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Abstract
Aiming at the problem that ensemble empirical mode decomposition(EEMD) method can not

completely neutralize the added noise in the decomposition process, which leads to poor reconstruc-
tion of decomposition results and low accuracy of traffic flow prediction, a traffic flow prediction
model based on modified ensemble empirical mode decomposition (MEEMD), double-layer bidirec-
tional long-short term memory (DBiLSTM) and attention mechanism is proposed. Firstly, the intrin-
sic mode functions(IMFs) and residual components(Res) are obtained by using MEEMD algorithm
to decompose the original traffic data and separate the noise in the data. Secondly, the IMFs and
Res are put into the DBiLSTM network for training. Finally, the attention mechanism is used to en-
hance the extraction of data features, then the obtained results are reconstructed and added. The ex-
perimental results show that in different scenarios, the MEEMD-DBiLSTM-attention (MEEMD-DBA)
model can reduce the data reconstruction error effectively and improve the accuracy of the short-term
traffic flow prediction.

Key words: modified ensemble empirical mode decomposition (MEEMD), double bidirection-
al-directional gated recurrent unit (DBiGRU), attention mechanism, traffic flow prediction

0　 Introduction

Short-term traffic flow prediction technology is an
important part of intelligent transportation system[1-2] .
Accurate traffic flow prediction results can not only
help traffic management departments to guide traffic
better, but also help citizens to choose appropriate
travel routes, and finally alleviate traffic pressure and
facilitate citizens’ travel[3-4] .

Traffic data is affected by external factors, which
will cause data loss and contain a lot of noise. In order
to get a better traffic flow prediction result, a lot of re-
searches about traffic data preprocessing technology
have been done by researchers.

Ref. [5] used ensemble empirical mode decompo-
sition (EEMD) to decompose the original sequence,
then used long short-term memory (LSTM) to train the
model. Ref. [6] used EEMD to decompose the original
velocity sequence, and combined the bidirectional-
LSTM(BiLSTM) and the attention mechanism to train
the model.

In order to extract the spatio-temporal features of
traffic data more fully, more and more researches have

introduced machine learning and deep learning frame-
works into prediction[7-9] . Ref. [10] established a
model based on spatio-temporal graph convolutional
network to predict traffic flow, which can better ex-
press the spatio-temporal correlation of traffic flow. In
Ref. [11], an adaptive graph spatio-temporal graph
neural network was proposed to capture the spatiotem-
poral correlations of traffic flow. Ref. [12] proposed a
new data-driven method for traffic prediction. The
model was based on geometric deep learning tech-
niques, which can make full use of the topology infor-
mation of the road network during the learning process.
Ref. [13] proposed a parallel computing learning method
to predict traffic flow, which improved the performance
of the model.

EEMD used in Refs[5,6] can suppress the prob-
lem of mode mixing, but it can not completely neutral-
ize the added white noise, and this algorithm requires a
large amount of calculation. If the parameter selection
is unreasonable, there will be more redundant compo-
nents. The modified ensemble empirical mode decom-
position (MEEMD) algorithm is used to decompose the
data. In order to consider the influence of the data in-
formation before and after on traffic flow at the current
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time, and extract the time features more fully, the
double-layer BiLSTM (DBiLSTM) and attention mech-
anism are used to train the model.

The main innovations of this paper are as follows.
(1) The MEEMD algorithm is used for traffic flow

data preprocessing, which reduces the error of data re-
construction and improves the data quality by elimina-
ting data noise through noise energy analysis.

(2) DBiLSTM structure and attention mechanism
are proposed to enhance the feature extraction of time
series and improve the prediction accuracy of the model.

(3) The prediction results of the model during
weekdays, weekends and multi-step prediction are ana-
lyzed to verify the robustness of the model, and the ef-
fectiveness of the model is verified by ablation experi-
ments.

1　 MEEMD

In MEEMD method, which is based on permuta-
tion entropy, complementary ensemble empirical mode
decomposition ( CEEMD) is used to decompose the
time series containing noise, calculate the permutation
entropy value of each component, determine the abnor-
mal data according to the permutation entropy value,
and eliminate them. Then, the empirical mode decom-
position (EMD) method is used to decompose the re-
maining data[14] . For the time series T( t) contains
noise, the decomposition steps are as follows[15] .

