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Trajectory tracking control of characteristic model
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Abstract
The nonplanar hex-rotor unmanned aerial vehicle (UAV) has much higher driving property,

greater payload capacity and damage tolerance than quad-rotor UAV. It is difficult to design a high
performance controller of easy engineering implementation for strongly coupled nonlinear hex-rotor
UAV system. In response to this practical problem, an adaptive trajectory tracking control based on
characteristic model for nonplanar hex-rotor is studied. Firstly, the dynamic model for the hex-rotor
UAV is devised. Secondly, according to dynamic characteristics, environmental characteristics and
control performance requirements, the characteristic model of the hex-rotor UAV is constructed.
Then, based on the characteristic model, a golden section adaptive controller is designed to realize
trajectory tracking. Furthermore, the stability analysis of the closed loop hex-rotor system is given.
Finally, the validity of the proposed trajectory tracking control method adopted in the nonplanar hex-
rotor UAV is demonstrated via numerical simulations and hex-rotor prototype experiments.

Key words: nonplanar hex-rotor unmanned aerial vehicle ( UAV), characteristic model,
golden section adaptive controller, stability analysis, trajectory tracking control

0　 Introduction

Recently, multi-rotor unmanned aerial vehicle
(UAV) has been more and more widely used in mili-
tary and civil fields due to its advantages of small size,
light weight, vertical take-off and landing, strong mob-
ility, free hovering, and even flexible shuttle in narrow
and complex environment[1-2] . Since multi-rotor UAV
is a multi-input multi-output, strong coupling, high-or-
der nonlinear system[3], its flight control technology
has become a key issue affecting its practical engineer-
ing application. Accurate trajectory tracking is the bas-
ic requirement of autonomous flight and has been wide-
ly concerned.

For the trajectory tracking control problem of
multi-rotor UAV, researchers have carried a lot of re-
searches on quad-rotor UAV as a typical representa-
tive. Rios et al. [4] used continuous sliding mode con-
trol algorithm to achieve robust tracking of position and
attitude for quadrotor UAV with uncertain parameters
and external disturbance. Mofid et al. [5] proposed an
adaptive super-twisting terminal sliding mode trajectory
tracking control algorithm for a quadrotor with input de-
lay. Zakaria et al. [6] designed an H∞ robust tracking

control method against wind disturbance for quadrotor
UAV based on adaptive neural network. Adaptive dis-
turbance compensation trajectory tracking control strat-
egy for quadrotor UAV was proposed and the general-
ized regression neural network was designed to estimate
unknown external disturbances[7] . Wang et al. [8] in-
troduced a deep learning method to realize trajectory
tracking control of quadrotor UAV.

Thus, for the trajectory tracking control of multi-
rotor UAV, the multi-rotor model is usually greatly
simplified to achieve low-order controller design, or a
complex nonlinear trajectory tracking controller is de-
signed to control the high-order model. However, com-
plex trajectory tracking methods are difficult to be ap-
plied in practical engineering.

In the 1980s, the characteristic model theory was
proposed from the perspective of practical applica-
tion[9] . It is a model established by the combination of
the dynamic characteristics, environmental characteris-
tics and control performance requirements of the ob-
ject[10], and its form is simpler than the original dy-
namic model, easy to design the controller and imple-
ment in actual engineering. The characteristic model
theory has achieved fruitful results after years of devel-
opment. Tao et al. [11] designed an adaptive control al-
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gorithm based on characteristic model to solve the prob-
lem of path tracking control of surface unmanned vehi-
cle under variable environment and time-varying
speed. The characteristic model theory and the full co-
efficient adaptive control method were applied to the
joint control of foot robot. The simulation results
showed that the method had good control effect and
adaptive ability to the model parameter uncertainty in
Ref. [12]. Considering the attitude control problem of
three-axis stable geosynchronous orbit satellites, an im-
proved golden section control method based on charac-
teristic model was adopted. Numerical simulation
proved that this method improved the system control
performance without increasing energy consump-
tion[13] . The characteristic model theory has also been
well applied in satellite transient heat flow control, hy-
draulic kettle control, electrolytic aluminum control
and spacecraft return and re-entry control.

