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Boiler flame detection algorithm based on PSO-RBF network①
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Abstract
As the main production tool in the industrial environment, large boilers play a vital role in the

conversion and utilization of energy. Therefore, the furnace flame detection technology for boilers
has always been a hot issue in the field of industrial automation and intelligence. In order to further
improve the timeliness and accuracy of the flame detection network, a radial basis function (RBF)
flame detection network based on particle swarm optimization (PSO) algorithm is proposed. First,
the proposed algorithm initializes the speed and position parameters of the particles. Then, the parame-
ters of the particles are mapped to the RBF flame detection network. Finally, the algorithm is iteratively
updated to obtain the global optimal solution. The PSO-RBF flame detection algorithm adopts a flame
sample collection method similar to back propagation (BP) flame detection algorithm, and further im-
proves the collection efficiency. The experimental results show that the PSO-RBF flame detection network
has good accuracy and faster convergence speed in the given data samples. In the flame data samples,
the detection accuracy of the PSO-RBF flame detection algorithm reaches 90. 5%.
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0　 Introduction

In today ’ s industrial environment, boilers are
widely used, and large boilers, as the main production
tool, still play a vital role in energy conversion and uti-
lization[1] . The results of the flame state judgment and
the subsequent fuel supply in the furnace are directly
affected by the accuracy of the detection method,
which will affect the utilization rate of primary energy
of large boilers to a large extent. The fuel combustion
condition in the boiler furnace directly determines the
safety and stability of the boiler operation and the en-
tire industrial production[2] . The safety of industrial
boiler operation is indispensable to furnace flame de-
tection[3-4] .

According to the current research results of the
flame detection problem of large industrial boilers and
the flame detection technology currently put into pro-
duction, the flame detection methods of boiler furnaces
can be roughly divided into the following four catego-
ries: sensor measurement method[5], digital signal pro-
cessing method[6], image processing method[7], ma-
chine learning method[8] . Flame detection systems based
on various types of sensors and traditional digital signal

processing methods often need to adjust the accuracy of
the sensor according to requirements during industrial
production. However, it is difficult to configure the
flame sensor to achieve accurate detection in prac-
tice[9] . In addition, conventional flame detection sens-
ing devices do not define the main characteristics of the
flame very well[10] . The use of charge coupled device
(CCD) indirect measurement cannot effectively detect
flames visually. In view of the low accuracy of the ex-
isting boiler flame detection technology, some research-
ers have explored the feasibility and potential advanta-
ges of neural network in flame detection, used furnace
data and boiler operating parameters for training, and
established a neural network to determine the output
water temperature of the boiler system, so as to analyze
the heat output and flame state of the boiler[11] . Ai-
ming at the problems of diverse flame shapes and un-
clear edges, Li et al. [12] proposed a proposal mecha-
nism method based on two key attributes of flame dy-
namics and color to effectively select candidate flame
regions. And based on the processed images, convolu-
tional neural network (CNN) framework for the flame
region was proposed. Chao et al. [13] improved a flame
detection method based on faster R-CNN network to
identify and judge flames, and the model accuracy rate
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reached more than 85% . Lv et al. [14] proposed a de-
tection model that combines CNNs and long short-term
Memory (LSTM) networks, and the results show that
flame images can be correctly identified. Yu and
Chen[15] proposed a video flame detection method
based on the combination of dual-stream convolutional
neural network and spatiotemporal features. Aslan et
al. [16] proposed a vision-based approach that uses deep
convolutional generation adversarial neural (DCGAN)
networks to detect flames and performs effective detec-
tion.

To sum up, the existing flame detection algorithms
have slow convergence speed, long running time, low
detection accuracy, and it is difficult to ensure the
timeliness of practical applications. Therefore, this pa-
per proposes a flame detection algorithm based on par-
ticle swarm optimization-radial basis function ( PSO-
RBF) network. The RBF flame detection network
structure is designed and PSO algorithm is further used
to optimize the network. Through the iterative update
of the network, the global optimal solution is obtained
and the network model is constructed. The flame sam-
ple data is obtained after feature extraction, area calcu-
lation, and frequency extraction of the original flame
image using image processing algorithms, which are
used as the training and testing samples of the PSO-
RBF neural network. Through the detection experiment
of the flame state and smoke state in the furnace
through the PSO-RBF network, the feasibility of the
flame detection algorithm described in this paper is ver-
ified, which can basically meet the needs of industrial
boiler production.