Step 1 Add positive and negative white Gaussian
noise with the same amplitude to the original time series
T(t) in pairs to get two signals T +

i ( t) and T -
i ( t) .

Step 2 Use EMD algorithm to decompose T +
i ( t)

and T -
i ( t), and get the first intrinsic mode function

( IMF) component sequence { I +i1( t)} and { I -i1( t)} .

Then use the ensemble average method to deal with the
two-component sequence to get the first IMF component
I1( t) of the sequence T( t) .

I1( t) = 1
2L∑

Ne

i = 1
[ I +i1( t) + I -i1( t)] (1)

where, L represents the length of the time series T( t),
and Ne is the logarithm of the added white noise.

Step 3 Calculate the permutation entropy of I1(t),
Hp, and judge whether this component is an abnormal
component. If the entropy of I1( t) is greater than the
threshold θ0 , the component is an abnormal compo-
nent.

Step 4 If I1(t) is an abnormal component, return
to Step 1 until the entropy value Hp of the qth IMF com-
ponent Iq( t) is less than θ0 , and then perform Step 5.

Step 5 Remove the decomposed former q - 1
components from the original time series to obtain the
time series N( t) without noise.

N( t) = T( t) - ∑
q-1

j = 1
I j( t) (2)

Step 6 Use EMD method to decompose N( t) to
get the IMF component, MEEMD decomposition is
completed.

2　 Standard BiLSTM structure

BiLSTM is composed of a forward LSTM and a
backward LSTM which are connected to the output lay-
er. The data of the former moment and the next mo-
ment is simultaneously transmitted to the output layer,
which can extract time series features more fully. The
time features of the experimental data in this paper are
extracted by BiLSTM, which is shown in Fig. 1.

Fig. 1　 BiGRU network structure

　 　 The calculation process of the BiLSTM network is
described as follows.

P < F >
( t) = LSTM < F > (xt -w, …, xt, xt +1) (3)

P < B >
( t) = LSTM < B > (xt +1, xt, …, xt -w) (4)

Qt = W1 × [P < F >
( t) , P < B >

( t) ] + b1 (5)
where, LSTM < F > represents the forward LSTM net-
work; x is the input data; w is the size of the time slid-
ing window, assuming there are m pieces of training
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data, then 1 < w < m; P < F >
( t) is the output result of the

forward LSTM network. Similarly, LSTM < B > represents
the reverse LSTM network, and P < B >

( t) is the output re-
sult of the reverse LSTM; after matrix splicing P < F >

( t)

and P < B >
( t) , it is multiplied by the weight matrix W1,

and added to the bias term b1 to obtain the first BiLSTM
network output Qt at time t.

3　 Combination model

3. 1　 Model structure
The pseudocode of the model is illustrated in Al-

gorithm 1.

Algorithm 1 MEEMD-DBA prediction algorithm
Input: input the data set X
Output: output the prediction result R
1: use MEEMD algorithm to decompose the data set X to get

IMFs and residual components (Res).
2: calculate the energy values of IMFs and eliminate the

noise of the IMFs.
3: merge the remaining IMFs and Res into data set A.
4: divide the data set A into train set S and test set T.
5: for t = 0 to epoch do:
6:　 put S into the DBiLSTM and attention.

7:　 use the Eq. (14) to calculate the loss values, and use the
Adam optimizer to update the parameters of the network.

8: end for
9: fine-tuning the whole network and the training initialization

parameters.
10: input test set T in MEEMD-DBA to generate the predic-

ted value R.
11: return R

The prediction structure of the model at time t is
shown in Fig. 2.

The detailed description of the model is as fol-
lows.

(1) Input the original time series T[ t] .
(2) Use MEEMD algorithm to decompose T[ t]

into N IMF sequences Im[ t](m = 1,2,…,N) and a
residual sequence R[ t] .

