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Abstract
It is significant to efficiently support artificial intelligence (AI) applications on heterogeneous

mobile platforms, especially coordinately execute a deep neural network (DNN) model on multiple
computing devices of one mobile platform. This paper proposes HOPE, an end-to-end heterogeneous
inference framework running on mobile platforms to distribute the operators in a DNN model to differ-
ent computing devices. The problem is formalized into an integer linear programming (ILP) problem
and a heuristic algorithm is proposed to determine the near-optimal heterogeneous execution plan.
The experimental results demonstrate that HOPE can reduce up to 36. 2% inference latency (with an
average of 22. 0% ) than MOSAIC, 22. 0% (with an average of 10. 2% ) than StarPU and 41. 8%
(with an average of 18. 4% ) than μLayer respectively.
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0　 Introduction

Deep neural networks ( DNNs) are increasingly
adopted in mobile applications and have become the
core building blocks of top apps[1] . Typically, for
these applications, the inference latency is a significant
issue for users. Meanwhile, mobile platforms are emer-
ging towards heterogeneous embedded systems[2],
which integrate a variety of computing devices into a
mobile system-on-chip ( SoC). These mobile compu-
ting devices exhibit huge diversity in performance,
power consumption, memory capacity and programming
interface[3] .

To efficiently exploit the heterogeneity and support
artificial intelligence (AI) applications on heterogene-
ous mobile platforms, several frameworks are proposed.
For example, TFLite[4] could run inference workload on
graphics processing unit (GPU) through GPU delegate
or other accelerators through the Android neural net-
works API (NNAPI). MNN[5] supported running DNN
models on mobile GPU through OpenCL, OpenGL,
Vulkan or Apple Metal. These mobile frameworks pro-
vide fundamental support for running a DNN model
across different platforms. However, there still lacks
heterogeneity models to automatically distribute a DNN
model across the on-chip processing units. To address

this challenge, MOSAIC[6] used a heterogeneity-, com-
munication-, and constraint-aware model slicing ap-
proach to distribute a DNN model across computing de-
vices on a heterogeneous platform. However, MOSAIC
considers the DNN model as a linear model without ex-
ploring the inter-operation parallelism. On traditional
CPU-GPU hybrid servers, researchers have proposed a
number of approaches for dynamically scheduling par-
allel tasks to heterogeneous hardware[7-11], and a rep-
resentative work is StarPU[12] . However, these runtime
heuristics are not applicable to mobile platforms. The
reason is that DNN models have some special directed
acyclic graph (DAG) topology structures, which are
built from layers or blocks with similar structure and si-
zes, especially for large models. But StarPU is una-
ware of the DAG topology characteristics, thus missing
the opportunity of globally determining the scheduling
policy and causing performance loss. Ref. [13] pro-
posed μlayer which accelerates each NN layer by sim-
ultaneously utilizing heterogeneous computing devices
on mobile SoCs.

To materialize the optimization, there are several
major challenges. Challenge 1: trade-off between per-
formance and scheduling time. Scheduling on mobile
platform requires an acceptable scheduling time to ob-
tain the execution plan. StarPU is lightweight but the
performance is degraded, leaving the optimization op-
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portunity submerged. Challenge 2: communication
overhead. Running DNN operators to heterogenous
computing devices will introduce communication over-
head which requires careful consideration. For DNN
frameworks with CPU and GPU kernels using different
data layout, μlayer will introduce significant data lay-
out translation overhead.

In this paper, HOPE, an end-to-end lightweight
heterogeneous inference framework is proposed to dis-
tribute a DNN model coordinately on different compu-
ting devices of a platform. The key insight is that many
DNN models exhibit inter-operation parallelism and en-
able different operations to be executed in parallel on
multiple computing devices. Meanwhile, the topology
characteristics of DNN models can be used to seek for
an optimal scheduling solution. HOPE first profiles the
computation latency for each DNN operator, together
with the communication cost of each tensor between ev-
ery two computing devices. Then, the problem is for-
malized as an integer linear programming ( ILP), and
for complex DNN models that require an extremely long
time for ILP solver, HOPE partitions a graph into mul-
tiple subgraphs and solves ILP for each subgraph indi-
vidually.