1　 PSO-RBF flame detection network design

1. 1　 RBF flame detection network model
The RBF neural network method for multivariate

interpolation is a feedforward neural network, and RBF
network is designed by imitating the neural network
distribution structure in the human brain[17] . It can be
seen from the network structure that RBF neural net-
work and human brain neural network have the follow-
ing remarkable characteristics: each neuron covers
each other to achieve transmission and reception, and
each parameter transmission only needs to be adjusted
locally to achieve optimization. Due to the simple
structure of RBF network, the operating efficiency of
the algorithm has a significant speed advantage com-
pared with other machine learning algorithms, so the
application of the RBF network is also very extensive.

At present, deep learning algorithms are used in
models for furnace flame detection, the use of back

propagation (BP) neural network to achieve detection
has certain advantages, but due to the more or less al-
gorithm limitations of BP flame detection algorithm, for
example, the adjustment of weights adopts negative
gradient descent. This method of adjusting the weights
will reduce the operating efficiency of the algorithm,
that is, there are disadvantages such as slow conver-
gence speed, long training time, and ease to fall into
local minima[18] .

Therefore, combining the excellent approximation
performance of the RBF network in the feedforward
neural network, the ease of finding the global optimal
solution, and the fast learning speed of the network, it
can be used in industrial furnace flame detection,
which can improve the timeliness of the algorithm.

As shown in Fig. 1, the RBF network model de-
signed and used in this paper consists of three layers.
Only the input signal is propagated between the input
node and the hidden layer, and the basis function con-
tained in the hidden layer node is called the function
function of the network, also known as the action func-
tion; the signal of the input layer is approximated lo-
cally, and the basis function of the hidden layer will
generate a response locally in the function, which is
called the local adjustment response.

In Fig. 1, i represents the number of nodes in any
layer, xi is the node of the input layer, R i(x) repre-
sents the hidden layer node that selects the Gaussian
function as the basis function, and F i(x) is the output
layer parameter. Set the number of centers.

Fig. 1　 RBF network topology diagram

1. 2　 PSO improves RBF flame detection network
The proposal of PSO algorithm is obtained by ob-

serving the foraging behavior of birds. The proposal of
PSO algorithm can effectively solve the shortcomings of
the swarm intelligence optimization algorithm. For ex-
ample, most optimization algorithms have the defects of
high time complexity, high space complexity and low
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robustness[19] . Especially, in the optimization process
of the neural network algorithm, for example, for the
ant colony algorithm in the optimization process of the
RBF network, the convergence speed is too slow at the
beginning of the operation, which makes the time com-
plexity of the RBF network increase, which is not con-
ducive to the RBF network in the furnace flame detec-
tion. In addition, by comparing the performance of
other swarm optimization algorithms, PSO algorithm is
selected to optimize the flame detection model based on
RBF neural network. The optimization process is shown
in Fig. 2.

Fig. 2　 PSO optimization process diagram

This paper uses PSO algorithm to optimize the
structure of the RBF neural network. As shown in
Fig. 2, each particle in the PSO algorithm dynamically
updates its velocity v and position x with the individual
optimal value and the global optimal value. By adjus-
ting the position of each particle to obtain its own opti-
mal result and the optimal value of neighboring parti-
cles, the global optimal position x′ can be obtained.

In the n-dimensional space, the position vector
and velocity vector of the ith ( i = 1,2,…,n) particle
are expressed as xi = (xi1, xi2,…, xin) and vi = (vi1,
vi2,…, vin) . The expression process of the algorithm is
shown as

xin( t + 1) = xin( t) + vin( t + 1) (1)
vin( t + 1) = ωvin( t) + c1 r1( t)[pin( t) - xin( t)]

+ c2 r2( t)[pgn( t) - xin( t)] (2)
As shown in Eq. (2), vin( t + 1) represents the

velocity of the ith particle when the time is ( t + 1) in
the n-dimensional space, and the value range is [ - vmax,
vmax], pin( t) is the currently obtained individual opti-
mal position, pgn( t) is the currently obtained global
optimal position, ω is the inertia weight value that con-
trols the influence of the previous speed on the current
speed, c1 and c2 are the acceleration coefficient (adjust
the state and trajectory of particle movement in space
by adjusting the values of c1 and c2), r1( t) and r2( t)

are two independent random numbers uniformly distrib-
uted in the range of [0,1].