(3) Input the noise-removed IMFs and Res into
DBiLSTM network for training, set the number of neu-
rons in the hidden layer of DBiLSTM network as H,
and at time t, the output of the mth IMF is

h(m, t) = [h1,h2,…,hH] (6)
(4) The output of DBiLSTM network is used as

input of the attention layer. In the layer, the gated re-
current unit (GRU) is used as the encoder, then at
the time t, the weight coefficient β(m,t) and output
O(m,t) of the mth IMF are as follows.

Qm( t) = [h(m,T)·h(m′,t)] (7)
ε(m,t) = softmax[Qm( t)] (8)
β(m,t) = [h(m,t)·ε(m,t)] (9)
P(m,t) = [h(m,T), β(m,t)] (10)
O(m,t) = tanh[WtP(m,t) + bt] (11)

where, h(m,T) represents the result of the last time
step of the mth IMF sequence after passing through
DBiLSTM network; h(m′, t) represents the result of
the hidden layer generated by h(m,t) after passing
through the attention encoder; Qm( t) represents the
dot result of h(m,T) and h(m′, t); ε(m,t) is the
probability distribution value of attention, β(m,t) is
the weight coefficient matrix, P(m,t) is the concatena-
tion of h(m,T) and the weight coefficient matrix of the
attention layer. O(m,t) is the final output of attention
layer, Wt is the weight matrix, bt is the bias.

(5 ) The output of attention layer is predicted
through the dense layer, then the output result of the
mth IMF component at time t is

y(m,t) = sigmoid[WmO(m, t) + bm] (12)
where, Wm is the weight matrix, and bm is the bias.

(6) Output the prediction result R( t) at time t:

R( t) = ∑
N

m = 1
y(m, t) (13)

Fig. 2　 Model structure
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3. 2　 Loss function
The model selects Huber loss function as the opti-

mization objective. The function expression is

Lδ(y, ŷ) =
1
2 (y - ŷ)2　 　 　 | y - ŷ | ≤ δ

δ | y - ŷ | - 1
2 δ2 　 otherwise

ì

î

í

ïï

ïï

(14)
where, y is the actual value, ŷ is the predicted value,
and δ is an adjustable hyperparameter. When δ is taken
as 0, the loss function tends to mean absolute error
(MAE), and when δ is taken as infinity, the loss func-
tion tends to in mean squared error (MSE).

3. 3　 Model evaluation indicators
In the experiment, goodness of fit R2, root mean

square error (RMSE), and MAE are selected as eval-
uation indicators. The closer the value of R2 is to 1, the
better the fitting degree of the model, and the smaller
the values of RMSE and MAE, the better performance
of the model. The objective functions of R2, RMSE and
MAE are as

R2 = 1 -
∑

n

i = 1
(ki - k̂i) 2

∑
n

i = 1
(ki - k

-
) 2

(15)

RMSE = 1
n∑

n

i = 1
( k̂i - ki) 2 (16)

MAE = 1
n∑

n

i = 1
| k̂i - ki | (17)

where, k̂i represents the predicted value, ki represents

the actual value, k
-
is the average value of the actual

value, and n is the number of samples.

4　 Experimental analysis

4. 1　 The experimental data
The experimental data adopts three urban road

traffic datasets in Minnesota. The dataset contains traf-
fic volume (vol) data and lane occupancy (occ) data
from January 12, 2018 to January 12, 2019. In this
experiment, the traffic flow data in December 2018 was
selected for the experiment, the sampling interval is
5 min, and 8928 continuous data samples are obtained.
The training set and test set are divided in a ratio of
8 ∶ 2.

4. 2　 Model building
The experiment is based on the Keras neural net-

work, and the network is built and trained in Python 3. 6.

The parameter settings[16] of the combined model are
shown in Table 1. Among them, Epoch is the number
of times of training, and one training represents a for-
ward propagation and back propagation calculation
process completed by all training samples; batch size
represents the number of samples selected for each
training, and the size of this value will affect the pre-
diction accuracy of the model and convergence speed;
G Hidden Layer represents the number of hidden lay-
er neurons of DBiLSTM; A G Hidden Layer repre-
sents the number of hidden layer neurons of the atten-
tion layer encoder GRU.