Therefore, a trajectory tracking control method
based on characteristic model theory for nonplanarhex-
rotor UAV (simplified as hex-rotor) is proposed. The
hex-rotor has a different rotor configuration from the
traditional quadrotor UAV, which fundamentally over-
comes the problem of the under-actuation of the
quadrotor restricting the flight maneuverability, and
can realize any configuration of the 6-degree-of-freedom
(DOF) motion in space. The characteristic model of
the hex-rotor is constructed, the high-order terms and
uncertain terms of the hex-rotor are compressed into
time-varying characteristic parameters, and the model
information is not lost. Moreover, the description form
of characteristic model is simple, which is easy to con-
troller design and engineering implementation. Based
on the characteristic model of the hex-rotor, a golden
section adaptive controller is designed to control the
trajectory tracking. Then, the stability of the closed-
loop system is analyzed and demonstrated in detail. Fi-
nally, the trajectory tracking numerical simulation ex-
periments and prototype experiments of the hex-rotor
effectively corroborate that the proposed control method
in this paper has accurate trajectory tracking control
performance and strong robustness against disturb-
ances, which has good practical application value.

1　 Dynamic model of hex-rotor

The structure of the hex-rotor is depicted in
Fig. 1. The plane of the body is composed of six light
and equal length connecting rods in the same plane
evenly distributed around the center point of the hex-
rotor. Six drive units (motor and rotor) are mounted
vertically at the end of each connecting rod. Among

them, rotor 1, 3 and 5 rotate counterclockwise, while
rotor 2, 4 and 6 rotate clockwise. The angle between
body plane and rotating shaft is vj(0 < vj < 90 °) . Two
mutually centrosymmetric rotors ( rotor 1 and rotor 4,
rotor 2 and rotor 5, and rotor 3 and rotor 6) are in the
same plane, and the rotation axes of the two adjacent
rotors are opposite. The hex-rotor completes horizontal
motion and attitude rotation by changing rotor speed,
the nonplanar design structure ensures that the hex-ro-
tor can achieve any configuration of the 6-DOF move-
ment in space within the driving capacity of rotors.

(a) Three-dimensional structure

(b) Schematic diagram
Fig. 1　 The structure of the hex-rotor

The earth-fixed inertial frame E and the body-
fixed frame B are defined to describe the dynamics of
the hex-rotor. The translational space position of the
hex-rotor is expressed as P = [Px, Py, Pz] T and the
attitude is defined by Euler angles η = [ϕ,θ,ψ] T .
The hex-rotor can be regarded as a symmetrical rigid
body with 6-DOF in space in the case that the elastic
deformation of the rotor is ignored and the aerodynamic
characteristics of the rotor are simplified, thus, the ro-
tational dynamic equation is established based on New-
ton-Euler formula

dH
dt = δH

δt + ω × H = M (1)

where ω = [p, q, r] T denotes the rotational angular
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velocity in body-fixed frame, the angular momentum H
= J·ω with J = diag( Ix, Iy, Iz) and Ix, Iy, Iz are
moment of inertia in three axis. The resultant moment
of body-fixed frame M is expressed as

M = ∑
6

i = 1
(Di·fi + Ni·τi) (2)

where Di ∈R3 and Ni ∈R3, i = 1,2,…,6 respective-
ly represent the position vector and direction vector of
the rotor in the body-fixed frame, which can be ob-
tained as

D1 = 3
2 - 1

2 0[ ]
T

l, D2 = [0 - 1 0] T l,

D3 = - 3
2 - 1

2 0[ ]
T

l, D4 = - 3
2

1
2 0[ ]

T

l,

D5 = [0 1 0] T l, D6 = 3
2

1
2 0[ ]

T

l,

N1 = N4 = sinvj
2

3sinvj
2 cosvj[ ]

T

,

N2 = N5 = [ - sinvj 0 cosvj] T,

N3 = N6 = sinvj
2 -

3sinvj
2 cosvj[ ]

T

.

where l represents the distance between the rotor and the
center of the hex-rotor, fi = k1Ω2

i denotes thrust gener-
ated by the ith rotor, as well as τi = ( - 1) i -1k2 Ω2

i ex-
presses the reactive torque, with Ωi as the speed of the
ith rotor. k1 and k2 are the thrust factor and drag factor.

