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Abstract
In order to solve the problem of low prediction accuracy when only vibration or oil signal is used

to predict the remaining life of gear wear, a gear wear life feature fusion prediction method based on
temporal pattern attention mechanism is proposed. Firstly, deep residual shrinkage network
(DRSN) is used to extract the features of the original vibration time series signals with low signal-to-
noise ratio, and the vibration features associated with gear wear evolution are obtained. Secondly,
the extracted vibration features and the oil monitoring data that can intuitively reflect the wear
process information are jointly input into the bi-directional long short-term memory neural network
based on temporal pattern attention mechanism (TPA-BiLSTM), the complex nonlinear relationship
between vibration features, oil features and gear wear process evolution is further explored to improve
the prediction accuracy. The gear life cycle dynamic response and wear process signals are obtained
based on the gear numerical simulation model, and the feasibility of the proposed method is verified.
Finally, the proposed method is applied to the residual life prediction of gear on a test bench, and the
comparison between different methods proved the validity of the proposed method.

Key words: prediction of gear remaining useful life, information fusion, numerical simulation,
neural network, oil monitoring

0　 Introduction

Gearbox is a power transmission device with a
wide range of applications[1] . Due to long-term com-
plex working conditions of heavy load and variable load
and harsh working environment, excessive alternating
stress on the gear tooth mating surface in the gearbox
will cause rolling contact fatigue on the contact sur-
face[2] and wear failure. In practical engineering appli-
cation, once the gearbox teeth breaks, such as teeth
and shaft breakage, it will lead to serious economic
loss and even casualties. Therefore, real-time monito-
ring of gear operation status and early warning of wear
faults are of great significance[3-4] .

At present, most scholars have carried out gear
wear state assessment and fault diagnosis based on oil

monitoring parameters. Diagnosis methods can be
roughly divided into three categories: methods based
on linear regression, methods based on gray theory,
and methods based on machine learning[5-8] . Sejkorova
et al. [5] proposed a method combining partial least
squares ( PLS ) and principal component regression
(PCR) to accurately predict the viscosity of worn oil
samples. Li et al. [6] applied the improved Euler algo-
rithm to solve the grey theory model and obtained the
change trend curve of Fe mass concentration in lubrica-
ting oil, which successfully predicted the upcoming
wear failure of the transmission device. However, the
prediction method based on linear regression and grey
theory is suitable for trend prediction based on small
sample information under offline oil monitoring, and
the prediction accuracy is limited by the defect of sam-
ple size and method itself.
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With the further development of online oil monito-
ring devices and machine learning methods, the tradi-
tional fault diagnosis methods based on oil parameters
can no longer meet the practical application require-
ments, and the machine learning methods represented
by neural networks are gradually applied to the wear
state assessment of various equipment. David et al. [7]

combined fuzzy inference system (FIS) and artificial
neural network (ANN) to effectively predict the devel-
opment trend of Fe particle concentration and soot par-
ticle concentration in lubricating oil. Bazi et al. [8] pro-
posed a tool wear prediction model of integration of var-
iational mode decomposition ( VMD), convolutional
neural network ( CNN) and bi-directional long short-
term memory neural network ( BiLSTM), which was
better than the traditional method. Although oil monito-
ring can directly reflect the evolution process of gear
tooth surface wear, there are problems such as signal
delay and difficulty in fault tracing, so vibration and oil
monitoring technology are often used to monitor the re-
al-time condition of gear box in practical engineering
applications[9] . Furthermore, most of the researches
focus on gearbox fault diagnosis methods, but there are
few reports on the prediction of residual life of gear
wear. Therefore, it is of practical significance to study
the prediction method of gear wear residual life based
on vibration and oil features.

A gear wear residual life prediction method based
on DRSN-TPA-BiLSTM is proposed, which integrated
vibration and oil features. Deep residual shrinkage net-
work (DRSN) is used to extract the vibration signal of
wear and tear associated features, the vibration and oil
signals are fused, and the nonlinear complex relation-
ship between vibration, oil features and gear wear evo-
lution is further explored by using the bi-directional
long short-term memory neural network based on tem-
poral pattern attention mechanism (TPA-BiLSTM) to
extract sensitive features. Based on the numerical sim-
ulation model of gear and the signal of experimental
bench, the proposed method is tested and verified,
which proves the feasibility and advantages of the pro-
posed method.

