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Abstract

The reconfigurable chip, which integrates the advantages of high performance, high flexibility,
high parallelism, low power consumption, and low cost, has achieved rapid development and wide
application. Generally, the control part and the computing part of algorithm is accelerated based on
different reconfigurable architectures, but it is difficult to obtain overall performance improvement.
For improving efficiency of reconfigurable structure both for the control part and the computing part,
a hybrid of instruction-driven and data-driven self-reconfigurable cell array is proposed. On instruc-
tion-driven mode, processing element (PE) works like a reduced instruction set computer ( RSIC)
machine, which is mainly for the control part of algorithm. On data-driven mode, data is calculated
by flowing between the preconfigured PEs, which is mainly for the computing of algorithm. For verif-
ying the efficiency of architecture, some high-efficiency video coding (HEVC) video compression
algorithms are implemented on the proposed architecture. The proposed architecture has been imple-
mented on Xilinx FPGA Virtex UliraScale VU440 develop board. The same circuitry is able to run at
75 MHz. Compared with the architecture that only supports instruction-driven, the proposed archi-

tecture has better calculation efficiency.
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0 Introduction

At present, with the rise of big data applications
such as machine learning, voice and video recognition,
and artificial intelligence, the demand for real-time
and intelligent user experience continues to increase,
leading to a surge in computing and a sharp increase in
bandwidth demand''’. At the same time, the diversity
and variability of application computing forces the
hardware architecture must be flexible and customiz-
able. Therefore, the reconfigurable computing struc-
ture has become an inevitable choice'”’. The reconfig-
urable chip, which integrates the advantages of high
performance, high flexibility, high parallelism, low
power consumption, and low cost, has achieved rapid
development and wide application'*’.

Various reconfigurable structures have been stud-
ied. Ref. [4] proposed an X-CGRA structure PE in X-
CGRA has the ability to switch between precise OMs
and different approximations. Ref. [5] proposed a 4D-
CGRA structure that supports mutually exclusive data

flows to be mapped to the same set of resources, allo-
wing appropriate data flows to be executed at runtime
Ref. [6] proposed a

reconfigurable and low-complexity accelerator on appli-

based on branching results.

cation specific integrated circuit ( ASIC) for both conv-
olutional neural network (CNN) and generative adver-
sarial networks (GAN) and described the methodology
to determine the parameters of design and optimize the
dataflow to obtain maximum performance. These recon-
figurable structures are suit able for dataflow applica-
tions. Reconfigurable PE array is mainly used to real-
ize the computation. Data is transferred between PEs
through multiple interconnection methods. Data injec-
tion and recovery is usually completed by a dedicated
controller. This type of structure is not very friendly to
control intensive applications. Ref. [7] proposed three
novel design methods to enable reconfigurable architec-
ture to efficiently execute the control kernel. Ref. [8]
proposed TLIA structure, which combined TIA tech-
nology with parallel conditions to effectively deal with
control intensive kernels. Ref. [9] proposed a Blocks
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structure, which completed data communication be-
tween functional units through two separate circuit
switched networks in the array structure. One network
is used to configure control information, and the other
network is used to build data path. These reconfigu-
rable structures are friendly to control intensive ker-
nels. The PE array is not only used for computing, but
also for taking charge of managing data. Most of PEs
adopt a RISC-like architecture. However, this kind of
architecture has lower computational efficiency for dat-
aflow applications.

For improving efficiency of reconfigurable architec-
ture both for the control part and the computing part. A
hybrid of instruction-driven and data-driven self-recon-
figurable cell array is proposed. On instruction-driven
mode, PE works like a RSIC machine, which is mainly
for the control part of application. On data-driven
mode, data is calculated by flowing between PEs, which
is preconfigured. Meanwhile, in order to achieve zero
delay in data transmission between adjacent PEs and
improve data transmission efficiency, a double-buffered
data-driven interface is used, which works on data-
driven mode using {valid, ready} handshake mecha-
nism. Only when the data arrives, the operation is
fired and results are sent to neighboring PEs, at the
same time ready signals are sent to upper PE.