The relationship between Euler rates and the body
angular velocity is described as η̇ = T·ω with transfer
matrix T as

T =
1 sinϕtanθ cosϕtanθ
0 cosϕ - sinϕ
0 sinϕsecθ cosϕsecθ

é

ë

ê
ê

ù

û

ú
ú

(3)

Then, the rotational dynamic equation can be de-
rived as

ϕ̈
θ̈
ψ̈

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

[Mx - qr( Iz - Iy)] / Ix
[My - pr( Ix - Iz)] / Iy
[Mz - qr( Iy - Ix)] / Iz

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(4)

where Mx, My and Mz are the axial component of body-
fixed frame.

The translational dynamics equation of the hex-ro-
tor inearth-fixed inertial frame is established as

m·P̈ = R·F + G (5)
where R is called the rotation matrix maps vectors from
the body-fixed frame to the inertial frame[14] . G =
[0 0 g] T with g as the acceleration of gravity, the
resultant force F = [Fx Fy Fz] T is written by

F = ∑
6

i = 1
Fi = ∑

6

i = 1
Ni·fi (6)

Substituting Eq. (6) into Eq. (5), then, the
translational dynamics equation can be given by

P̈x

P̈y

P̈z

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1
m

Fxcosψcosθ + Fy(cosψsinθcosϕ - sinψcosϕ)
+ Fz(cosψsinθcosϕ + sinψsinϕ)

Fxsinψcosθ + Fy(cosψsinθsinϕ + cosψcosϕ)
+ Fz(sinψsinθcosϕ - cosψsinϕ)

- Fxsinθ + Fysinφcosψ + Fzcosθcosϕ - mg

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

(7)

2　 Characteristic modelling of hex-rotor

It can be noted from the dynamic model that the
hex-rotor is a multi-input multi-output nonlinear com-
plex system with strong coupling. It is often difficult to
design a low order controller that is easy to implement
in engineering to achieve high performance control for
such complex nonlinear system. Therefore, the trajec-
tory tracking control method based on characteristic
model for the hex-rotor is proposed in this paper to
solve the problem in the design of low level controller
under accurate modeling to meet high performance con-
trol requirements, so as to improve the track tracking
control performance of the hex-rotor. The difference
equation between the control input and system output
variables can be established based on characteristic
model theory to facilitate the design of the control-
ler[15-16] . The characteristic model is not a reduction of
the high order model, but concentrates the relevant in-
formation of the system model into the characteristic
parameters without losing information. It is equivalent
to the output of the real object under the same input
control, and has much simpler form, which is easy to
design the subsequent controller and facilitate the reali-
zation in actual engineering.

In the general case of small attitude angles of the
hex-rotor, the translational error dynamics equation is
rewritten as

P̈ex = - 1
m sinvjFecosψsinθcosϕ + P̈rx

P̈ey = - 1
m sinvjFecosψsinϕ + P̈ry

P̈ez = - 1
m sinvjFecosθcosϕ + g + P̈rz

ì

î

í

ï
ï
ï

ï
ïï

(8)

where Pr = [Prx, Pry, Prz] T expresses the desired
translational position of the hex-rotor, and Pe = [Pex,
Pey, Pez] T is the translational position error, namely, it
is the difference between the desired translational posi-
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tion and the actual translational position. Taking the
fourth derivative of Eq. (8) can be obtained

x(4) = Aẍ + B0(x)u + B1 u̇ + B2 ü + C (9)
where x = [x1, x2, x3] T = Pe represents the output of
model, u = [Fe, Mx, My, Mz] T denotes the control-
ling quantity with Fe = k1(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4 + Ω2

5 +
Ω2

6),
A =

- (ψ
·
)2 + tanψtanϕ·ψ

·
ϕ
·

+ tanψ
Iz

(Iy - Ix)qp -
Ix - Iz
Iy

pr

2tanψ
sinθ ψ

·
ϕ
·

( Ix - Iz)pr
Iycosψ

é

ë

ê
ê
ê
ê
ê
ê
ê

　 　 　 　

- sinθ·θ
·
ϕ
·

- (ψ
·
) 2 + (ϕ

·
) 2 - tanψ

Iz
( Iy - Ix)pq

- 2sinθ·θ
·
ϕ
·

cosψ

　 　 　 　