1　 Prediction model of vibration and oil fea-
ture fusion based on temporal pattern at-
tention mechanism

　 　 The feature fusion prediction model based on tem-
poral pattern attention ( TPA) mechanism is mainly
composed of feature fusion and life prediction. Due to
slow and gradual gear wear process and strong back-
ground noise, vibration acceleration signals have weak

and slow variation features, which makes it difficult to
extract vibration features. As a result, vibration signals
are firstly input into BatchNormalization layer and then
into the residual shrinkage building unit with channel-
wise thresholds (RSBU-CW) after a Conv layer. Then
Maxpooling is carried out to complete feature extraction
of vibration signals. RSBU is the core of DRSN[10] .
RSBU-CW is a threshold sharing residual shrinkage
unit, which introduces soft threshold into the network
structure of ResNet as a nonlinear layer to improve the
feature extraction effect of deep learning method on
noisy data or complex data. Secondly, TPA is intro-
duced into BiLSTM, and advanced features are extrac-
ted by integrating vibration and oil signals, so as to
achieve gear wear life prediction. The structure of gear
wear life prediction network based on temporal pattern
attention mechanism proposed in this paper is shown in
Fig. 1.

Fig. 1　 Fusion prediction model based on temporal
pattern attention mechanism

1. 1　 Soft threshold function
The traditional ReLU activation function sets all

the signals less than 0 to 0, resulting in all the infor-
mation in the negative signal being discarded, which is
prone to the problem of incomplete feature extraction.
However, the soft threshold function only sets the sig-
nal close to 0 to 0, which can retain the useful infor-
mation in the negative signal, extract the signal feature
to the maximum extent, and realize the denoising of vi-
bration signal. RSBU-CW unit introduces the residual
term based on CNN, adaptively learns the threshold
through the subnetwork, and softs the characteristic
threshold to achieve the denoising effect of the input
signal. RSBU-CW structure is shown in Fig. 2, where,
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C represents the number of channels, W represents the
signal width, K represents the number of convolution
kernels, and M represents the number of neurons at the
full connection layer. Threshold softening is a classical
method commonly used in signal denoising. The soft
threshold function formula can be expressed as

y =
x - τ　 　 　 　 x > τ
0　 　 - τ ≤ x ≤ τ
x + τ　 　 　 x < - τ

{ (1)

where, x represents input feature, y represents the out-
put feature, τ indicates the threshold (τ > 0) .

Fig. 2　 Residual shrinkage building unit with channel-wise
thresholds(RSBU-CW)

1. 2　 Temporal pattern attention mechanism
It is easy to cause low prediction accuracy when

only using vibration signal to predict the remaining life
of gear, and the number of ferromagnetic particles in
lubricating oil can directly reflect the evolution process
of gear wear. Therefore, the extracted vibration fea-
tures and oil data are input into BiLSTM network based
on TPA[11] to further explore the nonlinear and complex
relationship between vibration, oil features and gear
wear evolution process and obtain advanced fusion fea-
tures. Traditional deep convolutional neural networks
tend to convolve in one direction when extracting fea-
tures, and can only extract feature information in time
dimension, ignoring the nonlinear relationship between
input features. After the combination of vibration and
oil features, TPA convolves the different features of vi-
bration and oil first, and then convolves the time series
sequence to deeply extract the features of space-time
and space domains. The constructed TPA network unit
is shown in Fig. 3.

After the vibration features and oil information are
transmitted through BiLSTM network, the hidden state
matrix H = [ht -w,ht -w+1,ht -1] is obtained, where w is
the length of the time series. Convolving m features
from top to bottom along H matrix, the time character-

istic matrix HC is obtained as
HC

i, j = ∑ w

l = 1
Hi,( t -w-1+l)∗C j, T-w+l (2)

where, C j represents the j-th filter; T represents the
maximum characteristic length that needs attention,
and its value is usually w; ∗ represents the convolu-
tion operation. The number of convolution kernels of
the filter is k, and the filter is convolved along the row
vectors of the hidden state matrix H.