Table 1　 Model parameter setting
Parameter name Parameter value

Epoch 100
batch size 64

G Hidden Layer 100
A G Hidden Layer 100

4. 3　 MEEMD decomposition results
MEEMD is used to decompose the data, and the

parameters in Table 2 should be set. Among them,
Nstd is the amplitude of adding white noise. If the val-
ue is set too large, the noise signal will mask the infor-
mation of the original data. If the value is set too
small, the distribution of the maximum and minimum
values of the original data can not be changed, resul-
ting in the algorithm unable to effectively solve the
mode mixing problem; Ne is the logarithm of the added
white noise; α represents the permutation entropy em-
bedding dimension; θ0 is the permutation entropy
threshold. According to Ref. [14], the parameter set-
tings of MEEMD are shown in Table 2.

Table 2　 MEEMD parameter settings
Parameter name Parameter value

Nstd 0. 6
Ne 25
α 6
θ0 0. 6

(1) Orthogonality analysis of IMF components
Ref. [17] points out that through modal decompo-

sition of the original data, the components should be
locally orthogonal to each other, and the orthogonality
index IO is defined as

IO = ∑
T

t = 0
[∑

n+1

i = 1
∑
n+1

j = 1
C i( t)C j( t) / X2( t)]( i ≠ j)

(18)
where, T is the length of the sequence, C( t) is the
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IMF component obtained by decomposition, and X( t)
is the original sequence. Eq. (18) is the overall or-
thogonality index. The closer the IO value is to 0, the
stronger the orthogonality of the components is.
Ref. [18] gives the following conclusions: if there is
no mode mixing phenomenon in IMF components after
decomposition, the components are orthogonal; other-
wise, they are not orthogonal.

According to this conclusion, this paper calculates
the IO values of the components obtained after EMD,
EEMD and MEEMD decomposition according to Eq. (18),
which are shown in Fig. 3.

Fig. 3　 Model structure

After EMD algorithm, the IO value is 0. 112 86,
and the mode mixing phenomenon occurs; after EEMD
decomposition, the IO value is reduced to 0. 099 77;
after MEEMD decomposition algorithm, the IO value is
0. 056 65, and the mode mixing problem is solved.
From Fig. 3 and the IO values obtained by decomposing
data by each mode decomposition algorithm, it can be
seen that MEEMD algorithm has the best effect of sup-
pressing mode mixing.

(2) Mode decomposition completeness analysis
The completeness of the mode decomposition, that

is, the reconstruction error of the data, is the sum of
the IMFs and Res obtained by the mode decomposition
algorithm and compared with the original data. EEMD
decomposition and reconstruction error and MEEMD
decomposition and reconstruction error are shown in
Fig. 4.

MEEMD algorithm calculates the permutation en-
tropy of the obtained components after each round of
decomposition, if the conditions are met, it stops
adding white noise to the original sequence. At this
time, the impact of white noise on the data will be off-
set by multiple sets of averages. The reconstruction er-
ror is small, between - 0. 0075 and 0. 0125, which is
closer to the original traffic flow data; EEMD algorithm

needs to set the amplitude, logarithm of the white noise
and the ensemble number. If the ensemble number is
set improperly, then it can not solve the problem of
mode mixing problem, and may generate redundant
components which causes the poor reconstruction. Af-
ter experiments, the reconstruction error of EEMD al-
gorithm is between - 20 and 20.

(a)MEEMD reconstruction error

(b)EEMD reconstruction error
Fig. 4　 Reconstruction error comparison

Based on the above analysis and experimental re-
sults, EEMD is difficult to determine the hyper-param-
eters, and the reconstruction performance and the IMFs
orthogonality of MEEMD are better than EEMD, so
MEEMD is selected to preprocess the data.

4. 4　 Result analysis
(1) Determination of hyperparameters of Huber

loss function
When the hyper-parameters in Huber loss function

take different values, the experimental results are also
different. As shown in Table 3, different values are
chosen for comparison, the experimental model is
MEEMD-BiLSTM-attention, and the model parameter
settings are the same as those in Table 1.