- sinψ·ψ
·
θ
·

-
Iz - Iy
Ix

pr

(θ
·
) 2 - tanϕ (ϕ

·
) 2 +

( Iz - Iy)qrtanϕ
Ix

ù

û

ú
ú
ú
ú
ú
ú

,

B0(x) =

0 -
ẍ1
Ix

ẍ1
Iy

tanψ
Iz

ẍ1

0 -
ẍ3 + g
Ix

0 - tanψ
Iz

ẍ2

0 -
ẍ3 + g
Ix

tanϕ -
ẍ1

cosψIy
0

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

,

B1 =
2
m sinvj(-sinψψ

·
sinθcosϕ + cosψsinθθ

·
cosϕ) 0 0 0

2
m sinvj(sinψψ

·
sinϕ - cosψcosϕϕ

·
) 0 0 0

2
m sinvj(-sinθθ

·
cosϕ - cosθsinϕϕ

·
) 0 0 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

,

　 B2 =

1
m sinvj(sinθcosψcosϕ) 0 0 0

- 1
m sinvj(cosψsinϕ) 0 0 0

1
m sinvj(cosθcosϕ) 0 0 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

,

C =

- sinψψ
·
θ
·
g + + P(4)

rx

-
( Iz - Iy)qrg

Ix
+ + P(4)

ry

g (θ
·
) 2 - gtanϕ (ϕ

·
) 2 +

gtanϕ( Iz - Iy)qr
Ix

+ P(4)
rz

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

.

　 　 Eq. (9) is further expanded as

x(4)
j = Aj ẍ + ∑

2

s = 0
∑

4

l = 1
bs, jl(x)u(s)

l + Cj, j = 1,2,3

(10)
where A j expresses the ith row vector of matrix A,
Bs(x) = (bs, ij(x)) 3×4( s = 0,1,2; i = 1,2,3), and
then adding ẋ j to both sides of Eq. (10) the following
can be obtained as

ẋ j = ∑
4

l = 1
b0(x)ul + K j( t) (11)

where K j( t) = - x(4)
j + A j ẍ + ∑

2

s = 1
∑

4

l = 1
bs, jl(x)u( s)

l + C j

+ ẋ j, taking the derivative and then

ẍ j = ∑
4

l = 1

db0(x)
dt ul + ∑

4

l = 1
b0(x) u̇l +

dK j( t)
dt

(12)
Eq. (13) can be obtained by adding Eq. (11)

and Eq. (12) after discretization.
x j(k + 1) = f j1(k)x j(k) + f j2(k)x j(k - 1)

+ ∑
4

l = 1
g jl(k)ul(k)

+ ∑
4

l = 1
g j,p+l(k)ul(k - 1) + W j(k)

(13)
where f j1(k) = 2 - T, f j2(k) = T - 1, T denotes sys-
tem sampling period, gjl(k) = T2b0(x(k)) +
2Tb0(x(k)) - Tb0(x(k - 1)), gj, p+l(k) = -
Tb0(x(k)), Wj(k) = (T2 + T)K(k) - TK(k - 1),
f j1(k) and f j2(k) can be determined directly when T is
fixed. The elements of A j are bounded due to the
bounded derivatives of ul and x j . | W j(k) | ≤2M jT +
M jT2 where M j is positive coefficient. Then, lim

T→0 +
|

W j(k) | = 0, That is, when T is sufficiently small, the
modeling error can be less than the given error limit.
As a result, the characteristic model of the hex-rotor
can be expressed as

x(k + 1) = F1(k)x(k) + F2(k)x(k - 1)
+ G0(k)u(k) + G1(k)u(k - 1)

(14)
where x(k + 1) represents the discrete vector of the
output trajectory error at time k + 1, similarly, x(k)
and x(k - 1) denote the discrete vector of the output
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trajectory error at time k and k - 1, respectively. u(k)
and u(k - 1) are the discrete vector of the controlling
quantity at time k and k - 1; F1(k), F2(k), G0(k)
and G1(k) express characteristic parameters with slow
time-varying.

3 　 Trajectory tracking adaptive controller
design

　 　 In the system startup stage, for the controlled ob-
ject with unknown parameters, the general adaptive
control algorithm is difficult to ensure the stability of
the system, which results in running by mistake.
Thereby, the golden section ratio combined with mini-
mum variance is introduced in this paper, the golden
section adaptive controller is designed as follows based
on characteristic model of the hex-rotor for the sake of
stability in transition.

u(k) = - 1
Ĝ0(k) + μ0

[l1F̂1(k)x(k) + l2F̂2(k)x(k - 1)]

= - S(k)[ l1 F̂1(k)x(k) + l2 F̂2(k)x(k - 1)]
(15)

where x(k) represents the discrete vector of the trajec-
tory error shown in Eq. (14) at time k, l1 and l2 are
controller coefficients, μ0 is a small positive number.