This paper is organized as follows. Section 1 briefly
states related work and motivation. The architecture of
reconfigurable data-driven and instruction-driven cell
array will be presented in Section 2. Section 3 discus-
ses dynamically self-reconfigurable mechanism in de-
tail. The results of stimulation and performance analy-
sis are reported in Section 4. In Section 5, a conclu-

sion is given.
1 Related work and motivation

Reconfigurable computing is considered a promis-

ing structure for continuously innovating applica-

tions! "

. For video compression processing chip, recon-
figurable computing structure has been widely used to
speed up calculation and improve performance. Ref. [11]
proposed a reconfigurable design based on the 898 ap-
proximations transform in order to allow the simultane-
ous computation of eight 4-, four 8-, two 16-, or one
32-point approximate discrete cosine transform ( DCTs).
Ref. [12] proposed an architecture for interpolation fil-
ters, which is able to trade quality for energy and pow-
er efficiency by exploiting approximate interpolation fil-
ters and by halving the amount of required memory with
respect to state-of-the-art implementations. Ref. [13]
proposed a low power near memory sum of absolute

difference ( SAD ) accelerator for motion estimation
(ME). The accelerator is composed of 64 modular
SADs. PEs on a reconfigurable fabric offer maximal
parallelism. The PE arrays in those structures are RISC-
like processor architecture. The task of video compres-
sion algorithm is distributed to execute on multiple PEs
in parallel. Data processing in single PE is serialized,
which seriously affects the performance improvement.

At the same time, more and more reconfigurable
structures for CNN calculations emerged. Ref. [ 14 ]
implemented a generative network accelerator ( GNA)
based on intra-PE processing, inter-PE processing,
and cross-layer scheduling techniques. Precision adap-
tive PEs and buffer bandwidth reconfiguration are used
to support flexible bit widths for both inputs and
weights in deep neural networks. Ref. [15] proposed a
high energy efficient reconfigurable CNN accelerator
with approximate computing named approximate com-
puting based on reconfigurable architecture ( ARA).
Based on the approximate computing units, the convo-
lution neural processing unit (CNPU) is proposed with
the reconfigurable data path for mapping different
tasks. Ref. [ 16 ] proposed DyHard-DNNs, where ac-
celerator micro architectural parameters are dynamical-
ly reconfigured during deep neural network (DNN) ex-
ecution to significantly improve metrics of interest. The
PE arrays in those structures are mainly used to com-
pute parallelly, a centralized controller attached it to
realize the control of the calculation process. Data ir-
relevant calculation can be well parallelized. However,
the control part can only be serialized.

In order to parallelize as much as possible to im-
prove computational efficiency, the idea of this paper is
that PE can follow the instruction flow driven mode,
which is mainly used to realize the control part of algo-
rithm. Unlike traditional centralized controller, it is
more like a distributed controller with certain papalism
and better flexibility.

It also can follow the dataflow driven, data pro-
cessing like a dataflow graph with the adjacent inter-
connection between PEs. When the data arrives, the
operation is fired. Meanwhile, in order to improve uti-
lization of PEs, multiple configuration operations in one
algorithm are supported in one PE. Among multiple
configuration information, the operations are switched
automatically once an operation finished. The detail
switching process can be seen in subsection 3. 3.

2 Instruction-driven and data-driven self-
reconfigurable cell array

A hybrid of instruction-driven and data-driven
structure is proposed, as shown in Fig. 1. It includes a
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host interface, a global controller, and a PE array.
The global controller is used to control and manage the
computing resources of array. It is a key part to realize
the self-reconfigurable mechanism.

