQN-TOA workflow

Algorithm 1 The process of one iteration simulation in DDQN-
TOA

1.Input:T, D, @ and 6'.

2. Initialize the state of RBs. F=[F, , F,, .., F,], where F,

=[F ,F 5, F )=l ] foraleell, T].

3. Initialize the state of computing capabilities. C = [ C, , C,,
.., Cyl, where C, =[C, |, C,,, -+, C, y] =[c,] .y for
allte(1, T].

4. Initialize the credit counter of all the BSs H=[H, , H,, ..,
Hyl.

5. Initialize ¢ =0.

6. Initialize temporary variables M’ =¢ and H' =[0], .

7.for ¢ in T do:

8.M,«—M’ and update the information of all the transactions in

M

9. Add new arrival transactions to the end of M,.
10. for each M; , e M, do:

it

11. Observe the current state s; , according to Eq. (11).

12. Input s, , to the Q-evaluation network and obtain the action
., =lal,, a ] according to the g-greedy policy.
13.ifa; , >F, , or C, ,>C, o, then

14.¢1, =1,¢ ,=0.

15. Remove M, , form M, and add it to the end of M’.

16. else

17.&!,=0.

18. Consume resource of BS B"%,J and update F and C.

a

19. Compute 7} , and T?', according to Eqs (1) and (6), re-
spectively.

20. Remove M, , form M,.

21.0f 7}, + 7/, <t/ , then

2.¢ ,=land H'y, =H', +1.

23. else:

24.¢& ,=0and H'

25. end if

26. end if

27. Compute r; ,(a, ,) using Eq. (14).

:H’ 1,[—1.

b
ap i ap

28. Observe the next state s,,, ,and s’ , =s,,, ,, add expe-

s’ ) to D.
29. Randomly select a minibatch of experiences D’ from D
30.for each d, = (s,, a,, r,, s',) D’ do:

31.if s, is the terminal of an episode then

rience (s, ,, a

ity it

r

it

2.y, =1,

33. else

34. Calculate y, using Eq. (16).
35. end if

36. end for

37. Update @ using Eq. (15).
38. end for

39.H=H +H'

40. end for

41. Update the parameters of the Q-target network 6’ <.
42 . Output:D, 6 and 9'.

4 Performance evaluation

To evaluate the performance of the proposed
DDQN-TOA, three basic transactions offloading algo-
rithms which are named MAX-SINR, MAX-Credit and
Greedy are implemented for comparison. MAX-Credit
algorithm selects the BS with the highest credit value to
serve the transaction. MAX-SINR algorithm selects the
BS with the best channel quality to serve the transac-
tion. Greedy algorithm selects the action which can ob-
tain the highest reward to offload the transaction.

The main parameters of the evaluation scenario are
given in Table 1. As for the DDQN-TOA, two three-lay-
er neural networks are used as the Q-evaluation and Q-
target networks, respectively. The hidden layer of each
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neural network has 256 neurons.
To verify the generalization ability of the algo-
rithm, this work uses the different arrival rate A =

wR, > xy, (y=0.000 05, 0.000 06, 0.000 07,

0. 000 08).
Table 1  Parameters of the evaluation scenario
Symbol  Parameter Setting

R, Radius of two-dimensional Poisson 200 m

distribution and task generated

Data size of the task
M, , uniformly and randomly gen-

[5, 30]

erated from the setting

Required computing resource of
the task
M, , uniformly and randomly gen-

[5, 10]

erated from the setting

The maximum tolerable delay of
the task

M, , uniformly and randomly gen-

[3,10]

erated from the setting

The reward of the task [20, 25, 30,
M, , uniformly and randomly gen- 35, 75, 80,
erated from the setting 85, 95, 100]
N The total number of BSs 10

N, , N,, N, The number of MBS, PBS, FBS 1,3,6
The total number of frequency re-
M 275
source blocks consumed by BSs
T Time length of system observed 300
MBS, FBS, PBS f > -
Fus s S ’ ’ TEqUeney T 50 25, 25
source blocks number
Cur Coa €, MBS, FBS, PBS computing re- 100, 80, 60
source blocks number
o’ Noise power of single RB 7.2e-13 mW
o Path loss exponent 2
o Learning rate 0.000 1
The weight of pure reward, latency
Mps Mw,  of wireless transmission, latency of 0.2, 0.3,
My, e blockchain layer and computing 0.3, 0.2
cost
Mo The cost of queuing once 10
t The interval of a time step 10 ms
b The bandwidth of single RB 180 kHz
w The penalty of once queuing 10
P; The transmitting power 20 mW

4.1 Training phase

In this section, the DDQN performing as the
transactions offloading decision agent is trained with

different transactions arrival rates which are y e
{0.000 05, 0.000 06, 0.000 07, 0.000 08 |. For
each transactions arrival rate, 10 independent transac-
tions flows are generated following the Poisson process
within 300 time steps. The training results are given
from Fig. 3 to Fig. 6.