Defining S(k) = 1
Ĝ0(k) + μ0

, F̂1(k), F̂2(k),

Ĝ0(k) and Ĝ1(k) express estimated values of charac-
teristic parameters, among them, F̂1(k) = F1(k) =
(2 - T)·I, F̂2(k) = F2(k) = (T - 1)·I, with I
∈ R3×3 as unit matrix, G0(k) and G1(k) are restricted
to the following range

0 < N1T2 ≤ G0( i, j)(k) ≤ N2T2

0 < N1T2 ≤ G1( i, j)(k) ≤ N2T2{ (16)

with i = 1,2,3; j = 1,2,3,4; N1 and N2 are positive
numbers;G0(k) and G1(k) are estimated based on re-
cursive least square method with forgetting factor de-
vised as
ξ̂(k) = ξ̂(k - 1) + L(k)[x(k) - F1(k)x(k - 1)

　 　 　 + F2(k)x(k - 2) - φT(k) ξ̂(k - 1)]
L(k) = Q(k - 1)φ(k)[λ + φT(k)Q(k - 1)φ(k)] -1

Q(k) = 1
λ [I - L(k)φT(k)]Q(k - 1)

ì

î

í

ï
ï
ï

ï
ïï

(17)
where ξ̂(k) = [Ĝ0(k), Ĝ1(k)] T is the estimated val-
ue of G0(k) and G1(k) at time k, φ(k) = [u(k),
u(k - 1)] T represents information vector, L(k) de-
notes gain matrix, Q(k) expresses error covariance
matrix, λ is forgetting factor, and I is unit vector.

4　 Closed loop stability analysis
The stability of closed loophex-rotor system is ana-

lyzed and the following proposition is described.
Proposition 1　 Taking consideration of character-

istic model of the hex-rotor shown in Eq. (14) and
golden section adaptive controller expressed in Eq. (15),
if the following two conditions are met:

(1) The spectral radius of matrix Ec is less than 1
by setting approximate control parameters l1 and l2,

where Ec =
(2 - 2l1)I ( l2 - 2l1 - 1)I l2I

I 0 0
0 I 0

é

ë

ê
ê

ù

û

ú
ú
with

I ∈ R3×3 as the unit matrix.
(2) There is a sampling period T∗ and positive

coefficient ε > 1 depending on l1 and l2, such that for

any T ∈ (0, T∗),
N2 + μ0

N1
< ε is satisfied. Then,

the discrete time closed loop hex-rotor system based on
golden section adaptive controller of the characteristic
model is exponentially stable.

Proof Substituting Eq. (15) into Eq. (14), it
can be derived that
x(k + 1) = (F1(k) - G0(k)S(k) l1 F̂1(k))x(k)

+ (F2(k) - G0(k)S(k) l2 F̂2(k)
- G1(k)S(k - 1) l1 F̂1(k - 1)x(k - 1)
- (G1(k)S(k - 1)l2F̂2(k - 1))x(k - 2)

(18)
Define 􀭵x(k) = [xT(k) xT(k - 1) xT(k - 2)] T,
then, the closed loop hex-rotor system is rewritten as

􀭵x(k + 1) = E∗
c (k)􀭵x(k) + BcDT(k)􀭵x(k)

(19)
where
E∗

c (k) =

　
F1(k) - l1 F̂1(k) I3×3 0

F2(k) - l2 F̂2(k) - l1 F̂1(k - 1) 0 I3×3
- l2 F̂2(k - 1) 0 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

T

,

Bc =
I3×3
03×3

03×3

é

ë

ê
ê
ê

ù

û

ú
ú
ú
,

　 　 D(k) =

(1 - G0(k)S(k)) l1 F̂1(k))

(1 - G0(k)S(k))l2F̂2(k)

+ (1 - G1(k)S(k - 1))l1F̂1(k - 1)

(1 - G1(k)S(k - 1) l2 F̂2(k-1))

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

.