Fig. 3　 Temporal pattern attention mechanism unit(TPA)

The correlation of feature information is calculated
through the attention mechanism, and the scoring func-
tion is as follows.

f(HC
i , ht) = (HC

i ) TWaht (3)
αi = Sigmoid( f(HC

i , hi)) (4)
where, Wa is the weight matrix and αi is the weight of
attention. Define attention vector:

vt = ∑ n

i = 1
αiHC

i (5)
where, n represents the total number of features of vi-
bration and oil.

Predicted values are obtained by linear mapping:
y = Wh′(Whht + Wvvt) (6)

where, y represents the predicted value, Wh′, Wh and
Wv represent the weight matrices of variables h′, h and
v, respectively.

2　 Numerical calculation model of gear con-
sidering dynamic wear

2. 1 　 Calculation model of tooth surface wear of
spur gear

In order to verify the feasibility of DRSN-TPA-
BiLSTM based vibration and oil information fusion pre-
diction model, the simulation vibration response and
simulation wear accumulation of gear are obtained by
constructing a numerical calculation model of gear con-
sidering dynamic wear.

Calculate tooth surface wear according to Archard
wear formula[12]:

dh
ds = kp (7)

where, h is the wear depth, s is the relative sliding dis-
tance, k is the wear coefficient, p is the Hertz contact
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pressure. The wear depth of any meshing point a can
be obtained by integrating the relative sliding distance:

hwa
= ∫ sa

0
kwpadsa (8)

where, hwa
is the wear depth of point a, kw is the slip

distance of point a, and pa is the contact pressure at
point a. According to the single point observation meth-
od[13], the accumulated wear depth of any meshing
point a on the tooth surface after (n + 1) meshing cy-
cles is as follows.

hwa,(n+1) = hwa, (n) + kwpa,(n)Sa (9)
By integrating the wear depth of each meshing

point along the tooth profile, the cumulative wear vol-
ume of a single tooth can be obtained as

V = ∫ xN

x1
hwi

dxi (10)

The contact mode of involute cylindrical spur gear
is usually simplified as equivalent cylinder contact with
time-varying radius, and the curvature radius and com-
prehensive curvature radius of the equivalent cylinder
can be calculated as follows.

ρ1 = r1sinα + y, ρ2 = r2sinα - y (11)
1
ρ = 1

ρ1
+ 1
ρ2

(12)

y = ω2 r′2( t - t0) (13)
where, ρ1, ρ2 are the radius of curvature of the driving
and driven gears respectively; ρ is the radius of com-
posite curvature; r1, r2 are the radius of the indexing
circle of the driving and driven gears respectively; r′2 is
the radius of the base circle of the driven gears; ω2 is
the rotation speed of the driven gear; α is the pressure
angle; y is the distance between the meshing point and
the node of the driving and driven gears; t0 is the time
from the meshing point to the node. Generally, t0 =
0. 5tp, tp is a meshing cycle. The coiling speed on the
tooth profile surface is expressed as follows[14] .

U =
U1 + U2

2 (14)

U1 = ω1ρ1, U2 = ω2ρ2 (15)
According to Hertz contact theory, contact half-

width and contact pressure at meshing point a are as
follows.

aH =
4Faρ
πbE∗ (16)

pa =
2Fa

πba2
H
(aH - y2

i )
1
2 (17)

where, Fa is the normal meshing force; b is the tooth
width; E∗ is the equivalent elastic modulus, and its
calculation formula is

1
E∗ =

1 - v21
E1

+
1 - v22
E2

(18)

where, E1, E2, v1, v2 are the elastic modulus and
Poisson’s ratio of driving gear and driven gear respec-
tively.