In general, the training process is convergent un-
der different system settings, and the proposed DDQN-
TOA performs the best among all the algorithms evalua-
ted in this paper. When y =0.000 07, the cumulative
reward converges to the largest value. Obviously, with
the increase of transactions arrival rate, the task profit
obtained by all the blockchain nodes increases. Howev-
er, the computing cost, the queuing cost, the cost of
wireless transmission time and the cost of blockchain
layer latency increase. Besides, the number of failed
transactions also increases. Thus, the system obtains
higher task profit at the cost of more intensive resource
consumption and worse service quality. Taking all the
performance indicators into consideration, y =0. 000 07
is the best match with the setting of system resources in
our simulation, and the best comprehensive reward is
obtained when y =0. 000 07.

The Greedy algorithm is the second best, and it
tends to obtain better task profit obtained by all the
blockchain nodes as shown in all the training results.
Since the MAX-SINR algorithm selects the BS with the
best channel quality to serve the transaction, it obtains
the least cost of wireless transmission time. When y =
0. 000 05, the MAX-Credit algorithm can obtain simi-
lar overall reward to the Greedy algorithm, and its cost
of infrastructure layer ltency is even smaller than that of
the Greedy algorithm. As the MAX-Credit algorithm has
the problem of load imbalance, the performance of the
queuing cost and the cost of wireless transmission time
increases dramatically with the increase of y. When
>0. 000 06, the MAX-Credit algorithm even cannot
run properly.

Since the cost of blockchain layer latency highly
depends on the real-time direct connection status which
are not included in the state of the MDP, all the algo-
rithm obtains the similar performance of this factor. The
computing costs of all the algorithm are similar. This is
because no matter which base station is selected as the
service node, the computing costs of a given transac-
tion is fixed.

4.2 Test phase

To evaluate the generalization capability of the
proposed DDQN-TOA | the three DDQNs trained with y
e {0.000 06, 0.000 07, 0.000 08| are tested with y
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Fig.3 Training phase (v =0.000 05)
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Fig. 4 Training phase (y =0.000 06)
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Fig. 5 Training phase (y =0.000 07)
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Fig. 6 Training phase (v =0.000 08)
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varying from 0. 000 03 to 0. 000 08. For each test value
of v, 50 independent transactions flows are generated
following the Poisson process within 300 time steps.

Test results given in Fig. 7 show that the DDQN
trained with a higher transactions arrival rate can work
properly when the transactions arrival rate of the test
samples is lower. This benefits from the fact that the
system simulation begins with an empty transactions
queue, and the DDQN can experience the system state
with light traffic in the training process. However,
when the transactions arrival rate of the test samples is
larger than that of the training samples, the DDQN has
no chance to experience a heavy or overloaded traffic
load. Thus, it cannot work properly.

Test results also confirms that y =0. 000 07 is the
best match with the setting of system resources in our
simulation since the cumulative reward reaches the lar-
gest value when y =0. 000 07. The DDQN trained with
v =0.000 07 can obtain the best cumulative reward
when y<0. 000 07. As for the DDQN trained with y =
0. 000 08, it performs better than the Greedy algorithm
when y =0.000 06, 0.000 07, 0.000 08. However,
when vy is further reduced, the DDQN trained with y =
0. 000 08 performs worse than the Greedy algorithm.

The test experimental tells an important experi-
ence for intelligent network optimization, i. e. the net-
work optimization agent should be trained at the system
traffic load being full but not overloaded.
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Fig.7 Test phase

5 Conclusion

In this paper, the selection of serving BS and the
allocation of wireless transmission resources in the
MEC and blockchain-enhanced loT is jointly optimized
using the proposed DDQN-TOA algorithm. The real-

time direct connection status of the BSs is modeled as a
time-varying angular symmetric matrix, and the real-
time communication latency among different BSs is ap-
proximately measured by the number of hops of the
shortest path in the calculation of PBFT consensus la-
tency. The training result shows that, under the same
transaction arrival rate, the proposed DDQN-TOA can
obtain the best long-term system utility, which is relat-
ed to task reward, credit value, infrastructure layer de-
lay, blockchain layer delay, and computing cost,
among all the algorithms as MAX-SINR, MAX-Credit
and greedy. Testing results show that the proposed
DDQN-TOA has good generalization capability, and
the DDQN trained with a higher transactions arrival
rate can work properly when the transactions arrival

rate of the test samples is lower.
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