The best result can be obtained when δ is taken as
0. 5, as shown in Table 3.
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Table 3　 The effect of different δ on the model accuracy

δ values
Evaluation indicators

RMSE MAE R2

0. 1 6. 58 4. 97 0. 984 60
0. 5 6. 55 5. 05 0. 984 76
1. 0 6. 58 5. 08 0. 984 60
1. 5 6. 85 5. 28 0. 983 33

(2) Comparison of results of different loss func-
tions

In the experiment, MSE, MAE and Huber loss
functions are chosen for comparison. The experimental
results are shown in Table 4.

Table 4　 Comparison of loss functions

Loss functions
MEEMD-BiLSTM-attention

evaluation indicators
RMSE MAE R2

Huber 6. 55 5. 05 0. 984 76
MSE 6. 64 5. 17 0. 984 31
MAE 6. 81 4. 78 0. 983 48

The prediction results obtained by selecting Huber
as the loss function are better, which is shown in the
experimental results.

MSE loss function is more sensitive to the abnor-
mal data because the error is squared, but the function
can converge well when the error is small; as for MAE
loss function, according to its function expression, it
can be seen that the function is a sectional function,
and the function is discontinuous, so there will be
problems when back-propagation derivation is per-
formed, and the update gradient of the loss function
will not change, no matter the error is large or small, it
is always updated with the same gradient; Huber loss
function is combined with the advantages of MAE and
MSE loss functions, suitable functions can be selected
to optimize the weights for different situations.

(3) Multi-layer BiLSTM experimental results
In order to strengthen the model’ s extraction of

temporal features of traffic flow data, a multi-layer BiL-
STM network is set up in the model. The comparative
experiments which is to determine the appropriate num-
ber of BiLSTM network layers can be found in Table 5.

Table 5　 Multi-layer BiLSTM experimental results

Different Layers
Evaluation indicators

RMSE MAE R2

1 layer 6. 55 5. 05 0. 984 76
2 layers 6. 29 4. 83 0. 985 95
3 layers 6. 30 4. 97 0. 985 89

　 　 When it is set to 2 layers, the model has strong
temporal feature extraction ability, as shown in Table 5.
This is because with the layer of BiLSTM increasing,
the feature extraction ability of the model is gradually
strengthened, but when the number of layers increases
to a certain level, the stability of the model decreases,
the ability to extract temporal features gradually weak-
ens, and the training time will also be affected when
the number of network layers is deepened and length-
ened, so this paper sets BiLSTM layers to be 2.

(4) Comparison of prediction results of different
models

The comparison models selected in the experiment
are shown in the following table. The parameter set-
tings of all combined models are the same as those in
Table 1, and the parameter settings of MEEMD algo-
rithm are shown in Table 2. EEMD algorithm adds
white noise amplitude and adds the same logarithm as
MEEMD. Table 6 shows the prediction accuracy of dif-
ferent models obtained from the experiment.

MEEMD-DBA has a higher accuracy when com-
pared with the other models, as shown in Table 6.

Table 6　 Model comparison

Model
Evaluation indicators

RMSE MAE R2

EMD + BiLSTM 7. 16 5. 55 0. 981 78
EMD + BiGRU 7. 38 5. 89 0. 980 65

EEMD + BiLSTM 7. 23 5. 75 0. 984 05
EEMD + BiGRU 7. 48 5. 96 0. 981 02

MEEMD + BiLSTM 6. 80 5. 29 0. 983 57
MEEMD + BiGRU 7. 01 5. 35 0. 982 52
MEEMD-DBA 6. 29 4. 83 0. 985 95

In EMD algorithm, due to the mode mixing prob-
lem, the high and low frequency components can not
be accurately separated, which leads to the problem of
low prediction accuracy; EEMD algorithm needs to add
white noise with the same amplitude and opposite posi-
tive and negative values to make the extreme values of
the data approximately evenly distributed. Thereby,
the problem of mode mixing problem is solved, but be-
cause the algorithm can not neutralize all the added
white noise, the error is large when calculating the pre-
diction accuracy compared with the original data. Since
the traffic flow has time correlation, so the influence of
the before and after traffic flow on the current traffic
flow needs to be considered at the same time, and the
unidirectional network structure can not make an accu-
rate prediction of the traffic flow. In this paper, the
temporal features are extracted by using DBiLSTM and
attention mechanism.
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Fig. 5 shows the optimal ratio of the prediction per-
formance, which is MEEMD-DBA compared with the
other comparative models. The calculation formula is