During the optimization process, the particles will
still change near the optimal solution, which will cause
deviations in the final optimization result. Therefore,
the inertia weight value is iteratively updated to make
the optimization result approach the optimal position.
The iterative algorithm is shown in Eq. (3).

ω = ωmax - [2·iter
itermax

- ( iter
itermax

) 2] × (ωmax - ωmin)

(3)
Same as in Eq. (1), ω is the inertia weight value

that controls the influence of the previous speed on the
current speed, iter represents the number of iterations
of the algorithm, and itermax represents the maximum
number of iterations.

1. 3　 Design of PSO-RBF flame detection model
In the design of the PSO-RBF flame detection net-

work, the improved particle swarm algorithm is used to
obtain important parameters such as the neuron center
cm in the hidden layer of the RBF flame detection net-
work, the width of the function δi, and the output con-
nection weight value. In this way, the training accura-
cy of the network is improved, so that the global opti-
mal solution can be found in a short number of itera-
tions of the particle swarm algorithm. When the algo-
rithm iterates, the parameters of the RBF flame detec-
tion neural network are used as the optimization varia-
bles of the particles. Moreover, the root mean square
error ( RMSE) function in the RBF flame detection
neural network is selected as the fitness function of the
particle swarm algorithm.

In the RBF flame detection neural network, the
parameter setting needs to be done in each layer of the
hidden layer and each stage of the output layer. The
RBF neural network parameter is used as the particle
space position, and the position parameter is shown as

ai(1,2,…,i) (4)
Each parameter of the hidden layer has a corre-

sponding output value, and m is used to represent the
output value of the mth neuron, as shown in Eq. (5).

φm(x) = e
‖x-cm‖

δ2m (5)
where δm is the width of the function, and cm is the cen-
ter value. Therefore, the output value of the output
layer of the network can be obtained as Eq. (6).

y = ∑
m

m = 1
ωmφm (6)

Among them, the final network output value is re-
presented by the summation value of the product of the
output value φm of the m neurons in the hidden layer
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and the inertia weight value ωm . In the process of train-
ing and adjusting parameters, it is necessary to adjust
and optimize the network structure and parameters at
the same time. The number of neurons in the hidden
layer m and the size of the parameters will directly af-
fect the performance of RBF neural network.

In addition, in order to better balance the training
accuracy and structural complexity of the RBF neural
network, the network has better generalization ability,
the particle fitness function is shown as Eq. (7).

f(ai( t)) = βDi + Eri( t) (7)
In Eq. (7), the β parameter represents the bal-

ance factor, and its value is always positive; and Di re-
presents the number of parameters of the ith particle,
which directly affects the time complexity of the flame
detection model and affects the efficiency of the flame
detection system. Its expression is shown in Eq. (8).

Di = Di - 1　 Di > Dmax

Di + 1　 Di ≤ Dmax
{ (8)

When the value of Di is greater than the maximum
parameter Dmax, its value will increase by 1 unit, other-
wise it will decrease by 1, where Dmax is also the pa-
rameter value of the optimal particle. Eri( t) represents
RMSE, and its expression is shown as Eq. (9).

Eri( t) = 1
T∑

T

t = 1
[y( t) - ye( t)] 2 (9)

where, T is the number of data samples, y( t) and
ye( t) represent the actual output and expected output
of the neural network, respectively. The particles in
the space are continuously optimized to realize the opti-
mization and parameter adjustment of the RBF flame
detection neural network. The optimization process of
the network is shown in Fig. 3.

Step 1 Select the initial particle at the center of
the radial basis function in the RBF neural network,
randomly generate the initial particle composed of the
RBF parameters τ and c, and then set the PSO parame-
ters, including the population size s, the maximum
number of iterations itermax, and the inertia weight ω,
learning factors c1, c2 .

Step 2 Calculate the fitness. Evaluate the fitness
value of each particle, i. e. , verify the average classi-
fication accuracy. The current particle is taken as its
individual optimal point, and the particle with the lar-
gest fitness value is taken as the global optimal point.