2. 2　 A dynamic model of single-stage gear consid-
ering dynamic wear

　 　 In this paper, a single-stage gear dynamics model
is constructed based on the lumped mass method, and
the dynamics equation of gear train is obtained by New-
ton’s laws of mechanics[15]:

I1 θ̈1 + cm(R1 θ
·

1 - R2 θ
·

2 - ė( t))R1

+ k( t) f(R1θ1 - R2θ2 - e( t))R1 = T1

(19)
I2 θ̈2 - cm(R1 θ

·
1 - R2 θ

·
2 - ė( t))R2

- k( t) f(R1θ1 - R2θ2 - e( t))R2 = - T2

(20)
where, R1, R2 are the base circle radius of driving gear
and driven gear respectively; I1, I2 are the moment of
inertia; θ1, θ2 are torsional displacement; T1, T2 are
the torques acting on the driving and driven gears re-
spectively; cm is meshing damping; k( t) is time-var-
ying mesh stiffness; e( t) is the static transfer error.
Taking the gear pair backlash as 2b, f(·) represents
the backlash function:

f(x) =
x - b　 　 　 　 x > b
0　 　 - b ≤ x ≤ b
x + b　 　 　 x < - b

{ (21)

Suppose that the displacement of the master-slave
driven wheel on the meshing line is x1 and x2, then x1

= R1θ1, x2 = R2θ2, Eqs(19) and (20) can be re-
written as

m1 ẍ1 + cm( ẋ1 - ẋ2 - ė( t))
+ k( t) f(x1 - x2 - e( t)) = F1

(22)
m2 ẍ2 - cm( ẋ1 - ẋ2 - ė( t))

- k( t) f(x1 - x2 - e( t)) = - F2

(23)
where, m1 = Ip / R2

1, m2 = Ip / R2
2 are equivalent masses

of the master and slave driven wheels respectively; F1

= T1 / R1, F2 = T2 / R2 respectively represent the mes-
hing forces of the main driving wheel. Due to the exist-
ence of backlash, the dynamic transmission error of the
gear transmission system is assumed to be δ( t) = x1 -
x2 - e( t), it can be obtained by combining Eqs(22)
and (23):

m δ̈ + cm δ
·
+ k( t) f(δ) = F( t) (24)

where, m =
m1m2

m1 + m2
is the equivalent mass of the gear

pair, F( t) = m
m1

F1 + m
m2

F2 - më( t) .
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Due to the large difference in the order of magni-
tude between the stiffness and damping terms, in order
to avoid instability in the solution, the dynamics equa-
tion is dimensionlessly processed, and the sorted dy-
namics equation is as follows.

ẍ + 2ξẋ + k(τ) f(x) = fm + fh (25)

where,
km

mc
= ω2

n, 2ξ =
cm

ωnmc
, t = ωnτ, x = δ

b ,ωe =

ω
ωn

, fm = F
ω2

nb
, fh = ë(τ)

ω2
nb

.

Considering tooth surface wear, the change of
wear depth is introduced into the dynamic equation,
then the static transfer error becomes e( t) + h( t), and
the clearance function[16] considering wear is

f(x) =
x - (b + h( t))　 　 　 x > b + h( t)
0　 　 　 - b - h( t) ≤ x ≤ b + h( t)
x + (b + h( t))　 　 x < - b - h( t)

{
(26)

3　 Gear wear life prediction based on simu-
lation data

3. 1　 Analysis of numerical simulation results
According to the gear numerical calculation model

considering dynamic wear in Section 2, the wear accu-
mulative amount[17] and dynamic transmission error of
the whole life cycle of the gear are simulated respec-
tively. It is assumed that the gear is in all-weather op-
eration with a life of 100 d. The simulation parameters
of the gear system are shown in Table 1.

Table 1　 Gear system simulation parameters
Parameter Driving gear Driven gear

Number of teeth 55 75
Pressure angle / ° 20 20

Module / mm 2 2
Tooth width / mm 20 20
Roughness / μm 0. 2 0. 2

Addendum coefficient 1 1
Backlash in circular

tooth / mm 0. 1 0. 1

Poisson’s ratio 0. 3 0. 3

Fig. 4 shows the simulation results of single tooth
profile wear depth under three different meshing cy-
cles. As the number of meshing cycles increases, the
wear depth increases, and the simulation results of
tooth surface wear accumulative amount in the whole
life cycle of the gear system are shown in Fig. 5. The
dynamic equation is solved by using the Runge-Kutta
method with variable step length. Fig. 6 shows the dy-

namic transmission error at a certain operating time,
and Fig. 7 shows the dynamic transmission error com-
parison under six wear degrees from slightness to se-
vereness. With the deepening of wear degree, the dy-
namic transmission error keeps increasing. Fig. 8 shows
the simulation results of gear system’ s life-cycle dy-
namic response.