P = R̂ - R
R̂

× 100% (19)

where, P is the optimization ratio. If P is a positive
value, it indicates that MEEMD-DBA is improved com-
pared with the comparison model’s predictive perform-
ance. If P is negative, it indicates that the model’s
prediction performance in this article is poor. R is the
performance evaluation index of MEEMD-DBA, and R̂
is the performance evaluation index of the comparison
model.

Fig. 5　 Comparison of optimization results

In Fig. 5, the abscissas 1 to 6 correspond to the
comparison models in Table 6. The p value indicates
that MEEMD-DBA model has a better predict perform-
ance.

(5) Noise energy analysis
Through the mode decomposition algorithm, noise

and high, medium and low frequencies are separated.
If the noise component is removed during model train-
ing, the performance of the model will be improved.
The experiment is based on the minimum energy crite-
rion[19] . When the signal contains noise, its frequency
band is higher. When a usable signal appears, the law
of decreasing energy of IMF component will be broken,
and a local energy pole will be generated. After the
minimum point, the useful signal will dominate the en-
ergy of each IMF component instead of noise. The en-
ergy E of IMF component is

Em = ∑
P

i = 1
[ Im( i)] 2 (20)

where, Em represents the energy value of the mth IMF
component, and Im( i) represents the ith data in the
mth IMF component.

According to Eq. (20), the square root energy

value of each IMF is obtained as shown in Fig. 6.

Fig. 6　 IMF energy diagram

The energy values from IMF1 to IMF2 are decrea-
sing, and after IMF2, the energy value begins to in-
crease. Therefore, the components before IMF3 are
considered to be noise components and are not consid-
ered during model training. In this paper, the follow-
ing comparative experiments are carried out, as shown
in Table 7.

Table 7　 Remove different IMFs

Model
Evaluation indicators

RMSE MAE R2

MEEMD-DBA 6. 29 4. 83 0. 985 95
MEEMD-DBA
(remove IMF1) 2. 54 1. 82 0. 997 70

MEEMD-DBA
(remove IMF1, IMF2) 1. 21 0. 84 0. 999 48

As shown in Table 7, after removing IMF1 and
IMF2, the prediction results are reconstructed, and the
prediction accuracy reaches the best. Compared with
the reconstruction of all the results, RMSE is optimized
by 80. 76% .

(6) Multi-step prediction results
The following experiments are done to verify the

accuracy of the model’ s long-term prediction. Using
the data sets 1 h to predict the 15 min, 30 min, 45 min
and 1 h data, the results are shown in Table 8.

Table 8　 Comparison of multi-step forecast results

Step
MEEMD-DBA evaluation indicators

RMSE MAE R2

15 min 3. 82 2. 95 0. 994 81
30 min 5. 29 3. 75 0. 990 08
45 min 8. 16 5. 47 0. 976 52
1 h 13. 65 10. 76 0. 934 44
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As shown in Table 8, with the prediction step in-
creasing, the performence of the model gradually de-
creases. Since the training set data is divided by the
sliding window strategy, when the step size is small,
the distance from the historical data is closer, more in-
formation can be used, and the prediction accuracy is
also higher; when the step size is increased, the infor-
mation which can be used is reduced, so the prediction
accuracy is lower.

(7) Prediction results by time period
The characteristics of traffic flow data are quite

different between weekdays and weekends. This paper
separates weekday data from weekend data in the data
used in the experiment. There are 6048 pieces of pro-
cessed data on weekdays and 2880 pieces of data on
weekends. The same number of weekdays and week-
ends are selected to show the difference between them
more directly, as shown in Fig. 7.

Fig. 7　 Weekday and weekend data

　 　 The following experiments are done to verify the
effectiveness of the model proposed in this paper.