For challenge 1, two distinct algorithms are pro-
posed. The ILP based scheduling method is proposed
for best performance but longer scheduling time, while
the heuristic method is designed to get the execution
plan much faster with moderate performance. Typical-
ly, it takes several seconds for the ILP based algorithm
to get the execution plan while it takes less than one
second for the heuristic method. A heuristic algorithm
is also proposed to partition the DNN model into multi-
ple modules, with each module containing several op-
erators. Finally, HOPE includes an execution engine
for simultaneously launching modules to different com-
puting devices according to the execution plan. Experi-
mental results demonstrate that HOPE can reduce up to
36. 2% inference latency (with an average of 22. 0% )
than MOSAIC, 22. 0% (with an average of 10. 2% )
than StarPU, respectively, and 41. 8% (with an aver-
age of 18. 4% ) than μlayer, compared with the state-
of-the-art work.

1　 Problem formalization

The problem of scheduling a dataflow graph model
across multiple heterogeneous computing devices can
be formalized as the following.

A dataflow graph can be described with G(V, E),
where V represents the set of vertexes and E represents
the set of edges. Typically, a vertex vi ∈ V represents

an operator like convolution in DNN models. While an
edge (vi, vj) represents that operator vj depends on the
output of operator vi . Therefore, vj cannot start execu-
ting until vi is finished. Given a dataflow graph model
G(V,E), and a set D containing all computing devices
of the target platform, for each vi ∈ V, its execution
time on device d j is cli, j; for each (di, d j) pair (di, d j

∈ D), the communication cost is C(di, dj)(T) if a ten-
sor T is required to transfer from di to d j . The algo-
rithm’s objective is to find out an execution plan R de-
termining the execution device d j for each node vi,
which minimizes the end-to-end latency τ(R, G) . An
execution plan R(b,ψ) contains two parts, i. e. , a
mapping matrix b indicating the target device for each
vi, and an order matrix array ψ indicating the execution
order of the operators mapped to each device. In R(b,
ψ), b is a two-valued mapping matrix recording the se-
lected device for each operator, with each element bi, j

representing whether the node vi is scheduled to the de-
vice d j, i. e. ,

bi, j = 1　 if vi is scheduled on d j

0　 if vi is not scheduled on d j
{

ψ is a matrix array, and the j-th element is a matrix re-
presenting the execution order of the operators mapped
to d j, i. e. ,

ψi,k, j =
1　 if vi is scheduled before vk on device d j

0　 if vi is scheduled after vk on device d j
{

2　 ILP-based theoretically optimal solution

In this section, firstly, the parallel DAG execu-
tion problem is formalized as an ILP, by considering
the computation time of each node and communication
cost between computing devices. Then a graph partitio-
ning algorithm is proposed to reduce the graph com-
plexity for the ILP solver.

2. 1　 ILP formulation
2. 1. 1　 Node latency

The overall processing latency of a node vi on a
device d j comes from two parts. The first part is the
kernel computation latency cli, j of node vi on the com-
puting device d j . If node vi is not supported by d j, cli, j

is set to infinite ( + ∞ ). The second part is the com-
munication latency of receiving tensors from vi ’ s pre-
decessors. In particular, for the predecessor vj, the
communication latency from vj to vi is denoted as
C(d(vj), d(vi))(T), where d(vj) and d(vi) represent the
computing device for vj and vi respectively, T represents
the tensor transferred from vj to vi . Furthermore, when
vi has multiple predecessors, its total communication
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cost is computed by aggregating the tensors from all its
predecessors, i. e. ,

commi = ∑
　

vj∈pred(vi)
Cd(vj), d(vi)(T)

Therefore, the processing latency ti, j of node vi on
device d j can be formalized to the following expression.

ti, j > bi, j × cli, j + ∑
∀vk∈pred(vi)

(vk, vi)
(bi, j - bk, j)

× C(d(vk), d(vi))(T) (1)
(bi, j - bk, j) × C(d(vk), d(vi))(T) describes whether

there is communication overhead between the predeces-
sor vi and node vk . If node vi and node vk are distributed
to different devices ( for example node vk is dispatched
on CPU and node vi is dispatched on GPU), then the
output tensor produced by node vk needs to be trans-
ferred from CPU memory space to GPU memory space.
If (bi, j - bk, j) is less than zero, then bi, j must be zero
and bk, j must be one. The right side of the inequation
is less than zero and the equation is always true. In
other words, on device d(vj) vertex vi does not bring
any constraint on vertex vj . Note that the communica-
tion from the predecessors can overlap with the execu-
tion of operators that have no precedence constraints
with vi .
2. 1. 2　 Objective function

The objective is to minimize the execution time of
the computation graph, thus an auxiliary variable sti, j is
introduced to describe that node vi starts its execution
on device d j at time sti, j . The end-to-end computation
latency of the DNN model is the interval from the start-
ing time of the first node to the completion time of the
last node. Therefore, the objective is to minimize the
end-to-end latency.