Considering that gear degradation is not obvious at
the early stage of operation, piecewise linear function[18]

is adopted as the residual life degradation curve. As can
be seen from Fig. 7, significant degradation begins to
occur after 25 d of operation, so the RUL curve can be
expressed as

yi
RUL = 75　 　 　 　 　 　 xi < ki

75 - (xi - ki)　 xi ≥ ki
{ (27)

Fig. 4　 Wearing depth of single tooth profile

Fig. 5　 Cumulative amount of tooth surface wear
in the whole life cycle

Fig. 6　 Dynamic transmission error at a given running time
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Fig. 7　 Comparison of dynamic transmission error
under different wear degrees

Fig. 8　 Dynamic transmission error throughout life cycle

where, ki = cmax - 75 is the inflection point of gear deg-
radation, xi is the current operating moment, and cmax is
the number of days of operation when the gear fails.

3. 2　 Evaluation index of model performance
In order to evaluate the prediction effect of the

proposed method and quantify the quality of the model,
this paper adopts the evaluation indexes including root
mean square error (RMSE), mean absolute percentage
error (MAPE) and SCORE, whose calculation formu-
las are shown in Eqs(28) - (31).

RMSE = 1
n∑

n

t = 1
( f(xt) - yt) 2 / y × 100%

(28)

MAPE = 1
n∑

n

t = 1
| f(xt) - yt | / y × 100%

(29)

St =
e - ln(0. 5) × (yt-f(xt))

30( )　 yt - f(xt) ≤ 0

e + ln(0. 5) × (yt-f(xt))
50( )　 yt - f(xt) > 0

{ (30)

SCORE = 1
n∑

n

t = 1
(100 × St) (31)

where, f(xt) is the predicted value at moment t, yt is
the measure of the moment t, y is the mean of meas-
ured values, and n is the number of samples. Eq. (30)
defines the penalty rule for early prediction and late
prediction[19] . If the predicted RUL is smaller than the
actual RUL, the penalty is small, because there is still

time to replace the faulty parts before the fault occurs.
If the predicted RUL is greater than the actual RUL,
measures will be taken after the fault occurs, and a
major system failure may occur. Therefore, the penalty
in this case is large.

3. 3　 Performance evaluation of predictive models
In order to verify the feasibility of the proposed

method, the dynamic transmission error of the whole
life cycle is taken as the vibration signal, and the cu-
mulative wear of the tooth surface of the whole life cy-
cle is taken as the oil signal, and they are input into
the proposed DRSN-TPA-BiLSTM fusion prediction
model. The BatchNormalization layer is first used to
normalize vibration signals, and then the superficial
features are obtained through the convolutional layer
with 16 neurons, 3 filters and 2 steps. Then, RSBU-
CW is used to obtain the deep vibration features. The
number of convolutional layer neurons in RSBU-CW
module is 32, the number of filters is 3, and the step
size is 2, and then the maximum pooling process is
carried out. Finally, the deep vibration features and oil
data are fused and input into TPA-BiLSTM network for
prediction. After several experiments, the number of
BiLSTM neurons of the proposed DRSN-TPA-BiLSTM
model is finally set to 50. In order to prevent overfit-
ting during training, the prediction results are input in-
to the Dropout layer, and the optimal drop rate is 0. 2.

In the process of model training, GridSearchCV is
used to optimize the hyperparameters. The optimized
hyperparameters include batch size {16, 20, 30},
epochs {10, 20, 30} and optimizer {Adam, Adadel-
ta} . The optimization result is batch size = 30, ep-
ochs = 20, and optimizer = Adam. To verify the ne-
cessity of oil signal fusion, the fusion prediction results
are compared with those of the model with only vibra-
tion signal input, as shown in Fig. 9. In order to verify
the superiority of DRSN-TPA-BiLSTM model, it is
compared with LSTM, BiLSTM, DRSN-BiLSTM and
other methods, and the comparison results are shown in
Fig. 10.