　 　 The state matrix E∗
c (k) of the Eq. (19) is divid-

ed into benchmark part and disturbance part as
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E∗
c (k) = Ec + BcΞT(k) (20)

where

Ec =
(2 - 2l1)I3×3 ( - 1 + l2 - 2l1)I3×3 l2I3×3

I3×3 0 0
0 I3×3 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú
,

Ξ(k) =

(F1(k) - 2) + l1(2 - F̂1(k))

(F2(k) + 1) + l2(1 + F̂2(k)) - l1(F̂1(k - 1) - 2)

- l2(1 + F̂2(k - 1))

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

.

　 　 According to Proposition 1, there is ρ(Ec) < 1,
then, vc as a positive number exists and satisfies
‖Ξ(k)‖ ≤ vcT. It can be known from the continuity
of matrix eigenvalues to its elements that for any ρ1 ∈
(ρ(Ec),1), there exists the sampling period T∗

1 such
that for any T ∈ (0,T∗

1 ), it can be obtained
ρ(Ec(k)) ≤ ρ1 < 1, ∀k ≥ 0, then,
lim
k→∞

supρ(Ec(k)) ≤ ρ1 < 1, thereby, it can be ob-
tained as
lim
k→∞

sup‖E∗
c (k + 1) - E∗

c (k)‖ =

lim
k→∞

sup‖Bc[Ξ(k + 1) - Ξ(k)] T‖ ≤2vcT
(21)

The state transition matrix of the system 􀭵x(k + 1)
= E∗

c (k)􀭵x(k) is defined as {Φ(k,i),∀k≥ i≥0},
such that

Φ(k + 1, i) = E∗
c (k)Φ(k,i),Φ( i,i) = I,

∀k ≥ i ≥0 　 (22)
where I∈R3×3 . In terms of stability theory of slow time
varying systems[17], there exists the sampling period
T∗

2 ≤ T∗
1 , such that for any T ∈ (0, T∗

2 ), it can be
obtained as

‖Φ(k + 1,i)‖ ≤ ΠΦ χk+1-iΦ , ∀k ≥ i (23)
where ΠΦ > 0, χΦ ∈ (0,1) is constant. The solution
of closed loop hex-rotor system are satisfied as

􀭵x(k + 1) = Φ(k + 1,0)􀭵x(0)

+∑
k

i = 0
Φ(k + 1, i + 1)BcDT( i)􀭵x( i)

(24)
Further, it can be obtained as

sup
k≥0

‖BcDT(k)‖ ≤ L( l1, l2) 1 -
N1

N2 + μ0
( )

(25)
where L( l1, l2) = 4l21 + l22 . Substituting Eq. (23)
and Eq. (25) into Eq. (24), it can be taken by
‖􀭵x(k + 1)‖ ≤ ΠΦ χk+1Φ ‖􀭵x(0)‖

+ ∑
k

i = 0
ΠΦ χk-iΦ L( l1, l2) 1 -

N1

N2 + μ0
( )‖􀭵x( i)‖

(26)

Utilizing Gronwall-Bellman inequality, it can be
obtained as
‖􀭵x(k + 1)‖ ≤

ΠΦ χΦ + ΠΦL(l1, l2) 1 -
N1

N2 + μ0
( )( )

k+1

‖􀭵x(0)‖

(27)
In the light of the second condition of Proposition

1, there is
N2 + μ0

N1
< ε =

ΠΦL( l1, l2)
ΠΦL( l1, l2) + χΦ - 1, it

can be obtained as

χΦ + ΠΦL( l1, l2) 1 -
N1

N2 + μ0
( ) < 1 (28)

Then, for any χ∗ ∈

χΦ + ΠΦL( l1, l2) 1 -
N1

N2 + μ0
( ),1( ), there exists

the upper limit of sampling period T∗
3 ≤T∗

2 , for ∀T∈
(0, T∗

3 ), it can be derived as

χΦ + ΠΦL( l1, l2) 1 -
N1

N2 + μ0
( ) < χ∗ < 1

(29)
Therefore, it is obviously noted that the closed

loop hex-rotor system with adaptive controller based on
characteristic model is exponentially stable.