Minimize τ(R, G) (2)
st.

τ(R, G) > bi, j × ( sti, j + ti, j)
(∀vi ∈ V), (∀d j ∈ D)

2. 1. 3　 Graph topology constraints
For node vi and node vk, if there is an edge (vi,

vk) ∈ E, the graph topology constraint must be satis-
fied:

stk,l > sti, j + ti, j + (bi, j - 1) × M (3)
(∀(vi, vk) ∈ E), (∀dl, d j ∈ D)

This constraint describes that for any node vk on
any device d j it cannot start execution until all its pre-
decessor(s) vi are finished. If bi, j is 0, the constraint
will always hold true. Note that M is a sufficient large
positive number.
2. 1. 4　 Device constraints

In this paper,it is assumed that a computing de-

vice will not be shared by multiple operators simultane-
ously, thus at any time there can be at most one opera-
tor running on each device. And the execution of a
task cannot be interrupted. If there is a path from node
vi to node vj, the device constraint would be naturally
satisfied since the graph topology constraint guarantees
that vj would start after vi . Therefore, only pairs of
nodes that have no path introduce the following con-
straint.

sti, j > stk, j + tk, j ∀d j ∈ D (4)
or　 stk, j > sti, j + ti, j ∀d j ∈ D

This constraint illustrates that vi and vk can be exe-
cuted in any order but cannot execute in parallel on de-
vice d j . An auxiliary variable ψi,k, j and a sufficiently
large number M are introduced for the ILP formaliza-
tion, as

sti, j > stk, j + tk, j - ψi,k, j × M ∀d j ∈ D (5)
stk, j > sti, j + ti, j - (1 - ψi,k, j) × M ∀dj ∈ D

where ψi,k, j is a binary variable which describes the ex-
ecution order of node vi and vk . If it equals to 0, vi
would execute after vk, and vice versa.
2. 1. 5　 Node constraints

Each node is expected to be executed only once:

∑
∀dj∈D

j
bi, j = 1, ∀vi ∈ V (6)

2. 1. 6　 Summary
With constraint Eqs(1) - (6), the problem can

be solved by using a standard ILP solver, e. g. ,
GLPK[13] . Finally, the execution plan is expressed
using two variables, bi, j describing the device place-
ment of the nodes, and ψi,k, j describing the execution
order of the node pair vi and vk .

2. 2　 Graph partitioning problem
The graph partitioning problem is formalized as

follows. Given a DAG G = (V,E) and an imbalance
parameter 􀆠, find an acyclic k -way partition P = V0,
V1 of V such that the balance constraint

w(Vi) ≤ (1 + 􀆠)
∑ v∈Vi

w(v)

k (7)

is satisfied and the vertex cut is minimized. The set
{V0, V1} represents the two subgraphs’ vertexes of the
graph G. w(v) is the weight of vertex and is set to 1 for
all the vertices. w(Vi) is the sum of w(v) for all vertex
v in Vi . To find a proper partitioning point, the concept
of upward rank is included, and is defined as

uprank(vj) = 1 + maxvi∈pred(vj)(uprank(vi))
(8)

Intuitively, the upward rank of vi is the longest path
from the input vertex(es) of G to vi . The upward rank
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of all the vertexes in a DAG can be computed in a sin-
gle traversal of G in the topology order with a time com-
plexity O( | V | +| E | ) . The upward rank value of ver-
texes is used to partition the DAG into subgraphs by re-
cursively partitioning the subgraphs until all the sub-
graphs have the number of vertices less than NT. NT is
set to 12 in the evaluation and can be configured.