It can be seen from Fig. 9 that the prediction
effect of residual life of gear by combining vibration
and oil information is significantly better than that by
using only vibration information, indicating that the
prediction accuracy of residual life of gear can be
greatly improved by adding oil information on the basis
of vibration information. As can be seen from Fig. 10,
the prediction results of DRSN-TPA-BiLSTM fusion
prediction model proposed in this paper are closest to
the real RUL curve, and the results of DRSN-BiLSTM
model are relatively close to the real RUL curve, while
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the prediction effects of traditional LSTM and BiLSTM
models are relatively poor. Compared with LSTM, BiL-
STM and DRSN-BiLSTM models, the prediction effect
of the proposed method in gear wear simulation data is
the best.

Fig. 9　 Comparison of prediction effect before and after fusion

Fig. 10　 Comparison of prediction effects of different models

According to the model performance evaluation in-
dexes in subsection 3. 3, the RMSE, MAPE error and
SCORE of different prediction methods are calculated
respectively. The RMSE and MAPE errors of vibration
and oil information fusion are reduced by 9. 171% and
7. 939% , SCORE is improved by 8. 705, respectively,
compared with non-fusion methods. The prediction er-
ror of DRSN-TPA-BiLSTM model based on information
fusion in this paper is reduced by 16.629% and 14.829%,
SCORE is improved by 16. 576, respectively, com-
pared with non-fusion methods. The error comparison
of each method is shown in Fig. 11. Obviously, this
method has obvious superiority.

4　 Experimental analysis of gear wear

4. 1　 Experimental equipment and data acquisition
After the above verification, the proposed method

is further applied to the prediction of gear wear residual

Fig. 11　 Comparison of prediction errors of different methods

life on the test bench. The gearbox fault simulation test
bench is shown in Fig. 12, and its main parameters are
shown in Table 2. The vibration signal is obtained by
installing acceleration sensors near each meshing gear
pair of the gearbox, and the accumulation of ferromag-
netic particles in lubricating oil is obtained by instal-
ling metal particle sensors at the lubricating oil circula-
tion bypass of the gearbox, so as to realize real-time
online monitoring and data acquisition of vibration and
oil. The sampling frequency of the data acquisition sys-
tem is 25 600 Hz, and the schematic diagram of the
fault diagnosis system of multi-stage transmission gear-
box is shown in Fig. 13. In order to accelerate the wear
process, the first large spur gear at the input end of the
gearbox is selected as the wear fault simulation gear.
The tooth surface of this gear is not treated, and the
other tooth surfaces are carburized.

Fig. 12　 Gearbox fault simulation test bench

Table 2　 Main parameters of the test bench

Driving
power
/ kW

Speed
range /

(r / min)

Torque
range /

(N·m)

Total
transmission

ratio

Driving
stages

22 0 - 3000 0 - 150 1 ∶ 1 4

In order to verify the effectiveness of the proposed
method, a long-period gear wear experiment is carried
out, which is run at 1200 r / min speed and 90 N·m
load. After every 10 h of operation, the gear surface
wear is checked out of the box until serious wear is vis-
ible to the naked eyes, and the experiment is stopped
with a cumulative running time of 60 h. Tooth surface
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wear at different stages are shown in Fig. 14.

Fig. 13　 Multi-stage transmission gearbox fault diagnosis system

Fig. 14　 Tooth surface wear at different stages

Fig. 15 and Fig. 16 show the vibration signal and
oil signal of the whole life cycle collected by gear wear
fault simulation experiment.

Fig. 15　 Full life cycle vibration signal

Considering that the gear degradation is not obvi-
ous at the early stage of operation, piecewise linear
function is adopted as the residual life degradation
curve. It can be seen from Fig. 14 that significant deg-
radation begins to occur after 10 h of operation, so the
RUL curve can be expressed as

yi
RUL = 50　 　 　 　 　 xi < ki

50 - (xi - ki)　 xi ≥ ki
{ (26)

where, ki = cmax - 50 is the inflection point of gear deg-
radation, xi is the current running moment, and cmax is
the running time when the gear fails.