The PE array connected by short interconnections
is the core part of the entire system. Each PE can be
set on two different work modes; instruction-driven and
data-driven. When it works on instruction-driven mode,
it is similar to the general-purpose processor, RISC-
like structure is employed which consists of three sta-
ges, 1. e., fetching, decoding, executing and writing
back. When it works on data-driven mode, an adjacent

Host interface

interconnection interface is used to receive data to be
sent by neighboring PEs, then the operation of PE is
fired and the result is sent to neighboring PEs. On this
mode, the operation remains unchanged for a long exe-
cution cycle (even up to thousands of execution cy-
cles), which can reduce the bandwidth for loading
configuration information and reduce overall power con-
sumption. The instruction memory unit in PE is 512 x
44 bit, and the data memory unit is 512 x 16 bit.
Meanwhile, twelve local registers and four shared reg-
isters (RE/R12, RS/R13, RW/R14, and RN/R15)

are used.

| Global controller

Fig. 1

An H-tree type hierarchical network between the
host interface and the PE array is used to ensure that
each instruction can reach PE in a shorter time, and
realize the control and management for the array re-
sources. When the host interface accesses the PE ar-
ray, the global controller receives the information of

The width of bus is 43

bits. The most 10 bits are used for address informa-

bus from the host interface.

tion, the flowing 3 bits are used for flag information,
lower 30 bits are and used for command information.
The flag information is used to determine whether to
perform data feedback, instruction issuance, instruc-
tion multicast, or array boot, and the bit [30] is used
to determine the delivery mode of destination PE.
When it is reset, it means that the destination PE is on
the instruction-driven mode. When it is set, it means
that the destination PE is on the data-driven mode. In-
struction information is used to determine the instruc-

state
monitor

Instruction
memory

| Data memory|

Instruction-driven and data-driven self-reconfigurable cell array structure

tions executed by the PE.

The function of status monitor is to feed back the
status of PEs in the array to the global controller in real
time. If it is detected that PE is on free, the global
controller receives the feedback information and sends
the instructions to the free PE in real time through the
H-tree type hierarchical network.

3 Self-reconfigurable PE

As the basic part of the self-reconfigurable array
processor, PE is the basic unit of the self-reconfigu-
rable system and the key operation unit of data process-
ing. It can work on different functions according to dif-
ferent configuration information, which is related to the
function realization and overall performance, and plays
a vital role in the entire accelerator system. Therefore,
a PE structure based on the hybrid of instruction-driven
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and data-driven is proposed as shown in Fig.2. It is
similar to the general RISC structure and a three-stage
pipeline structure is designed. The first level is to read
configuration information from the configuration memo-
ry. The second level is used to receive data from the 4

input ports or 16 general registers. The third level is
used to receive the data to be sent by the previous level
and write the result back to the destination after per-

forming operation.

Stage 1: I Stage 2: | Stage 3: executing and
fetching I decoding I writing
RE_in }
RS in ¥
RW_in 4 | 3 RE out
RN in i — RS _out
- I I —> Eyiout
—> out
| wa 1] || idex_wh _ctrl [rwe nffggf(f:y}
I » decode —>» MA ] T idex_mem_ctrl :; MA |
—>|
= A= M | I
I <Y | y I
PC IR 1 TN [ X
generation I » U p}/ > I M]grag?)ry > M
I Register o X I —> L — ———— d u
Instruction —>» file —» M N »| X
memory | —> —"— I » U —
U > X
| > AX I Statues
CMU < k i > Monitor
I A—n i) ;
| FW_ID I PC-gen

Fig.2 PE structure

3.1 Instruction set

This section focuses on the research of the instruc-
tion set of the dual-mode dynamic self-reconfigurable
PE. When the PE is configured on the instruction-driv-
en mode, the configuration instruction memory size is
512 x 30 bits, and the data memory size is 512 x 16
bits. Each configuration instruction has to go through a
three-stage pipeline of instruction fetching, decoding,
executing and writing back. PE supports multiple oper-
ations such as logic and arithmetic operations, condi-
tionally jumping immediately jumping, and load/store
in the instruction-driven mode. The information of in-
struction includes 6 bits of opcode, 4 bits of destination
register (RD) , source register (RS) , and target regis-
ter (RT), and 16 bits of immediate (Imme) data.
When the PE is configured on the data-driven mode,
the size of configuration instruction memory is 16 x 30
bits, and the size of data memory size is 512 X 16 bits.
For computationally intensive applications, after the
controller issues the required configuration instruc-
tions, there is no need to repeat operations such as
fetching and decoding, and directly to perform opera-
tion according to configuration information.