Algorithm 1 shows the pseudo-code of the partitio-
ning approach with up rank. The algorithm tries to find
an appropriate upward rank value that partitions G to
two parts with approximate number of vertexes and
minimize the vertex cut. The algorithm first computes
the upward rank value of each vertex in the graph using
equation ( line 1). Then the minimum and maximum
upward rank value is computed ( lines 2 - 3). After
that the algorithm counts the number of vertexes with

every upward rank value by traversing G (lines 5 - 6).
Then by the increasing order of up rank, the accumula-
ted number of vertexes is summed up ( lines 7 - 8).
The variable accUprank [ rank] represents how many
vertexes there are whose upward rank value is less or e-
qual than rank. Then the algorithm traverses all the
upward rank values and finds in which upward rank
value the balance constraint can be satisfied and the
vertex cut can be minimized. Then the partitioning re-
sult with the minimum vertex cut is obtained (lines 9 -
18). The computational complexity of this partitioning
algorithm is O( | V | log( | V | )) . The balance factor 􀆠
is set to 0. 2 in this paper and if no balanced partition
can be obtained, the algorithm will increase the 􀆠 by
0. 1 until a valid partition scheme is found.

　 　 Fig. 1 shows an example of graph partitioning
using upward rank. The number in the vertex is the
upward rank. There are 6 vertexes whose upward rank
value is less than or equal to 5 and 7 vertexes whose
upward rank value is greater than 5. If partitioning the
graph with upward rank 5, the balance constraint is

satisfied as (1 + 0. 2)132 = 7. 8, and the vertex cut is

1, which is also minimized. The coarse graph with V0

and V1 being the vertexes is also acyclic.

3　 Heuristic scheduling algorithm

In this section, a greedy algorithm is proposed to
rapidly obtain a near-optimal execution plan Re, inclu-

ding the device placement of each operator and the exe-
cution order of the nodes on each device. The key point

Fig. 1　 Graph partitioning example with up rank
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is that the algorithm schedules a batch of operators for
which the optimal execution plan is obtained. Further-
more, operators having the minimal starting execution
time st would be scheduled first, where the minimal
starting execution time of an operator is defined as the
maximal completion time of all its predecessor nodes.

3. 1　 Greedy search algorithm
First, the algorithm greedily selects the top-K

nodes that have the minimal starting execution time, by
sorting the starting execution time of all operators in the
increasing order, and these top-K nodes would be the
candidate operators for scheduling. Second, the algo-
rithm enumerates all possible operator-to-device map-
pings and selects the mapping leading to the minimal
completion time of these K operators. If a DAG has y
nodes and the target mobile platform has x devices, the
heuristic-based algorithm’ s computation complexity is
O(yk × xk) . The algorithm empirically set k to 4 for
two computing devices and 3 for three computing de-
vices. Finally, the algorithm updates the successor op-
erators of these K nodes for their starting execution time
using the computed completion time of the K nodes.
Algorithm 2 shows the pseudo-code.

3. 2　 Node merging for heuristic algorithm
In DNN models, there exist several short running

operators that have very low computation latency com-
paring with the computation-intensive operators. For
example, on the Redmi, the latency of ReLU is less
than 0. 1 ms while that of Conv2D may be more than
3 ms. This observation motivates us to introduce node
merging algorithm. For a short running operator, if it
has only one predecessor, the algorithm prefers to dis-
patch it to the same computing device as its predeces-
sor. The merged node is called super-op. The algo-
rithm first runs the node merging algorithm then calls
the heuristic scheduler to generate the execution plan.
The merged nodes within a super-op will be scheduled
to the same device. For frameworks that support kernel
fusion, HOPE’s scheduler will schedule the fused ker-
nels as a whole.

4　 Framework

Fig. 2 shows the HOPE framework. First, a DNN
model is fed to the benchmarking engine, which col-
lects the execution time of each node on each compu-
ting device of the target platform, together with the
communication cost between each pair of devices for
the tensors in the model. Second, graph pre-processing
partitions the DAG into several smaller modules, with
each module consisting of a number of super-ops, as
discussed in subsection 4. 2. Third, the heterogeneity-
aware scheduler leverages the scheduling algorithm in
subsection 2. 1 ( ILP-Scheduler) or subsection 3. 1
(GS scheduler) to generate an execution plan that de-
termines the execution order of all nodes and the target
device for each node. Finally, the HOPE heterogene-
ous execution engine uses the generated execution plan
and launches the parallel execution across different
computing devices.

