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Abstract

Deep learning algorithms have been widely used in computer vision, natural language process-
ing and other fields. However, due to the ever-increasing scale of the deep learning model, the re-
quirements for storage and computing performance are getting higher and higher, and the processors
based on the von Neumann architecture have gradually exposed significant shortcomings such as con-
sumption and long latency. In order to alleviate this problem, large-scale processing systems are
shifting from a traditional computing-centric model to a data-centric model. A near-memory compu-
ting array architecture based on the shared buffer is proposed in this paper to improve system per-
formance, which supports instructions with the characteristics of store-calculation integration, reduc-
ing the data movement between the processor and main memory. Through data reuse, the processing
speed of the algorithm is further improved. The proposed architecture is verified and tested through
the parallel realization of the convolutional neural network ( CNN) algorithm. The experimental re-
sults show that at the frequency of 110 MHz, the calculation speed of a single convolution operation
is increased by 66.64% on average compared with the CNN architecture that performs parallel cal-
culations on field programmable gate array ( FPGA). The processing speed of the whole convolution
layer is improved by 8.81% compared with the reconfigurable array processor that does not support
near-memory computing.

Key words: near-memory computing, shared buffer, reconfigurable array processor, convolu-

tional neural network ( CNN)

0 Introduction

At present, central processing unit( CPU) + graph-
ics processing unit (GPU) is often used to accelerate
convolutional neural network (CNN), but it is inevita-
ble to transfer a large amount of data between CPU
memory and GPU memory. The long delay generated
by data transmission limits the improvement of system
performance''’. As the scale of deep learning is getting
larger and larger, it puts high demands on computing
The problem of
‘Memory Wall’ caused by the mismatch of processing

performance and memory space.

speed and memory speed has become increasingly seri-
ous'>!. In order to reduce access latency and increase
computing speed, hierarchical memory structures such
as multi-level cache technology are generally used to

reduce access latency®’. However, the three-level

memory structure composed of registers, cache, and
dynamic random access memory ( DRAM) is difficult to
meet the high bandwidth and high energy efficiency re-
quirements of new applications for memory access. For
the moment, large-scale processing systems are shifting
from a traditional computing-centric model to a data-
centric model . A general near-data processing archi-
tecture was proposed in Ref. [ 5], which is suitable for
concurrent data structures such as linked list, skip
list, and the first-in-first-out queue. However, the ex-
periment analysis shows that the potential benefits of
concurrent data structures based on near-data process-
ing are not ideal. Efficient synchronization between the
near-data processing cores is essential to give full play
to near-data processing and achieve the high perform-
ance of parallel workloads. Due to the lack of shared
cache and hardware cache consistency, supporting in-
ter-core synchronous communication is still a challenge
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for many near-data processing structures'® . Due to the
limitations of DRAM technology, the processing effi-
ciency of the past near-data processing ( NDP) is not
good. However, with the advancement of through sili-
con via (TSV) technology, three-dimensional (3D)
stacked memory has been developed, which enables
logic chips and DRAM chips to coexist, making NDP
easier to implement. In particular, GPU-based NDP is
attractive because it can handle more algorithms. Al-
though there is a strong demand for efficient image pro-
cessing in many fields, there is not enough research on
NDP for image processing. Considering the common
characteristics of image processing algorithms and NDP
constraints, a widely applicable programmable NDP ar-
chitecture is demanded'”’. A logic unit is designed in
the three-dimensional stacked memory hybrid memory
cube (HMC)'"® | which makes all memory bundles of
the HMC used to perform CNN in parallel. Taking into
account the intensive data access characteristics of
CNN, static random-access memory ( SRAM) is added
to the logic unit to cache the convolution kernel used in
the convolution operation, thereby reducing data com-
munication with DRAM, but this also increases the
memory cost.

Aiming at accelerating CNN calculation to meet
the demand of image processing algorithms, a near-
memory computing array architecture based on the
shared buffer is proposed, which can realize the flexi-
ble computing tasks transferring under the requirements
of the different applications and quickly switching be-
tween computing and memory access modes. Mean-
while, a CNN parallel mapping method is designed,
which further improves the calculation speed of CNN
through the memory access latency reduced. The main
contributions of this paper are summarized as follows.

(1) According to the characteristics of low ratio of
computing and memory access in data-intensive appli-
cations, a coprocessor is designed in the near-memory
computing array to reduce the data communication be-
tween the reconfigurable array processor and the main
memory. Through the effective integration of the near-
memory computing array and the internal processor of
the reconfigurable array, the CNN calculation can be
improved by the method of near-memory computing
without changing the programming interface of the ex-
isting architecture.