Step 3 Update the velocity and position of each
particle separately. Evaluate the current fitness of each
particle and compare the fitness value with the fitness
value of the individual optimal point and the global op-
timal point. If the current value is better, update the
current value to the particle’ s individual optimum or

global optimum.
Step 4 Check stop criteria. If the maximum

number of iterations is reached, the evolution process
will be stopped. Otherwise turn to step 3.

Step 5 Determine the parameters. When the
maximum number of iterations is reached and the stop-
ping criterion is satisfied, the optimal parameters τ and
c are finally obtained. Then, end the training and vali-
dation process and build the PSO-RBF model.

Fig. 3　 Flow chart of PSO-RBF flame detection algorithm

2　 Training and testing of PSO-RBF network

The flame detection algorithm design, training and
testing process based on RBF neural network and PSO-
RBF neural network are all carried out in Matlab R2022a,
and the network environment parameters are shown in
Table 1.

2. 1　 Processing of flame data samples
In this paper, continuous flame video data is used

as input data, but the video data needs to be dimen-
sionally reduced to convert the three-dimensional video
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Table 1　 Experimental environment and software version
Experiment hardware environment and

software version description
Operating system Windows 11

CPU Intel(R) Core(TM) i7-12700H CPU@
2. 3 GHz

RAM 16 GB
Matlab version R2022a

information into continuous images, and the flame im-
age acquisition frequency of 6 Hz is used. The flame
state information at time t - 1 and time t + 1 is com-
pared with the flame at time t, and the time interval is
1 / 6 s. Fig. 4 shows the flame image sample when the
sampling interval is 1 / 6 s.

Fig. 4　 The changing state of the flame image when
the sampling frequency is 6 Hz

Fig. 4(a) - (f) correspond to the 6 flame images
collected under the sampling time length of 1 s. It can
be seen that the flame in Fig. 4(a) is generated due to
the change of fuel in the furnace. In the case of flick-
ering, Fig. 4(b) clearly shows the normal combustion
state of the flame, that is, the flame is yellow.
Fig. 4(c), ( e) are still the flames in the flickering
state, but it can be clearly seen that the brightness of
the flame flicker is gradually decreasing, and the flame
is stabilizing. Combined with the change period of
Fig. 4(a) - (f), the image sampling frequency of 6 Hz
used in this experiment can capture exactly 3 flickering
change periods of the flame within 1 s, that is to say,
at 1 / 6 s the time interval is sampled, and the change

information of the flame can be recorded in each cap-
tured image and the image data of the adjacent time se-
ries.

For the preprocessing of the data set, sampling is
performed by means of video frame processing. This
paper uses a video of the flame state of the boiler fur-
nace, and according to the flame state, intercepts a
complete flame cycle as the original sample, including
large fire, small fire, normal flame combustion, and
the flame extinguishing stage. The video data is pro-
cessed frame by frame to obtain a set of continuous fur-
nace flame images. After grayscale processing and fea-
ture extraction, the flame area value of the sample data
is calculated, and the area value is generated into a
data matrix as the input of the network vector A. In the
same way, by calculating the area of smoke in the im-
age, taking the area of smoke in the image as input B,
and inputting both sets of inputs into the PSO-RBF net-
work for training, the size of the smoke generated by
combustion in the furnace is obtained.

The referenced training sample data are shown in
Table 2.

Table 2　 Number of training samples
Types of

flame samples
Training
samples

Test
samples Total

Large flame 180 20 200
Medium flame 180 20 200
Small flame 180 20 200
Flame off 180 20 200

It can be seen from the training set and test set
data in Table 2, the original number of samples of the
flame area of the furnace is 800 intercepted flame ima-
ges, including 200 samples for each of the four flame
types, and the flame area value in the grayscale image
is used as a sample to generate a four-dimensional ar-
ray M, whose size is 4 × 200, and the M arrays are
used as samples for training, 90% of which are used as
training data sets and the remaining 10% are used as
test data sets. The number of input samples for furnace
smoke is 180, which is only used as an auxiliary meas-
urement other than the detection of flame combustion
state. The sample data is also obtained by processing
the collected furnace smoke area. The experiments for
furnace smoke detection are hereby used as reference
comparison experiments.