5　 Numerical simulation results

From the point of view of practical application,
firstly, the trajectory tracking control simulations of the
hex-rotor between the proposed method and proportion-
al integral derivative (PID) method widely used in en-
gineering are carried out to demonstrate the validity and
robustness of the proposed method in two cases. The
parameters of model in simulations are taken from the
hex-rotor prototype, as listed in Table 1. The adaptive
controller coefficients are taken as l1 = 0. 382, l2 =
0. 618, and μ0 = 0. 01. The sampling period is set as T
= 0. 01s, and N1 = 1, N2 = 100, forgetting factor is
chosen as λ = 0. 996, ξ(0) is randomly selected in the
following range

　 　 D = 0. 0001 ≤ G0( i, j)(k) ≤ 0. 01
0. 0001 ≤ G1( i, j)(k) ≤ 0. 01{ .

Table 1　 Parameters of the hex-rotor prototype
Parameters Values
Mass m 2. 5 kg
Distance between rotor and the center l 0. 5 m
Moment of inertia to x-axis Ix 8. 1 × 10 - 3 Nm / s2

Moment of inertia to y-axis Iy 8. 1 × 10 - 3 Nm / s2

Moment of inertia to z-axis Iz 14. 2 × 10 - 3 Nm / s2
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Angle between rotor shaft and body
plane v j

60 °

Thrust factor k1 54. 2 × 10 - 6 Ns2

Drag factor k2 1. 1 × 10 - 6 Nm / s2

In the first case, assume the initial trajectory posi-
ton as P0 = [0 0 0] T m, and the desired trajectory
is inclined space rectangle depicted as

xd = 4( t - 5)
5 fsg( t, 5, 10) + 4fsg( t,10,15)

　 　 + 4(20 - t)
5 fsg( t,15,20)

yd = 3(t - 10)
5 fsg(t,10,15) + 3fsg(t,15,20)

　 　 + 3(25 - t)
5 fsg( t,20,25)

zd = 3t
5 fsg( t,0,5) + 3fsg( t,5,30)

ì

î

í

ï
ï
ï
ï
ïï

ï
ï
ï
ï
ï

where fsg(x, a, b) = sign(x - a) + sign(b - x)
2

Fig. 2 and Fig. 3 describe the rectangular trajecto-
ry tracking three dimensional curves based on the pro-
posed method and PID algorithm, respectively, in
which it can be noted that the hex-rotor system has
more accurate trajectory tracking control performance
with the proposed method. To further clarify the com-
parison results of two algorithms, the rectangular traj-
ectory in position x, y and z directions with two algo-
rithms are depicted in Fig. 4. It is clear to see that the
adaptive controller based on characteristic model has
much smaller overshoot, faster response time and more
satisfied trajectory tracking effect with zero stable error
in three directions.

Additionally, the estimations of characteristic pa-
rameters based on recursive least square method with
forgetting factor are shown in Fig. 5 and Fig. 6. It can
be remarkably obtained that the estimated values of
G0(k) and G1(k) eventually tend to the constant value
with fast convergence rate.

Fig. 2　 Rectangular trajectory tracking three dimensional
curves with the proposed method

Fig. 3　 Rectangular trajectory tracking three dimensional
curves with PID method

(a) In positon x direction

(b) In positon y direction

(c) In positon z direction
Fig. 4　 Rectangular trajectory tracking simulation

results in three directions

Further, the second simulation is implemented for sake
of verifying the robustness of the proposed method. The
white noise with the amplitude of 0. 15 Nm as external
disturbance is acted on the three position directions.
The initial trajectory positon is also assumed as P0 =
[0 0 0] T m, and the desired trajectory is space el-
lipse described as

xd = sin t
2( ), yd = 1. 2 sin t + π

2( ), zd = 10
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(a) The first row (b) The second row

(c) The third row (d) The fourth row

Fig. 5　 Estimation results of characteristic parameter G0(k)

(a) The first row (b) The second row

(c) The third row (d) The fourth row
Fig. 6　 Estimation results of characteristic parameter G1(k)
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　 　 The ellipse trajectory tracking results based on the
proposed method and PID are shown in Fig. 7 and
Fig. 8. The proposed controller has significantly smal-
ler overshoot and much stronger robustness against ex-
ternal disturbance than PID method. The trajectory er-
rors in three directions of the two strategies are exhibi-
ted in Fig. 9, in the meanwhile, the maximum absolute
error (MAX) and root mean square (RMS) error in
three directions from 4 - 50 s are provided quantitative-
ly in Table 2. The results illustrate that the ellipse traj-
ectory tracking stable errors in three directions of the
proposed method are maintained in the smaller magni-
tude with a faster response speed under external dis-
turbance.