Fig. 16　 Full life cycle oil signal

4. 2 　 Gear wear life prediction based on DRSN-
TPA-BiLSTM fusion of vibration and oil
features

　 　 The vibration and oil signals obtained in the ex-
periment are input into the vibration and oil information
fusion prediction model based on DRSN-TPA-BiLSTM
to predict the remaining service life of the gear. The
parameter settings of the model are consistent with sub-
section 3. 3.

In the process of model training, GridSearchCV is
also used for hyperparameter optimization, the optimi-
zation result is batch size = 30, epochs = 30, and op-
timizer = Adam. In order to further verify the necessity
of fusing the oil signal and the superiority of the pro-
posed method, the fusion prediction results are com-
pared with the non-fusion prediction results. At the
same time, the proposed method is also compared with
the existing prediction methods. The comparison re-
sults are shown in Fig. 17 and Fig. 18.

It can be seen from Fig. 17 that the prediction
effect of gear remaining life by combining vibration and
oil information is significantly better than that by using
only vibration information, which is consistent with the

Fig. 17　 Comparison of prediction effect before and after fusion
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Fig. 18　 Comparison of prediction effects of different models

verification result of simulation data. It can be seen
from Fig. 18 that the prediction results of the DRSN-
TPA-BiLSTM fusion prediction model proposed in this
paper are closest to the real RUL curve. Compared
with other models, the prediction effect of the proposed
method is the best in the full-cycle experimental data of
gear wear.

Similar to the simulation data, RMSE, MAPE er-
ror and SCORE of different prediction methods were
calculated, and the RMSE and MAPE errors of vibra-
tion and oil information fusion are reduced by 10. 272%
and 2. 790% , SCORE is improved by 0. 196, respec-
tively, compared with non-fusion methods. The predic-
tion error of DRSN-TPA-BiLSTM model based on infor-
mation fusion in this paper is reduced by 20. 376% and
13. 121%, SCORE is improved by 7. 994, respectively,
compared with non-fusion methods, as shown in Fig. 19.

Fig. 19　 Comparison of prediction errors of different methods

To further verify the superiority of the proposed
method, the training duration of the proposed method
is compared with that of the traditional method, and
the comparison results are shown in Table 3.

As can be seen from Table 3, compared with the
traditional LSTM prediction model, the training time of
the prediction model based on the combination of DRSN
and TPA-LSTM is greatly shortened. In conclusion,
the vibration and oil information fusion model based on

Table 3　 Training duration comparison
Prediction
model LSTM BiLSTM DRSN-TPA

-LSTM
DRSN-TPA
-BiLSTM

Duration / s 1527 2335 460 706

DRSN-TPA-BiLSTM proposed in this paper has the
highest prediction accuracy and relatively short training
time.

5　 Conclusions

A gear wear prediction method based on DRSN-
TPA-BiLSTM is proposed, which integrates vibration
and oil information, aiming to solve the problems such
as difficulty in extracting vibration features of gear wear
process, low prediction accuracy of residual life of gear
only by collecting vibration or oil signals, and the defi-
cient structure of traditional LSTM network. The main
research conclusions are as follows.

(1) The prediction effect of residual life by com-
bining vibration information with oil information is ob-
viously better than that by using only vibration informa-
tion.

(2) By solving the numerical calculation model of
gear considering dynamic wear, it can be seen that the
wear depth on the tooth profile increases with the in-
crease of meshing cycles. With the deepening of wear,
the dynamic transmission error increases. At the same
time, the simulation data of gear life cycle can be ob-
tained, which is of significance to the research of gear
remaining life prediction.

(3) Adding RSBU-CW before the traditional BiL-
STM model can improve the prediction accuracy of
multivariate fusion feature data. Compared with LSTM,
BiLSTM and DRSN-BiLSTM models, RMSE and
MAPE of DRSN-TPA-BiLSTM model have the smallest
error, the highest SCORE and its training time is shor-
ter. The comprehensive performance of DRSN-TPA-
BiLSTM model is the best.
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