MEEMD decomposition algorithm is used to de-
compose the data, and the parameter settings of the al-
gorithm are the same as those in Table 2. After the de-
composition is completed, the energy value of each
IMF component is calculated according to Eq. (20).
After calculation, IMF1 and IMF2 are noises in the da-
ta. After removing the noise, the model is trained. The
experimental results are shown in Table 9.

MEEMD-DBA model has the best prediction effect
on weekdays and weekends as shown in Table 9. Due
to the lack of data in the weekend period, the single-
layer BiLSTM network can not sufficiently extract tem-
poral features. The multi-layer BiLSTM network pro-
posed in this paper can fully extract temporal features
when the amount of data is small. Combined with the
attention mechanism, the features that have an impact
on the prediction results are given greater weights, so
the prediction accuracy is significantly improved.

During weekdays, traffic participants increase sig-
nificantly, and there will be double peaks in a specific
time period, that is, morning peak and evening peak.
Therefore, within the same time period, the peak value
of traffic flow on weekdays is greater. Because the traf-
fic flow data on weekdays is more, the model training
is more sufficient, so the accuracy of traffic flow pre-
diction on weekdays is better.

Table 9　 Experimental results

Model
RMSE

Weekday Weekend
MAE

Weekday Weekend
R2

Weekday Weekend
MEEMD-DBA 1. 24 1. 78 1. 00 1. 45 0. 999 53 0. 998 87

EEMD + BiLSTM + attention 6. 20 6. 77 4. 92 5. 41 0. 988 18 0. 983 69
EMD + BiLSTM + attention 1. 91 2. 62 1. 63 2. 25 0. 998 87 0. 997 57

MEEMD + BiLSTM + attention 1. 51 2. 21 1. 26 1. 80 0. 999 30 0. 998 27

　 　 (8) Ablation experiment
The ablation experiment for analyzing the influ-

ence of MEEMD, the attention mechanism and DBiL-
STM on the prediction effect of the combined model is
done to verify the effectiveness of the model proposed
in this paper, as shown in Table 10.

The MEEMD-DBA combined model proposed in
this paper has the best effect, as shown in Table 10,
indicating that each algorithm has a greater impact on
the prediction effect of the combined model. MEEMD al-
gorithm can effectively remove the noise existing in the

Table 10　 Ablation experiment

Model
Evaluation indicators

RMSE MAE R2

MEEMD-DBA 1. 21 0. 84 0. 999 48
BiLSTM + attention 12. 13 8. 99 0. 947 65
MEEMD + BiLSTM 2. 97 2. 94 0. 996 85
MEEMD + attention 4. 42 3. 46 0. 993 06

traffic flow data, separate the data with different trends,
and eliminate the influence of the non-stationary se-
quence on the model stability. Therefore, the predic-
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tion effect of MEEMD-DBA is better than BiLSTM + at-
tention, and its RMSE is optimized by 75. 51% . The
attention mechanism can adaptively strengthen the at-
tention to the traffic flow sequence, assign a larger
weight to the sequence that affects the prediction result
of the model, and strengthen its training. Therefore,
MEEMD-DBA has better prediction effect than MEEMD
+ BiLSTM, and its RMSE is optimized by 59. 25% ;
BiLSTM model can combine the traffic flow data before
and after at the same time to extract temporal features,
so MEEMD-DBA has better prediction effect than MEEMD
+attention, and its RMSE is optimized by 72. 62% .

Based on the above experiments, the MEEMD-
DBA combination model proposed in this paper achieves
good results in short-term traffic flow prediction by
combining MEEMD, DBiLSTM and attention mecha-
nism.

5　 Conclusion

A combined MEEMD-DBA model is proposed to
predict short-term traffic flow. MEEMD algorithm ef-
fectively separates the noise in the data, and solves the
problem of poor reconstruction of EEMD. DBiLSTM
network strengthens the model’ s extraction of time se-
ries features, especially when the amount of data is
small. The attention mechanism finds out the factors
that have a greater impact on the prediction results
through calculation and assigns greater weights to
them. The experimental results show that MEEMD-
DBA model has higher accuracy compared with other
models under the same dataset, and can well predict
weekdays and weekends. In the future, the influence
of various factors on traffic flow forecast will be further
explored.
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