(2) Utilizing the locality of memory access and
computational parallelism in near-memory computing
array, an array-type shared buffer structure is designed
to further improve the parallel access and calculation
speed of the near-memory computing array. At the same
time, the shared buffer array supports non-aligned

memory access modes and can update the access mode
in real-time.

The rest of this article is organized as follows.
Section 1 introduces the related work and motivation.
Section 2 introduces the architecture and characteristics
of near-memory computing array and shared cache ar-
ray. Section 3 introduces the structure of CNN and the
realization of parallelization. The experiment is carried
out in Section 4. Finally, Section 5 gives some conclu-
ding remarks.

1 Related work and motivation

With the continuous development of data-intensive
applications, the cost of memory access caused by
moving data to the calculation location when processing
large amounts of data has gradually become a bottle-
neck in improving system performance. More and more
energy is consumed in the data transfer between the off-

©) . To further improve

chip memory and the processor
energy efficiency, near-memory computing technology
is used to place computing resources near the location
of the data, and application programs are reorganized
to take advantage of the distributed computing architec-

107 Ref. [11] used HMC to achieve near-memory

ture
computing and used the atomic instructions provided by
HMC 2.0 to propose a hardware and software mecha-
nism that effectively utilized near-data processing func-
tions. However, the excessively long data transmission
latency also limits the increase in processing speed. In
order to meet the high performance required by many
CNN applications, dedicated hardware accelerators are
usually designed. Ref.[12] proposed and assessed a
novel mechanism that operates at cache level, levera-
ging both data-proximity and parallel processing capa-
bilities, enabled by dedicated fully-digital vector func-
tional units (FUs). It also demonstrates the integration
of this mechanism in a conventional CPU. The ob-
tained results show that the engine provides perform-
ance improvements on CNNs ranging from 3. 92 x to
16.6 x. However, due to the limitations of the physi-
cal characteristics of traditional memory device, it is
difficult to achieve further breakthroughs in near-mem-
ory computing simply by improving the existing memo-
ry. Therefore, new types of memory began to receive
widespread attention. Ref. [13] used binary resistive
random access memory ( ReRAM) arrays to process
deep neural networks and does not require peripheral
computing circuits. This structure is trained on the
MNIST data set, and the verification accuracy can

reach 96.33% . However, when using ReRAM, write

operations usually consume longer time and energy than
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reading operations, and the reliability of ReRAM still
needs further research and exploration' "'

Based on the above, the near-memory computing
array architecture based on a shared buffer is pro-
posed. On the one hand, it can effectively combine
with process element (PE) resources in the reconfigu-
rable array through user-defined instructions, and can
switch computing and memory access modes in real-
time. On the other hand, the shared buffer array not
only meets the high bandwidth requirements of new ap-
plications but also supports parallel access to further
improve computing efficiency.

2 Near-memory computing array architec-
ture based on shared buffer

The proposed array architecture is composed of a
near-memory computing array and a shared buffer ar-
ray, as shown in Fig. 1. The near-memory computing
array is mainly responsible for executing the calculation
part through instructions with the characteristics of
store-calculation integration. The shared buffer array
takes charge of the part of buffer with a high data reuse
rate and further improves the parallel access and calcu-
lation speed of the near-memory computing array.
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Fig.1 Near-memory computing architecture based on

reconfigurable array processor

Without changing the programming interface of the

original reconfigurable architecture, the near-memory
computing array integrates with the reconfigurable array
processor through custom instructions. The key part of
the reconfigurable array are the process elements group
(PEG), each PEG contains 4 x4 process element PE,
16 PEs are connected topologically through adjacency
and interconnection of shared registers, and each PE is
realized based on reduced instruction set computer
(RISC) architecture. Each PE in the reconfigurable
array is used as the main processor. The calculation
and memory access modes are switched in real-time ac-
cording to memory access requirements. The PE array
can access the local memory directly, and can also is-
sue a near-memory computing instruction to the copro-
cessor to perform simple calculations on the main mem-

ory.