As shown in Fig.3(a) , when the PE is on the in-
struction-driven mode, the configuration instruction ad-
dress is incremented by 1 by default, and when a
branch or jump instruction is encountered, the configu-

ration address is transferred to the specified address ac-
cording to the state. When the PE is on the data-driven
mode, only the data required by the current instruction
arrives and triggers execution. Fig.3(b) shows the in-
struction format of the 30-bit data transfer instruction.
Fig.3(c) shows the instruction format of the 30-bit

jump instruction.

RT/Imme
4 bits/16 bits

Opcode RD RS
1 bit+5 bits 4 bits 4 bits

(a) 30 bits arithmetic operation shift instruction

Opcode RD RS
6 bits 4 bits 4 bits

(b) 30 bits data transfer instructions

Opcode RD RS
6 bits 4 bits 4 bits

RT /Imme
4 bits /16 bits

('¢) 30 bits jump instruction
Fig.3 Instruction set type
3.2 Instruction flow operating mode

The data path of PE on the instruction-driven
mode is shown in Fig. 4. The configuration information
is sent into the configuration memory of the PE firstly
through configuration information network based on H-
tree type, then according to the update of PC, the cor-
responding configuration instruction is fetched from the
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configuration memory and controls the operation of PE.

It is similar to the pipeline processing of general-
purpose processors. The configuration information can
be switched during execution, and the address of next
configuration information is determined by the configu-

Stage 1: fetching | Stage 2: decoding

ration information itself according to the execution situ-
ation. It can be executed sequentially, or executed ac-
cording to the address generated by the jump instruc-
tion. On the instruction-driven mode, data also can be
transferred by adjacent interconnection between PEs.

Stage 3: executing and writing

RE in l
RS in
V. | RE out
RWﬁm ! ! RS out
o | RW_out
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! X | | H3 I |
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Fig.4 The data-path of PE on the instruction-driven mode

3.3 Data flow operating mode

The data path of PE on the data-driven mode is
shown in Fig.5. No instruction fetching and decoding
operations is required. The data from the upper PE is
directly transferred to the execution unit and operating
according to the configuration information. The execu-

Stage 1: fetching |

Stage 2: decoding

tion of the operation is fired once the needed data ar-
rives, and the result is delivered to the next level of
PE. The operation will not be changed until the new
configuration information arrives. It can reduce the
bandwidth for loading configuration information and

overall power consumption.

Stage 3: executing and writing
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Fig.5 The data-path of PE on the data-driven mode

First, take out the required configuration informa-
tion from the configuration register. At the same time,
the PC remains to be unchanged. When the required

data arrives, the operation is executed and then the re-
sult is sent to neighboring PE. The operation type of
PE will not be changed until a new configuration infor-
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mation is received.

In order to improve computation efficiency, it is
permitted that multiple nodes in the dataflow graph of
algorithm are mapped on a single PE. The operation is
triggered to execute and autonomously switched to the
next operation only when the required operation data
arrives. When the last operation of the current configu-
ration is completed, it is switched to the first operation
and repeated until a new configuration command is re-
ceived. For a variety of applications with complex cal-
culations, it can speed up the execution time in a rela-
tively small array scale.

In order to reduce the delay of data transmission
between adjacent PEs and improve data transmission
efficiency, a double-buffered data-driven interface is
used, which works on data-driven mode using { valid,
ready| handshake mechanism. When at least one of
the two internal buffers is empty, the data to be sent
from the upper-level PE is received and a response sig-
nal is sent to the upper-level processing unit to indicate
that the data has been received normally. When the
two internal buffers are all occupied, the data cannot
be received until at least one of the internal two buffers
is empty. The two buffers take turns to receive the data
from the upper-level PE, and take turns to send.