Fig. 2　 System overview
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4. 1　 Benchmarking engine
The benchmarking engine serves to collect all the

profiles that are needed by the scheduler. First, it runs
the DNN model, launches each node to each available
computing device, and records the corresponding exe-
cution time. Second, it collects the information for all
tensors passed between adjacent nodes, including their
shape and layout information, synthesizes benchmarks
to mandatorily transfer each tensor between any pair of
computing devices, applies the corresponding layout
transformations when necessary, and records these exe-
cution time as the communication cost. In some cases,
communication will not introduce extra cost, e. g. ,
transferring a tensor between a big core and a little core
of one unique CPU, thus, such communication cost is
set to zero. Typically, a variety of computing devices
support different tensor layouts via vendor-provided or
third-party libraries. For convolution operations, CPU
implementation uses the data layout of NC4HW4[5],
while GPU with OpenCL implementation uses the lay-
out of OpenCL image object with the shape being (C / 4
× W, N × H, 4) in the MNN framework. The profiling
overhead of the communication cost and layer-wise
computation latency is limited, less than 10 min for
one DNN model. And performance variation is low
(around 1% ) thus this paper only reports the average
results. The number of tensors with different shapes is
much less than the number of operators, there are 1049
operators but only 39 tensors with different shapes in
NASNET-large.

4. 2　 Heterogenous execution engine
The heterogeneous execution engine reads an exe-

cutionplan and executes the DNN model by launching
each operator to its target computing devices. Before
execution, the execution engine first inserts necessary
data transfer and layout transformation statements ac-
cording to the determined execution plan. Fig. 3 shows
an example of inserting a communication operator to
transfer and transform the tensor 1 from CPU memory
space to GPU memory space.

Fig. 3　 Example of inserting communication operator

The execution engine creates an individual thread

for each computing device, with the main thread ser-
ving for the CPU big core. To avoid interference across
the threads of each computing device, HOPE uses
sched set affinity API to bind each thread to a dedi-
cated CPU core. Users can configure the number of
threads for operators running on CPU. The execution
engine introduces a queue for each computing device to
keep the nodes that are placed on the device according
to the execution plan. Each operator has one flag exe-
cuted to indicate whether the operator has been execu-
ted. After one operator vi is executed, the engine trav-
erses all its successor operators vk in the order deter-
mined by the execution plan. For a given successor vk,
if it is ready for execution and is mapped to the same
device, it will be launched; if it is ready for execution
but mapped to another device, the engine would notify
the thread of the target device and launch the operator
on the corresponding device. Otherwise, the thread
would keep sleeping.

4. 3　 Tensor caching
Motivated by the observation that a tensor would

be used multiple times on a device, HOPE introduces
a tensor-oriented optimization named tensor-caching.
After a tensor has been transferred and transformed to a
device, it would be cached on the target device, so
that when the tensor is reused the corresponding com-
munication cost can be eliminated. As soon as no oper-
ator will read it, the tensor will be freed.

4. 4　 Optimizing CPU and GPU communication
For the mobile systems in which CPU and GPU

share the same physical memory and support shared
virtual memory, HOPE provides an optimization to
eliminate the memory copy in the communication be-
tween CPU and GPU. Specifically, OpenCL provides a
few mechanisms to avoid costly memory copy between
CPU and GPU. HOPE utilizes the CL MEM ALLOC

HOST PTR flag provided by OpenCL to create
OpenCL buffers and the clEnqueueMapBuffer API to
map the OpenCL buffer to a host pointer. Then the
CPU can update the mapped OpenCL buffers to trans-
form tensor data layout directly without additional mem-
ory copy.

5　 Evaluation

5. 1　 Platform and benchmark
Mobile systems. The experiments are conducted

on 3 commercial mobile phones including Redmi Note
4x ( low-end ( LE) with Snapdragon 625 ), Xiaomi
9SE ( medium-end ( ME ) with Snapdragon 712 ),
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HUAWEI P40(high-end (HE) with Kirin 990), ran-
ging from low-end to high-end mobile platforms.

DNNs and datasets. HOPE is evaluated on seven
most popular CNNs including Inception-v3 ( IN-
V3) [14], Inception-v4( IN-V4) [15], PNASNET-mobile
(PN-M) [16], PNASNET-large ( PN-L) [16], NASNET-
large ( NAS-L) [17], and SqueezeNet ( SQZ) [18], and
one long short-term memory (LSTM) [19] model which
follows the configuration in DeepSpeech[20] . All the
CNN models are trained on the ImageNet dataset. The
LSTM has one layer with 1024 hidden states and 10
time steps. The workloads include the DNN models
both highly optimized for mobile systems (e. g. , PN-M
and SQZ) and models for highest accuracy (e. g. , IN-
V4 and PN-L). Further, the evaluated CNN models
exhibit widely different number of operators ranging
from 40 to 1049, which indicates that efficient schedu-
ling algorithms are required to place the numerous op-
erators to computing devices for heterogeneous parallel
execution.