2.1 Near-memory computing array

The key part of the near-memory computing array
is 16 coprocessors, and each coprocessor has a one-to-
one correspondence with the main processor. When the
main processor PE receives the configuration informa-
tion issued in real-time through the H-tree configura-
tion network ! | it sends the instructions to the copro-
cessor through the communication interface with the
coprocessor. Before the coprocessor executes the in-
structions, the operation code represented by the high
6 bit of the instruction is used as a flag to determine
whether the currently issued instruction is a calculation
instruction supported by the coprocessor. If the opcode
of the current instruction does not point to the copro-
cessor, the instruction is executed in the main proces-
sor and the coprocessor does not work. Otherwise, the
instruction information of the current instruction except
the high 6 bit opcode is issued to the coprocessor for
execution.

According to the characteristics of convolutional
calculation, the near-memory computing instructions
are specially designed with the characteristics of store-
calculation integration, which can support the calcula-
tion of fetching from the memory and the update of the
data in the memory. The data does not need to be
transmitted to the PE array through multi-level buffe-
ring for calculation, which speeds up the calculation
process of the CNN.

Table 1 lists some of the special instructions sup-
ported by the coprocessor. Among them, M[ Rs] and
M[ Rt] indicate that the source operand comes from
external memory, and M[ Rd] indicates that the result
of the operation is written back to the memory. To fur-
ther improve the calculation speed of the CNN algo-
rithm, according to the calculation characteristics of
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the convolution operation in CNN, the multiplication
and accumulation instruction MAC and the accumula-
tion register Rm are designed. The input image pixels
from the external storage are multiplied by the weight
in the convolution kernel and directly added. The cal-
culation result of the previous convolution stored in the
register is accumulated, and the result is read from Rm
by executing the STRM2 instruction, and the accumu-
lation register is cleared in the next clock cycle after
the result is read.

Table 1 Some special instructions supported by the coprocessor
Operation Description Function
ADDMO Rd«Rs + M[ Rt] Register addition
ADDM2 M[ Rd]«<Rs + M[ Rt Register addition
MAC2 Rm«—M[ Rs JmacM[ Rt] Multiply and accumulate
STRM2 M[Rd]«Rm Write to memory

To improve the efficiency of algorithm processing,
a three-stage pipeline architecture is adopted in the
coprocessor unit as shown in Fig. 2. Buffering instruc-
tion, decoding and fetching data, execution and write-
back are corresponding to the three levels respectively.
The first level is used to buffer the calculation instruc-
tions issued by the main processor. The second level is
used to decode instructions and obtain the source oper-
ands required for instruction execution according to the
decoding results. The main function of the third level
is to execute instructions and write the execution result
of the instruction back to the destination address.

'

| Register Filesl

— 1

Buffer-

“ing Decoding and Execution and
instru- fetching data write-back
ction

Fig.2 The architecture of coprocessor

2.2 Shared buffer array

Near-memory computing arrays have the charac-
teristics of high parallelism, and the use of traditional
shared storage structures will have problems such as
large access conflicts. The continuous sliding of the
convolution window during the CNN processing will
cause the data in the main memory to be frequently ac-
cessed, resulting in a large memory access overhead.
Therefore, in order to reduce the data communication

between the near-memory computing array and the
main memory, an array-type shared buffer array storage
structure is proposed. At the same time, the array-type
storage structure can further improve the parallel access
of the near-memory computing array. Since each cop-
rocessor in the near-memory computing array can ac-
cess the main memory, at least 16 buffer units are
used. At the same time, considering that the convolu-
tion kernel is used in the convolution calculation of the
entire feature image, the global reusability is higher,
and the weight of the convolution kernel needs to be
buffered in the buffer unit. Therefore, the designed
shared cache array consists of 17 buffers that support
non-aligned storage access.

The entire shared buffer array is mainly composed
of a judge unit, 17 buffer units ( buffer00 — bufferl6)
and an arbiter, as shown in Fig.3. When the copro-
cessor sends an access request, it is first received by
judge unit to determine whether the access is hit. If it
is hit, the request will be sent to the corresponding hit
buffer to directly read or update the data in the destina-
tion buffer. If it is not hit, it will be arbitrated to ac-
cess the main memory. Each buffer is composed of a
tag register unit and a data buffer unit. The tag register
unit is used to store the state of the buffer unit and the
first address of the buffered data. If the write access
hits, the dirty location is to be set while updating the

data.
| arbiter 17 to 1 | I/ " tag register \I
""" L L [V]p] G
|Buffer()0||]3uﬁ‘cr01| ...... |Buffer15HBufferl6| —->: d :
{ g il il | [data(16x32bi0) ||
| judge unit | M 7