4 Implementation and performance

4.1 HEVC video compression algorithms mapping

Some HEVC video compression algorithms are re-
alized on the proposed structure. The mapping strategy
can be seen in Fig. 6. The grey filled PEs work on the
instruction-driven mode and the others work on the da-

ta-driven mode. For intra-prediction mapping, as shown
in Fig.6(a), total two clusters are used. PEQ130 re-
ceives the flag bit of coding unit (CU) block division
to be sent by PE0033. PEO133 remotely routes the
original pixels in the DIM, and loads the reference pix-
els from PEO100, PE0102, PE0103 and PEO110 re-
spectively. PEO131 stores the calculated prediction
value in the local banks, and the other PEs are con-
figured on the data-driven mode for calculating the pre-
diction pixels. PE0220 receives the flag bit of CU
block division to be sent by PE0123. PE0231 receives
the predicted pixel, obtains the residual value, and
writes the result to the local banks. PE0221, PE0222
and PE0223 are configured on the data-driven mode to
transmit the residual value to the DCT module.

For DCT mapping, as shown in Fig.6(b), only
one cluster is used. PE0320 receives the residual value
and the flag bit of CU block division and stores them in
the local banks. PE0300, PE0313, PE0320 and
PE0333 are working on the instruction-driven mode and
load the required residual value. PFO303, PE0310, PE0323
and PEO330 are used to store the DCT calculation re-
sults. The rest PEs are configured on data-driven mode
for calculation. Finally, PE0330 loads the results of
DCT calculation and send the flags bits to the IDCT
module.

For IDCT mapping, as shown in Fig.6(c), one
cluster is used. PE1300 receives the result from the
DCT calculation and the flag bit of CU block division
from IDCT, and stores them in local banks. PE1300,
PE1313, PE1320 and PE1333 are working on the in-
struction-driven mode and load the required data.

PE1303, PE1310, PE1323 and PE1330 store the results

[ PE0100 | [ PEOI01 | | PE0102 | [ PE0103 | [ PE0200 ] [ PE0201 | [ PE0202 | [ PE0203 |
LD R(9,0) ﬁ%ﬁ LD R(x,0) LD R(0,9)
LD x ADD LD 8-y LDy
| PEo110 | PEO111 PE0112 PE0113 PE0210 | [ PEO211 ] [ PEO212 | [ PE0213
ADD ADD e
LD R(0,y) MUL e MUL e o STD
LD 8-x ADD ADD P s
ADD ADD
ADD
[ PE0120 | [ PEOI2I ] [ PE0122 | [ PEO0123 ] | PE0220 | [ PEO0221 | | PE0222 | | PE0223
Trans :gg —> 25}? [ Trans4/5/6 [—» GetFlag& ADD > ADD | Send Flag
8]1632 ADD ADD Send Flag Count ADD ADD Send Des
[ PE0130 ] [ PE0I31 | | PE0I132 | [ PE0I133 | [ PE0230 PE0231 PE0232 | [ PE0233
ADD LDR&STR
Get Flag ST Pre ] ADD Original ﬁgg Fl S;Igj o
ADD pixel ag&t-oun