Implementation. The latest version of the GNU
linear programming kit (GLPK) is used to solve the
ILP formulation. The heterogeneous execution engine is
written in 5000 LOC in C ++ . The graph partitioning
and scheduling algorithms are written with 4000 LOC
in Python.

5. 2　 Overall performance
To investigate the effectiveness of HOPE in terms

of inference latency with different computing device
combinations and configurations, a series of compara-
tive experiments have been conducted. MOSAIC, the
state-of-the-art heterogeneous execution engine for
DNN model inference, and StarPU’ s dequeue model
data aware ready (DMDAR) policy, a most suitable
and classical heuristic that is used a reference heuristic
in many recent scheduling studies used in comparison
with the proposed approaches. On the LE mobile system 4
CPU cores are used, and all the 2 big cores on the ME
and HE mobile systems and their GPU for evaluation.
Note that StarPU does not use all the CPU cores on the
big LITTLE architecture mobile platforms. The reason
is that the framework is unaware of the heterogeneous
processing architecture and will distribute workloads
evenly to big and little cores. The little cores would
slow down the computation without carefully schedu-
ling. HOPE is aware of the heterogeneity of CPU clus-
ters, and the detailed experimental results is shown in
subsection 6. 5. Fig. 4 shows the normalized inference
latency of the seven DNN models on the three mobile
systems. For each DNN model, six different versions
are evaluated: CPU only (CPU), GPU only (GPU),
CPU and GPU with MOSAIC as the scheduler (MOSA-
IC), CPU and GPU with StarPU’ s (DMDAR) policy
(StarPU), CPU and GPU with HOPE’ s heuristic
scheduler (HOPE:GS), and HOPE’ s ILP scheduler
HOPE:LP version. All the inference latency of each
version is normalized to the GPU version.

Fig. 4　 Normalized inference latency on the three mobile systems

　 　 The tensor cache optimization is enabled by de-
fault for all versions. Fig. 4 demonstrates the effective-
ness of HOPE’ s ILP and heuristic scheduler. First,
HOPE significantly outperforms the performance of
MOSAIC. Specifically, HOPE with ILP scheduler ex-
hibits 23. 4% , 24. 1% , 2. 9% , 29. 4% , 31. 1% ,
21. 3% , 23. 3% lower latency than the MOSAIC ver-
sion of the seven DNN models respectively of the three
mobile systems on average. This is because HOPE can
schedule the DNN operators to different computing de-
vices and run them in parallel. Second, HOPE with
ILP scheduler exhibits 13. 7% ,9. 1% ,2. 9% ,17. 9% ,

18. 0%, 10. 0% and 0% lower latency than the STARPU
version. HOPE:LP significantly reduces inference la-
tency by finding the optimal solution for each subgraph
and globally determining the scheduling policy. Third,
HOPE: GS also reduces the inference latency by
8. 2% , 3. 2% , 0. 5% , 12. 9% , 11. 7% , 0. 0% and
0. 0% compared with StarPU version. The performance
gain comes from two aspects. The first is that HOPE:
GS merges nodes before scheduling and the potential
communication cost is reduced. The second is that
HOPE:GS schedules nodes in a larger search window
(with K nodes) while StarPU considers only one node.
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Note that for LSTM there is no computation reduction
compared with StarPU.

The reason is that the cell has only four gates and
the structure is rather simple. The experimental results
clearly demonstrate the effectiveness of HOPE in that it
can effectively reduce the inference latency than MO-
SAIC and StarPU. HOPE exhibits a similar inference
latency to that of the CPU alone version with PNAS-M
on all the three mobile systems. This is mainly because
the PNAS-M is specifically optimized for CPU infer-
ence. For instance, it takes 43 ms running PNAS-M
with CPU while 183 ms with GPU on the HE.