2. 2　 Training and testing of the network
The parameters of the flame detection network are

an important factor affecting the training and test re-
sults, so the parameters of the algorithm need to be ini-
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tialized, the specific settings are shown in Table 3.
From Table 3, it can be seen that the specific pa-

rameters are set as follows, learning factor is c1 = c2 =
1. 49; initial inertia weight is ω = 0. 9, the inertia
weight of the network when it reaches the maximum

number of iterations is 0. 2, number of iterations (ep-
och) is 1000 times; population size is 10, width δ is
1. 2602, target error is 0. 001, and sample input di-
mension is 4.

Table 3　 PSO-RBF algorithm parameter settings

　 Learning
factor c

Initial inertia
weight

Number of
iterations(epoch)

Population
size Width δ Target

error
Sample input
dimension

PSO-RBF c1 = c2 = 1. 49 ω = 0. 9 1000 10 1. 2602 0. 001 4

　 　 The training and testing results of the RBF net-
work are shown in Fig. 5. The output value of the net-
work is normalized, and the output value range is [0,
1]. The four preset flame types are grouped, and the
specific classification threshold is set as: the parameter
range of the fire state is set to [0. 8,1], this is be-
cause when the characteristics of the flame are the lar-
gest, its pixel area occupies approximately the entire
80% - 100% of the image. Similarly, set the sample
parameter range of the normal combustion state of the
flame to 40% - 80% , and the range of the small fire
state in the furnace to be 20% - 40% . The judgment
of the flame extinguishing state is based on the small
fire state, that is, the area percentage is reduced to
less than 20% , and the flame state is set to flame ex-
tinguishing when the continuous data shows a decrea-
sing trend.

After completing the delineation of the training set
and the test set, 200 sets of flame sample data were
trained. After 1000 epoch iterations, the results shown
in Fig. 5 are obtained. In the images of the training
and test sets, the expected value of the flame sample is
represented by the open circle, and the actual output
value of the network is represented by the asterisk. It
can be seen from the training result graph that among
the flame training samples input to the network, the
training accuracy of the RBF flame detection network is
81. 0% , and 162 samples have realized the judgment
of the flame type, but there are only 8 groups in the
test samples. The sample achieved within-error classifi-
cation. Judging by experience, the number of hidden
nodes in the RBF network is modified under the condi-
tion that the network learning rate parameters and other
settings are constant, but the test still does not meet
the expected network accuracy requirements.

RBF network has the problem of insufficient accu-
racy in the process of training and testing. Therefore,
the RBF flame detection neural network is further opti-
mized by particle swarm algorithm.

Fig. 5　 RBF network flame detection training and testing results

Using a flame sample data matrix with a size of 4
× 200, the results shown in Fig. 6 are obtained after
training. It can be seen that in the training process of
the network, there are 19 groups of sample data expec-
ted values and actual output values. There is a certain
training deviation, the final accuracy on this dataset is
90. 5% . It can be seen from Fig. 6 that the data with
large deviation in the classification results are mainly

Fig. 6　 PSO-RBF network flame detection training
and testing results
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distributed in the two intervals [0. 3, 0. 5] and [0. 8,
1]. In the test phase of the network, 10% of the 200
sets of flame data were used as the test samples. After
the algorithm iteration, 20 sets of classification results
were obtained. Among them, the actual classification
results of 4 sets of samples were quite different from the
expected values. The distribution interval is also con-
centrated in the [0. 3, 0. 5 ], [0. 8, 1] interval.
Through the training and testing results of the network,
it can be seen that the PSO-RBF flame detection net-
work has obvious improvements in accuracy and fitting
ability compared with the RBF flame detection network.

3　 Experimental results and analysis

3. 1　 Performance comparison and analysis
In the problem of flame detection in the boiler fur-

nace, the final classification result is represented in the
form of a matrix. For example, for the combustion state
of the flame, the classification categories are the flame
bright state, the normal flame burning state, the small
fire state, and the flame extinguishing state categories,
corresponding to the matrix form as the output results,
namely [1,0,0,0], [0,1,0,0], [0,0,1,0],[0,0,
0,1], in which 1 in the definition array vector is the
corresponding state of the flame, and 0 is the category
with a smaller classification probability, this is because
the output of the RBF network is classified by probabil-
ity, for example, the probability that the flame state is
bright reaches 80% , at this time, the probability that
the flame state is judged to be bright is greater, and at
the same time, the greater the probability of approac-
hing the expected value is, the smaller the error value
of classification is.