(a) Intra-prediction mapping
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[ PE0300 | | PE0301 ] [ PE0302 | | PE0303 ] PE1300 | [ PEI301 | [ PE1302 ] [ PE1303 |
ADD ADD
ADD Acceptflag, ADD
LDX0X3 [ ] appisuL| 1 ADD [ sTYI @[] en) ] suB [T stv3
ADDI MUL SRLI LD X0,X2 SRLI
SLLI
PE0310 | [ PE0311 ] [ PE0312 | [ PE0313 ] PE1310 | | PEI311 ] | PEI1312 ] [ PE1313 ]
ADD ADDI
ADD ADD
[ [ SUB le—| e—| le—| MUL e
STY3 sS][zJI]?I ADDI MUL LD X1,X2 STYO QI?B ADDI MUL LD X1,X3
ADDI MUL ADD ADD
PE0320 | | PE0321 | [ PE0322 | | PE0323 PE1320 | | PEI321 ] [ PE1322 | [ PE1323
ADD ADD A
Get ADD —» SUB | | Db
Flag&Des [ Ap0 [7] suB [ sTv2 LD X0.X2 i SUB STY2
LD X0,X3 s SRLI SLLI SRLI
PE0330 PE0331 PE0332 [ PE0333 ] [ PE1330 | | PE1331 | | P/Ell)3D312| [ PE1333 |
STYO ADD ADD
ADD STYl  |er “—  MUL  je—
medwa || AR [7| App || LoX1X2 Send Des’ o AppiMuL| | LDXLX3
SRLI ADD SUB SUB
(b) DCT mapping (¢) Inversediscretecosine transform (IDCT) mapping
PE3200 | | PE3201 | | PE3202 | | PE3203 | [ PE3300 | [ PE3301 | [ PE3302 | | PE3303
LD LD LD LD LD LD LD LD
[ PE3210 | | PE3211 | | PE3212 ] | PE3213 | | PE3310 | [ PE3311 | [ PE3312 | | PE3313 |
i ADD ADD ADD ADD ADD ADD
ADDL [ SUB SUB [ ADD |—» ADD |- ADD ADD |« ADD
oot SLLI SLLI ADD ADD ADDI ADDI ADD
ADD ADD ADD ADD SRAI SRAI ADD
PE3220 PE3221 PE3222 PE3223 PE3320 PE3321 PE3322 PE3323
ADD ADD ADDI ADD ADD ADD DD
ADD ADD > gy % SRAl —» ADD | SUB = SUB & 1
ADD ADD 0 ADD ADD ADD ADD ADD o
ADD ADD ADD ADD ADD ADD ADD
[ PE3230 | | PE3231 ] | PE3232 ] | PE3233 | | PE3330 | [ PE3331 | [ PE3332 | | PE3333 ]
ADD
ADD [ ADD [ ADD [ o e APPSR et sral e ADD
ADD ADD ADD ADD ADD
ATD ADD

(d) deblocking filter mapping

Fig. 6 Some HEVC video compression algorithms mapping

of IDCT calculation. The rest PEs are configured on
data-driven mode Finally, PE1330
loads the results of IDCT calculation and sends the flag
bit to the reconstruction module.

for calculation.

For deblocking filtering mapping, as shown in
Fig.6(d), two clusters are used. If filtering is re-
quired, PE3202 receives the pixel value of the 8 x 8
block boundary and stores it in a local bank. PEOO,
PEO1, PEO2 of PEG32 and PEG33, PEO3 load the re-
quired pixels. All PEs except PE3233 are configured
on the data-driven mode for filtering calculations. After
the calculation is completed, the PE3233 stores the da-
ta, and then PE3202 sends the data to complete the re-
placement of the block boundary pixels.

A simple testbench is built to simulate the pro-
posed architecture. Firstly, a translator is used to
translate assembly to machine language. And then the
test bench sends the machine language to destination
PE through H-tree type hierarchical network.

The statistic of PE working mode can be seen in
Table 1. The computing time for different algorithms
can be seen in Table 2. For dataflow applications,
such as deblocking filter, most PEs work on data-driv-
en mode. For control intensive applications, such as
intra-prediction, most PEs work on instruction-driven.
Also, it can be seen that PEs working on instruction-
driven take charge of accessing data. PEs working on
data-driven take charge of computing.
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Table 1  Statistic of PE working mode
# PEs on  # PEs on Percentage
algorithm  instruction- data- #PEs of PEs on
driven driven data-driven
CTU 16 0 16 0%
Intra- 13 10 23 43.5%
prediction
DCT 8 16 50%
IDCT 8 16 50%
Peblocking = 5 23 36 63.9%
filter

Table 2 Computing time (unit; cycles)

Algorithm Image size Computing time
CTU division 64 x 64 7228
8 x8 620
Intra-prediction 16 x 16 2642
32 x32 10 436
4 x4/8 x8 161/645
DCT
16 x 16/32 x32 2258/8497
IDCT 4 x4/8 x8 150/600
16 x 16/32 x 32 2181/8505
Deblocking filter 64 x 64 19 084