Fig. 7　 Ellipse trajectory tracking three dimensional curves with
the proposed method

Fig. 8　 Ellipse trajectory tracking three dimensional curves with
PID method

(a) In positon x direction

(b) In positon y direction

(c) In positon z direction
Fig. 9　 Ellipse trajectory tracking errors in three directions

Table 2　 Ellipse trajectory tracking compared errors
of MAX and RMS

Signal
Proposed method
MAX RMS

PID method
MAX RMS

Error x / m 0. 348 0. 142 0. 471 0. 289
Error y / m 0. 383 0. 167 0. 532 0. 294
Error z / m 0. 821 0. 297 1. 864 0. 721

6　 Hex-rotor prototype experiments

The schematic view of hex-rotor control platform is
presented in Fig. 10. It uses DSP with the series of
TMS320F28335 that runs at 150 MHz, including 12
programmable pulse width modulation outputs, 12-bit
analog input as well as 16 channels with programmable
gains, at the same time, it supports floating point cal-
culations as the hex-rotor on-board control computer.

Fig. 10　 The schematic view of hex-rotor control platform
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　 　 Distance laser sensor and inertial measurement
unit (IMU) constituted by accelerometers, magnetom-
eters and gyroscopes are installed on the hex-rotor pro-
totype to measure flight states. The RS232 serial port
can transmit the sensor data to the on-board control
computer. Then, the host computer receives these data
exported from on-board computer through wireless
transfer and generates the corresponding analysis
charts, which provides prototype experimental support.

For the sake of demonstrating feasibility and ro-
bustness of the proposed adaptive controller in the actu-
al engineering, the fixed point anti-disturbance experi-
ment and triangle trajectory tracking experiment of the
hex-rotor prototype outdoors are carried out. The pa-
rameters of the adaptive controller and estimation val-
ues of characteristic parameters are the same as those
in simulations. The hex-rotor experimental flight pic-
ture is displayed in Fig. 11.

Fig. 11　 The hex-rotor prototype

Firstly, the instantaneous maximum wind speed is
about 4. 5 m / s measured by the tachometer in the fixed
point anti-disturbance experiment outdoors. The fixed
point trajectory tracking results in three directions are
shown in Fig. 12. It is worthwhile to point out that al-
though the track errors in the three directions are large
due to wind disturbance, the hex-rotor quickly over-
comes the influence of external disturbance based on
the proposed method in this paper, and the stable er-
rors of three directions all converge within ± 1 m. The
results highlight the claim that the adaptive controller
with characteristic model has favorable trajectory track-
ing control performance and strong robustness in the
presence of wind disturbances.

Further, the triangle trajectory tracking prototype
experiment is executed with three-level varied wind
disturbance outdoors. Fig. 13 clearly indicates that the
proposed method can reach the desired trajectory and
offer the great tracking control performance. It is
obtained that the adaptive controller with characteristic

(a) At latitude

(b) At longitude

(c) At height
Fig. 12 　 Fixed point trajectory tracking results in three direc-

tions of hex-rotor prototype

(a) In horizontal direction

(b) At height
Fig. 13　 Triangle trajectory tracking results in three directions of

hex-rotor prototype
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model is well suited in dealing with the trajectory track-
ing control problem in actual engineering.

7　 Conclusion

Aiming at the high performance trajectory tracking
controller design problem for strongly coupled nonlinear
hex-rotor UAV with high driving property, great pay-
load capacity and damage tolerance in practical engi-
neering, an adaptive trajectory tracking controller
based on characteristic model is proposed in this pa-
per. Firstly, the dynamic model and characteristic
model of the nonplanar hex-rotor is constructed. On the
basis of characteristic model, a golden section adaptive
controller is designed. Then, the stability of the hex-
rotor closed loop system is analyzed in detail. Finally,
numerical simulations in two cases demonstrate the ef-
fectiveness of the proposed method under disturbances.
In the meanwhile, two kinds of prototype experiments
indicate the hex-rotor system based on the proposed
method can provide the favorable trajectory tracking
control performance with stable error converging to
± 1 m as well as strong robustness in the presence of
three-level wind disturbances outdoors.
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