Fig.3 Shared buffer array structure
3 CNN parallel mapping

3.1 Alex Net
CNN can be used to construct hierarchical classi-

fiers''®

, and can also be used in fine-grained recogni-
tion to extract discriminative features of images for
learning by other classifiers''”’. Based on the hardware
platform architecture of the near-memory computing ar-
ray and the shared buffer array, the parallel mapping of
the AlexNet is completed and it conducts test verifica-
tion and performance analysis on the proposed architec-
ture. The specific structure of the AlexNet is shown in

Table 2.
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Table 2 Specific structure of AlexNet

Layer  Layer type Input size Weight Stride
1 convolution 227 x227 x3 11 x11 x3 4
1 max pooling 55 x55 %96 3x3 2
2 convolution 31 x31 x96 5 x5 %96 1
2 max pooling 27 x27 x256 3x3 2
3 convolution 15 x 15 x256 3 x3 %256 1
4 convolution 15 x 15 x 384 3 x3 x384 1
5 convolution 15 x 15 x 384 3 x3x384 1
5 max pooling 13 x13 x256 3x3 2
6 FC 6 X6 X256 3 x3 x256 x4096 -
7 FC 4096 4096 x 4096 -
8 FC 4096 4096 x 1000 -

Table 3 shows the calculation complexity and
memory occupancy of the network model of each type
of AlexNet network!"™'. From the table, it can be seen
that the total amount of data of AlexNet network model
parameters is very large, which can reach 230 MB. Tt is
far more than on-chip memory capacity, so all parame-
ters can only be stored in off-chip memory. When clas-
sifying and identifying a frame of the input feature
map, the convolution operation process in CNN will
consume plenty of computational resources, and about
1.33 GOPs are required in the AlexNet. Among all
sub-network layers, the convolutional layer is the most
computationally intensive part, accounting for more
than 90% of the total computational amount of the en-
tire network.

Table 3 AlexNet network scale analysis

Layer type Cony Fe Others
layers layers
Amount of operations (GOP)  1.330 0.120 0.007
Data size of weights/MB 8.9 223.6 0

Data size of intermediates/MB 3. 07 0.04 2.29

3.2 Parallel mapping

According to the structural characteristics of the
near-memory computing array and the potential paral-
lelism of CNN, a parallel mapping method is proposed.
All memory access computing instructions will be exe-
cuted in the coprocessor, and the main processor main-
ly controls the loop in the convolution operation. In
this way, the parallelism of the CNN calculation can be
improved, and the calculation efficiency of the proces-
sor can be promoted.

In the AlexNet, the convolutional layer includes
three types of 11 x 11, 5 x5, and 3 x3"""
lel mapping method to implement the convolution oper-

. The paral-

ation is as follows.

(1) When the size of the convolution kernel is 11
x 11, the input image size is 227 x 227. PE00-PE22
respectively completes the 1 x 11 convolution calcula-
tion, and PE30 accumulates the intermediate calcula-
tion data of these eleven PEs to obtain the final convo-
lution result.

After the instruction is issued and the operands re-
quired for the calculation instruction are ready, PEOO
starts to do the 1 x 11 multiply-accumulate operation in
the first line of the input image, and PEO1 does the 1
x 11 multiply-accumulate operation in the second line,
and so on. PEQO-PE22 will send a handshake signal to
PE30 after completing a 1 x 11 convolution. When
PE30 receives the handshake signal, it will read out
the eleven convolution results of PEOO-PE22 and accu-
mulate them. Then, it is stored in the corresponding
memory location, and PE30 will also send a handshake
signal to eleven PEs to indicate that the reception is
complete. When PE00-PE22 receives the handshake
signal of PE30, they will slide the convolution window
to the right and continue to do the next 11 X 11 convo-
lution until all the convolution results of this layer are
obtained. The mapping structure is shown in Fig. 4.
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Fig.4 11 x11 convolution operation map

(2) When the size of the convolution kernel is 5
x5, the input image size is 27 x27. PE00-PE10 re-
spectively completes the 1 X 5 convolution operation,
and PE30 accumulates the intermediate calculation da-
ta of five PEs to obtain a 5 x5 convolution result. At
the same time, after PE11-PE21 respectively completes
the 1 x5 convolution operation, they send the result to
PE31 for accumulation and output a 5 x5 convolution
result.