As shown in Fig. 7, the curve represents the change
trend of RMSE in the unoptimized RBF network. The
convergence interval in the figure can be divided into

Fig. 7　 RBF flame detection network mean square error

three parts. The fast convergence interval is taken as
the first part, and the corresponding interval is [0,30]
in the figure. The approximate convergence interval
[30,229] is taken as the convergence change interval
in the second part of the curve, the curve convergence
speed of this part is lower than that of the fast conver-
gence interval, but after the 229th epoch, the conver-
gence of target error interval will become a stable con-
vergence interval, and the error interval will stabilize
between [0,0. 001], gradually approaching 0. 026 as
the number of training epochs increases.

The change curve of the root mean square error of
the PSO-RBF flame detection network is shown in
Fig. 8. It can be seen from the figure that the PSO-
RBF network converges rapidly in the first 10 itera-
tions, and converges to the 6th epoch. In the interval
[0. 0001, 0. 001], it converges to 0. 0001 after 15 ep-
och iterations, the convergence speed is faster, and it
is closer to the expected value.

Compared with the unimproved RBF network, the
PSO-RBF network can achieve stable convergence in
fewer training rounds, and the training error is smaller.
It can also be seen that in the same network structure,
PSO-RBF flame detection network has better conver-
gence speed than RBF network.

Fig. 8　 PSO-RBF flame detection network mean square error

In addition, the real-time performance and accu-
racy of the algorithm are also particularly important in
the flame detection system. The PSO-RBF network
proposed has obvious improvements in RMSE value,
convergence speed, and algorithm complexity of the al-
gorithm. The specific performance comparison parame-
ters are shown in Table 4.

It can be seen from Table 4 that when the number
of neurons in the hidden layer is set to 6, the RMSE of
the RBF flame detection network model optimized by
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the PSO algorithm is 0. 03, which is much smaller than
the error of the RBF network of 0. 092, and the run-
ning time of the algorithm is 15. 2 s, which is nearly
1. 7 s faster than the unoptimized RBF network; when
the number of neurons in the hidden layer is set to 10,
the RMSE of the PSO-RBF flame detection network is
0. 008, although slightly higher than that of 6 neurons,
but still far lower than the error of 0. 054 of the RBF
flame detection network. The algorithm running time at
this time is 20. 6 s, which is 8. 3 s higher than that of
the RBF network. For the small increase in the mean

square error, it is considered that the number of fur-
nace flame samples when the number of neurons in the
hidden layer is set to 15, the speed of using the PSO-
RBF network is 6. 6 s faster than the running time of
the RBF network, and the RMSE is 0. 013, which is
higher than the convergence range of the RBF network.
In summary, the flame detection model trained by the
PSO-RBF network has higher performance than the un-
optimized and improved RBF network, and the network
can converge in a shorter time, so the algorithm is
more efficient.

Table 4　 PSO-RBF flame detection algorithm performance comparison
RBF PSO-RBF

Number of
neurons

Target
error
RMSE

Algorithm
execution
time / s

Algorithm
execution
speed / fps

Number
of neurons

Target
error
RMSE

Algorithm
execution
time / s

Algorithm
execution
speed / fps

6 0. 092 16. 9 177 6 0. 03 15. 2 200
10 0. 054 28. 9 103 10 0. 008 20. 6 140
15 0. 042 33. 2 90 15 0. 013 26. 6 110

3. 2　 Application verification of the algorithm
In order to verify the generalization ability of the

PSO-RBF flame detection model in furnace flame de-
tection, and to ensure the real-time detection, the con-
tinuous video signal collected from the boiler is select-
ed as the input, the video reader function is used to
read the flame video image, and the video samples are
processed through frames images stored in time series.
Finally, 3000 images in the flame change stage are cut
out, and the sample array obtained after image
grayscale, feature extraction, area, and frequency cal-
culation is used as the input of the PSO-RBF network.
The final test results are as follows.

As shown in Fig. 9, by using the data samples of
3000 flame images as input, the performance of the
PSO - RBF network was tested for flame detection , and

Fig. 9　 Judgment result of boiler flame area

the results of the flame state change were obtained, as
shown in the curve in Fig. 9.