5. 3　 Scalability with CPU performance
Next, consider the peak performance ratio be-

tween CPUs and GPUs across mobile SoCs varies[3],
the frequency of the CPU cores varies to investigate the
performance scalability of HOPE scheduler. The LE is
chosen as the mobile system and the available CPU fre-

quency ranges from 652 MHz to 2016 MHz. The maxi-
mum, medium and minimum CPU frequencies in the
CPU’ s scaling avaliable frequencies list and GPU
are used for evaluation. Fig. 5 shows the normalized in-
ference latency of each version on the DNN models.
HOPE:LP reduces up to 26. 4% (with an average of
19. 2% ), 25. 2% (with an average of 17. 5% ) and
29. 1% (with an average of 22. 1% ) inference latency
than the MOSAIC version, and 17. 2% (with an aver-
age of 10. 8% ), 20. 4% (with an average of 9. 3% )
and 17. 0% (with an average of 10. 3% ) inference la-
tency than the StarPU version, with the minimum, me-
dium and maximum CPU frequencies respectively.
Similar observations can be found for the HOPE:GS
version. Experimental results show that HOPE still out-
performs the MOSAIC version and the StarPU version
when the peak performance ratio between CPU and
GPU varies.

Fig. 5　 Normalized inference latency with CPU frequency scaling on LE

5. 4　 Comparison with μlayer
This work targets at full-precision DNN model in-

ference thus HOPE is compared against μlayer using
FP32. μlayer runtime is implemented on ARM com-
pute library (ACL) as described in Ref. [13]. One
benefit of using ACL rather than MNN is that NEON-
and OpenCL- based kernels in ACL utilize the same
data layout, and no data layout conversion overhead is
introduced when CPU and GPU need synchronization.

Fig. 6 shows the normalized execution latency of
μlayer and two scheduling algorithms of HOPE. The

results show that HOPE:GS can reduce the computation
latency by up to 32. 9% (HE), 32. 8% (ME) and
25. 4% (LE) over single-layer acceleration of μlayer.
HOPE:LP can reduce the computation latency by up to
40. 6% (HE), 35. 9% (ME}) and 28. 0% (LE).
The reason is that single-layer acceleration of μlayer
needs fine-grained CPU-GPU synchronization for each
layer while HOPE does not. Note that for LSTM HOPE
does not reduce the latency over μlayer as HOPE and
μlayer partition the LSTM cell with the same split ratio.

Fig. 6　 comparison with μlayer
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HOPE can reduce 25. 8% and 21. 3% computation la-
tency on average for the HE and ME platforms, respec-
tively, while only 8. 0% for LE. The reason is that the
performance of the CPU and the GPU on the LE plat-
form is severely imbalanced.

5. 5　 CPU big + LITTLE
Mobile SoCs adopted big LITTLE technology to

balance the performance and power efficiency. The
‘LITTLE’ processors are designed for maximum power
efficiency while ‘big’ processors are designed to pro-
vide maximum compute performance. HOPE can
schedule the DNN models considering the heterogene-
ous processing architecture of CPU. The awareness of
big LITTLE of HOPE is evaluated by using 2 big cores
+ 4 little cores on the HE mobile system. The commu-
nication overhead can be eliminated when using big
and little clusters as they share the same memory space
and tensor layout for computation. Fig. 7 shows the re-
sult. Specifically, HOPE with HOPE: LP reduces
15. 7% ,2. 2% ,2. 6% ,9. 8% ,8. 3% ,3. 2% and 0%
inference latency than StarPU. HOPE can efficiently
reduce the inference latency and improve the QoS when
using only CPU. HOPE:GS exhibits similar perform-
ance as STARPU for there is no communication cost
and HOPE: GS cannot obtain benefit from merging
nodes.

Fig. 7　 Normalized latency with big LITTLE cores

6　 Conclusion

In this paper, HOPE, a heterogeneity-oriented
parallel execution engine for DNN model inference on
mobile systems is proposed. HOPE profiles operator’ s
computation latency of the accurate models, pre-proces-
ses the DAG to modules, and schedules the DAG with
an ILP-based or a greedy-based algorithm to determine
the near-optimal heterogeneous execution plan. The ex-
perimental results show that HOPE can significantly re-
duce the computation latency compared with the state-
of-the-art work including MOSAIC, StarPU and μlayer.
In the future, DNN models with control-flow will be
supported and policies will be proposed to dynamically
schedule operators. Furthermore, the potential benefits
of collaborative execution on accelerators like NPU and

DSP will also be explored.
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