After the instruction is issued, PEOO does the 1 x
5 multiplication and accumulation operation of the first
line of this layer of input, PEOI does the 1 x5 multi-
plication and accumulation operation of the second line
of the input image, and so on. At the same time,
PE11-PE21 will multiply and accumulate lines 2 to 6 of
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the input image of this layer. Take PEOO-PE10 convo-
lution and accumulation in PE30 as an example: after
PEOO-PE10 completes a 1 X5 convolution, they will
send handshake signals to PE30 respectively. When
PE30 receives the handshake signals, it will read out
the intermediate calculation data of five PEs and write
them back to the main memory after accumulation.
PE30 will also send handshake signals to PEOO-PE10
to indicate that the reception is complete. When PEQO-
PE10 receives the handshake signal of PE30, they will
slide the convolution window to the right and continue
to do the next 5 x5 convolution until all results are ob-
tained. The mapping structure is shown in Fig. 5.
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Fig.5 5 x5 convolution operation map

(3) When the size of the convolution kernel is 3
x 3, the input image size is 15 x 15. PE00-PEO2 com-
pletes the 1 X3 convolution operation respectively, and
PE30 accumulates the intermediate calculation data of
3 PEs to obtain a 3 x3 convolution result. At the same
time, PEO3-PE11 respectively completes the 1 x5 con-
volution operation, sends the result to PE31 for accu-
mulation and outputs a 3 X3 convolution result. PE12-
PE20 respectively completes 1 X 3 convolution opera-
tions and PE30 performs accumulation to obtain a 3 x3
convolution result.

When the instruction is issued, PEOO will start
the 1 x 3 multiplication and accumulation operation of
the first line of the input image, PEO1 will do the 1 x3
multiplication and accumulation operation of the second
line of the input image, and PEO2 will do the third line
of the input image. PEO3-PE11 will do 1 x3 multiply
and accumulate operations from rows 2 to 4 at the same
time, while PE12-PE20 will do 1 X3 from rows 3 to 5
multiply and accumulate operations. Take PE00-PE02
convolution and accumulate in PE30 as an example;
when PEOO-PEO2 completes a 1 x3 convolution, they
will send handshake signals to PE30, and when PE30
receives the handshake signals, it will read intermedi-
ate calculation data of PEOO-PEO2, sum this data and

write back the result to the corresponding memory loca-

tion. Meanwhile, PE30 will send handshake signals to
these PEs to indicate that the reception is complete.
When PEOO-PEQ2 receives the handshake signal of
PE30, they will slide the convolution window to the
right and continue to do the following 3 X3 convolution
until all the results are obtained. The mapping struc-
ture is shown in Fig. 6.
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Fig.6 3 x3 convolution operation map

3.3 Data reuse analysis

The shared buffer array is used to buffer data to
realize data reuse. Take the convolution operation of 3
x 3 size as an example, as shown in Fig. 7. When the
size of the convolution kernel is 3 X3, twelve coproces-
sors are used to process three 3 x3 convolution opera-
tions at the same time, of which nine coprocessors are
used to perform 1 x3 convolution operation, and three
coprocessors are used to accumulate intermediate cal-
culation data. When twelve coprocessors perform cal-
culations at a time, twelve buffer units are required.
Because the 3 x 3 convolution operation stride is one,
each buffer unit can buffer sixteen 32-bit data of con-
secutive addresses. Therefore, when the convolution
window slides to the right, if the buffer is hit, the data
of the destination address can be directly read or upda-
ted, which extremely improves the data reuse of the
convolution process and reduces the data communica-
tion between the near-memory computing array and the

| Input 1x3 | Input 1x3 | Input 1x3 | Input 1x3 | Input 1x3

MAC MAC MAC MAC MAC

kernel 3x3

Intermediate| | Intermediate | | Intermediate

Data Data Data
lADD lADD lADD
| Output @ | Output @ | Output 3

Fig.7 3 x3 convolutional data reuse situation
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main memory. It also reduces the memory access laten-
cy and overhead. The occupancy of 5 x5 and 11 x 11
convolution buffers is similar, but compared with 5 x5
and 11 x 11 convolutions, the data reuse rate with the
3 %3 convolution operation is the highest.

4 Experimental results and analysis

Xilinx” s Virtex 6 field programmable gate array
(FPGA) development board is chosen to verify the
proposed architecture and AlexNet CNN is realized on
it. The source occupation can be seen in Table 4. The

working frequency on FPGA is 110 MHz.