It can be seen from Fig. 9 that [0,1] is used as
the range of the flame area size, that is, the change
process of the flame from extinguished to bright state.
From the curve changes, it can be concluded that the
flame in the furnace is initially in the image in the [0,
600] frame interval, due to the ignition of the furnace,
the combustion supply changes during the process of
adding fuel, so the flame flicker occurs, and the duration
is about 10 s; when the flame is in the [600, 2400]
frame interval, the change is basically stable, the aver-
age area percentage fluctuation difference is 0. 18, and
the overall trend of the flame is in a ‘ bright’ state.
However, the change from ‘bright’ to ‘off’ state oc-
curred from 1500 to 1510 frames of images, this is be-
cause the flame is in the stable process, a change in
the difference interval in the range of [0, 0. 3] oc-
curs, and the flame area at this time is reduced to the
critical value of the ‘ off’ state of the PSO-RBF net-
work, so there is a misjudgment of about 1 s. On the
whole, the determination of the flame in the combus-
tion process is basically accurate. The flame image in
the [2400, 3000 ] frame number interval fluctuated
twice as a whole, this is because the flame ‘ extin-
guished’ caused by the large flame flickering interval
in the [2400, 2460] and [2750, 2800] frame num-
ber intervals judgment, subsequent adjustments can be
made by increasing the sampling interval and adjusting
the training weight parameters.

For the judgment of the flame smoke change in the
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furnace, the flame image of the same time series as the
flame state is used, and the smoke area parameter is
taken as the input. The processing method of the algo-
rithm is consistent, and the smoke change curve is ob-
tained through the judgment of the PSO-RBF network,
shown as Fig. 10. Since the inertia weight parameter in
the initial training stage is set to 0. 9, the detection ac-
curacy of the flame state change is high, but the detec-
tion accuracy of smoke in the furnace is low. The
smoke detection results in Fig. 10 are distributed in the
range of [0. 7, 1], and the reason for the high smoke
value mainly includes the interference factors of the re-
flection spectrum of the inner wall of the furnace in the
flame sample. Therefore, the smoke detection adopts a
high probability judgment method, that is, when the
change value of the smoke area exceeds 0. 75, the state
in the furnace will be judged as ‘ smoke exists’, and
when the change range of the smoke area value is 0 to
0. 75, it will be judged as ‘no smoke’ state.

Fig. 10　 Judgment result of boiler furnace smoke

The normalized interval [0,1] corresponds to the
state of smoke in the furnace from ‘ no smoke’ to
‘smoke present’ . It can be seen from Fig. 10 that the
change interval of the smoke area is [0. 65, 1]. In the
flame images from 0 to 300 frames, the flame is in the
initial state of changing from ‘ off’ and flickering to
‘on’, corresponding to the smoke detection judgment
interval [0. 7, 0. 75], and the smoke variation range
is very small. At this time, according to the PSO-RBF
network judgment, the output result is ‘ no smoke’
state, that is, the furnace is in ‘flame bright’ and ‘no
smoke’ state; it can be seen from the frame number
interval of [700, 1390] that the range of the smoke ar-
ea change area is [0. 7,1], this part of the image cor-
responds to the ‘bright’ state of the flame in the stable
stage in the flame detection experiment. At this time,
when the flame is in the bright state, there is a certain
amount of smoke in the furnace. According to the
probability interval, it is judged that it is in the state of

‘smoke exists’ .

4　 Conclusion

This paper takes the design of the RBF network as
the basis. First, the initialization particle of the radial
basis function center in the RBF neural network is se-
lected, and the PSO algorithm is used to optimize the
network and set the network parameters. Second,
through the iterative update of the network, after obtai-
ning the global optimal solution, the construction of the
network model is realized. Last, the flame sample data
obtained after feature extraction, area calculation, and
frequency extraction of the original flame image through
image processing algorithms are used as samples for
training and testing of the PSO-RBF neural network.
The experimental results show that the PSO-RBF flame
detection network has a judgment accuracy of 90. 5%
in the case of fewer neurons, and has strong generaliza-
tion ability, accuracy and fast convergence speed.
Through the PSO-RBF network, the detection results of
the flame state and the furnace smoke state in the fur-
nace are used as a reference. On the whole, the per-
formance of the flame detection algorithm described in
this paper can basically meet the requirment of furnace
flame detection of industrial boilers.
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