4.2 Performance analysis

The computing time comparison with other struc-
tures is shown in Table 3, such as field programmable
gate array ( FPGA ) , central processing unit ( CPU ) ,

ASIC and dynamic programmable reconfigurable array
processor( DPRAP) """/ DPRAP is similar to the pro-
posed architecture, except that all PEs in it are only
working on the instruction-driven mode. Compared with
DPRAP, the proposed architecture can reach a speed-
up of more than 5 times. Compared with FPGA, the
computing time of the proposed architecture is close to
that of FPGA. Compared with CPU, the proposed ar-
chitecture is faster. However, it is lower than ASIC.
For realized on ASIC, the computing speed is fastest,
but it occupied most look-up-table (LUT) and register
resources.

(a) original image (b) Intra-prediction

(e) Deblocking filter

(d) Reconstructed
image

Fig.7 The running results of some HEVC algorithms

Table 3 The comparison of computing time (unit: cycles)

algorithm Image size FPGA'S2! cpyta= ASIC!#®] DPRAPH! Proposed
Inira- 8 x8 4232 1300 47 2181 620
prediction
DCT 8 x8 500 1130 64 7374 645
IDCT 8 x8 - 1027 64 4882 600
Deblocki
ef,ft‘;‘“g 8 x8 128(32 x32) ; 8 1388(16 x 16) 234
1

The proposed architecture has been implemented
on Xilinx FPGAVirtexUltraScale VU440 chip. The syn-
thesis result is shown in Table 4 for different scales.
For 32 x 32 PE array, it can work at the frequency of
over than 75 MHz, and occupies 272 200 register re-
sources and 646 981 LUTs totally for 1024 PEs. The
synthesis result of 1024 PEs and the result compared
with other implementation architectures can be also
shown in Table 5. Compared with DPRAP, resource
occupation and frequency is relatively close. However,
the proposed architecture is more functional and has
higher calculation efficiency. Compared with Ref. [26],
the proposed architecture has more PE resources in unit

area. Compared with Ref. [27 ], the proposed archi-
tecture has more PEs and can support more operations
per clock cycle. Meanwhile, compared with Ref. [ 17]
and Ref. [26 ], in the same number of PEs, the pro-

posed architecture occupies lower register and LUT re-

sources.
Table 4  The synthesis result
Scale PEs  Clock/MHz LUT FF BRAM
4 x4 16 100 25 445 16 180 16
8 x8 64 100 103400 65479 64
32x32 1024 75 646981 272200 173
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Table 5 Performance and resource usage

DPRAP!'  Ref. [26] Ref. [27] Proposed
Develop board Vertix-6 ZC706 Vertix-6 Vertix UltraScale
Clock/MHz 120 100 150 75
LUT 33 662 232252 134 520 646 981
FF 106 443 120 184 148 323 272 200
BRAM - - 139 173
PEs 16 64 128 1024
Power/W - - 5.056 6.368
Design (ICCAD). Westminster; IEEE, 2019 1-8.
5 Conclusion [ 6] XU W, ZHANG Z, YOU X, et al. Reconfigurable and

In this paper, a hybrid of instruction-driven and
data-driven self-reconfigurable cell array is proposed.
For the computing part of algorithm, PE works on the
data-driven mode through adjacent interconnection in-
terface realizing data transfer between PEs. At the
same time, PE can be fired only when the needed data
arrives. Those PEs work like ASIC circuits, so the cal-
culation efficiency can be promoted. For the control
part of algorithm, PE works on the instruction-driven
mode and is mainly used to realize the control of the
calculation process and data access through program-
ming. Flexible working methods effectively improve the
performance.

Some HEVC video compression algorithms are re-
alized on the proposed architecture. The computing
time is statistic. Simultaneously, it has been imple-
mented on Xilinx FPGA Virtex UliraScale VU440 de-
velop board based on 1024 PEs. The circuitry can be
run at 75 MHz and occupies 646 981 LUTs and 272 200

register resources.
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