Table 4 Hardware resource usage

. . Number of Resource
Logic device . .
resources occupied utilization
Slice LUTs 120 317 35%
Slice registers 39 290 5%
LUT-FF pairs 22992 16%

The computing time of single convolution is coun-
ted as shown in Table 5. Compared with Ref. [20],
the performance is improved by 69. 60% , 75. 00% ,

and 55.32% , respectively.

The execution clock cycle of each layer of the
convolutional layer is shown in Table 6. The proposed
parallel computing method is used to perform convolu-
tion operations in the near-memory computing array ar-
chitecture based on the reconfigurable array processor,
and the designed architecture is verified and tested. In
this paper, Cl inputs 3 images and outputs 96 feature
maps, C2 inputs 96 feature images, and outputs 256
feature maps. The processing speed of the CNN accel-
erator proposed in Ref. [ 21] is faster than this paper.
It is because each layer of C1 — C5 has 2 input feature
maps, and the amount of data processing is much lower
than this paper. Comparing in processing single feature
maps, this paper is faster than Ref. [21]. Ref. [ 20]
based on the multiple parallel features of CNN calcula-
tions proposed an architecture of CNN forward propaga-
tion process in parallel calculation, but the calculation
speed is slower than this article. Ref. [22 ] used a
reconfigurable array processor that does not support
near-memory computing. Compared with it, the overall
processing speed of the architecture designed in this
paper is increased by 8.81%.

Table 5 Comparison of the consumption time of single convolution

. Ref. [20] Non-near-memory Near-memory computing Performance
Weight . . . .
(cycles)  computing function (cycles) function array ( cycles) improvement
3x3 250 112 76 69.60%
5x%5 428 126 107 75.00%
11 x11 555 425 248 55.32%
Table 6 Convolutional layer execution time comparison
Layer type Tgt;j:f; ' Ref. [20] Ref. [21] Ref. [22] (i}(::lz;iidd :\:t?mi:(fvgjf‘;o ’
Cl1 447 876 000 483 516 000 23134272 130 745 725 --
Cc2 1101 815 808 2 556 002 304 89 235 456 1159290 528 4.96
C3 537 821 184 1 384 448 000 62 668 800 684 206 336 21.39
c4 806 731 776 2 076 672 000 94 003 200 1055531 136 23.57
C5 538249 264 1 384 448 000 62 668 800 734 371 968 26.71
Total execution 5 42 404032 7885 086 304 331710528 3764 145 693 8.81

cycle

Ref. [23] proposed a CNN hardware accelerator
with an array architecture, which can reconfigure the
layer parameters adapt to different CNN structures. By
using multiple PEs to perform convolution operations at
the same time, the calculation parallelism is improved.
And the convolution processing speed is further en-
hanced. The frequency of the circuit under this archi-

tecture can reach 100 MHz. Ref. [24] designed and

implemented an efficient and reusable CNN FPGA ac-
celerator. Based on the modified roofline model, the
microstructure of accelerator was optimized, the under-
lying FPGA calculation and bandwidth resource utiliza-
tion were maximized. But the accuracy of this architec-
ture is lower, and the power consumption is higher
than this paper. Ref. [25] proposed a configurable
neural network computing architecture by using recon-
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figurable data quantification to reduce power consump-
tion and on-chip memory requirements, but this archi-
tecture is not universal. The maximum frequency of
this paper can reach 110 MHz, which is greatly im-
proved compared with Ref. [ 17 ] and Ref. [19] and
supports 32-bit operand width. Table 7 shows the com-
parison of frequency, precision and power for different
architectures.

Table 7 Comparison of frequency, precision and power

Ref. [23] Ref. [24] Ref.[25] This paper
Frequency
1 1 1 11
Ms 00 50 00 0
Precision/bit 16 8 8 32
Power -- 26 W 107 mW  6.4443 W

5 Conclusion

For data-intensive applications such as deep learn-
ing, a near-memory computing array architecture based
on the shared buffer is designed to improve the speed of
intensive computing and alleviate bandwidth pressure.
The memory occupancy is analyzed, and a method to
realize the parallel calculation of the CNN is designed.
The experimental results show that the architecture of
this paper increases the speed of convolution operation
while reducing memory access latency and improving
data reuse. The highest frequency can reach 110 MHz.
Compared with previous studies, the calculation speed
of a single convolution operation is increased by
66.64% on average. Compared with the reconfigurable
array processor that does not support near-memory
computing, the processing speed of the entire convolu-
tional layer is increased by 8.81%.
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