
　 doi:10. 3772 / j. issn. 1006-6748. 2022. 04. 002

Design and implementation of near-memory computing
array architecture based on shared buffer①

SHAN Rui(山　 蕊)②∗, GAO Xu∗, FENG Yani∗, HUI Chao∗, CUI Xinyue∗, CHAI Miaomiao∗∗

(∗School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, P. R. China)
(∗∗School of Computer, Xi’an University of Posts and Telecommunications, Xi’an 710121, P. R. China)

Abstract
Deep learning algorithms have been widely used in computer vision, natural language process-

ing and other fields. However, due to the ever-increasing scale of the deep learning model, the re-
quirements for storage and computing performance are getting higher and higher, and the processors
based on the von Neumann architecture have gradually exposed significant shortcomings such as con-
sumption and long latency. In order to alleviate this problem, large-scale processing systems are
shifting from a traditional computing-centric model to a data-centric model. A near-memory compu-
ting array architecture based on the shared buffer is proposed in this paper to improve system per-
formance, which supports instructions with the characteristics of store-calculation integration, reduc-
ing the data movement between the processor and main memory. Through data reuse, the processing
speed of the algorithm is further improved. The proposed architecture is verified and tested through
the parallel realization of the convolutional neural network (CNN) algorithm. The experimental re-
sults show that at the frequency of 110 MHz, the calculation speed of a single convolution operation
is increased by 66. 64% on average compared with the CNN architecture that performs parallel cal-
culations on field programmable gate array(FPGA). The processing speed of the whole convolution
layer is improved by 8. 81% compared with the reconfigurable array processor that does not support
near-memory computing.

Key words: near-memory computing, shared buffer, reconfigurable array processor, convolu-
tional neural network (CNN)

0　 Introduction

At present, central processing unit(CPU) + graph-
ics processing unit (GPU) is often used to accelerate
convolutional neural network (CNN), but it is inevita-
ble to transfer a large amount of data between CPU
memory and GPU memory. The long delay generated
by data transmission limits the improvement of system
performance[1] . As the scale of deep learning is getting
larger and larger, it puts high demands on computing
performance and memory space. The problem of
‘Memory Wall’ caused by the mismatch of processing
speed and memory speed has become increasingly seri-
ous[2] . In order to reduce access latency and increase
computing speed, hierarchical memory structures such
as multi-level cache technology are generally used to
reduce access latency[3] . However, the three-level

memory structure composed of registers, cache, and
dynamic random access memory(DRAM) is difficult to
meet the high bandwidth and high energy efficiency re-
quirements of new applications for memory access. For
the moment, large-scale processing systems are shifting
from a traditional computing-centric model to a data-
centric model[4] . A general near-data processing archi-
tecture was proposed in Ref. [5], which is suitable for
concurrent data structures such as linked list, skip
list, and the first-in-first-out queue. However, the ex-
periment analysis shows that the potential benefits of
concurrent data structures based on near-data process-
ing are not ideal. Efficient synchronization between the
near-data processing cores is essential to give full play
to near-data processing and achieve the high perform-
ance of parallel workloads. Due to the lack of shared
cache and hardware cache consistency, supporting in-
ter-core synchronous communication is still a challenge

　 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022 | pp. 345-353

①

②

Supported by the National Natural Science Foundation of China (No. 61802304, 61834005, 61772417, 61602377), the Shaanxi Province Key
R&D Plan (No. 2021GY-029) .
To whom correspondence should be addressed. E-mail: shanrui0112@ 163. com.
Received on Sep. 29, 2021

for many near-data processing structures[6] . Due to the
limitations of DRAM technology, the processing effi-
ciency of the past near-data processing (NDP) is not
good. However, with the advancement of through sili-
con via (TSV) technology, three-dimensional (3D)
stacked memory has been developed, which enables
logic chips and DRAM chips to coexist, making NDP
easier to implement. In particular, GPU-based NDP is
attractive because it can handle more algorithms. Al-
though there is a strong demand for efficient image pro-
cessing in many fields, there is not enough research on
NDP for image processing. Considering the common
characteristics of image processing algorithms and NDP
constraints, a widely applicable programmable NDP ar-
chitecture is demanded[7] . A logic unit is designed in
the three-dimensional stacked memory hybrid memory
cube (HMC) [8], which makes all memory bundles of
the HMC used to perform CNN in parallel. Taking into
account the intensive data access characteristics of
CNN, static random-access memory (SRAM) is added
to the logic unit to cache the convolution kernel used in
the convolution operation, thereby reducing data com-
munication with DRAM, but this also increases the
memory cost.

Aiming at accelerating CNN calculation to meet
the demand of image processing algorithms, a near-
memory computing array architecture based on the
shared buffer is proposed, which can realize the flexi-
ble computing tasks transferring under the requirements
of the different applications and quickly switching be-
tween computing and memory access modes. Mean-
while, a CNN parallel mapping method is designed,
which further improves the calculation speed of CNN
through the memory access latency reduced. The main
contributions of this paper are summarized as follows.

(1) According to the characteristics of low ratio of
computing and memory access in data-intensive appli-
cations, a coprocessor is designed in the near-memory
computing array to reduce the data communication be-
tween the reconfigurable array processor and the main
memory. Through the effective integration of the near-
memory computing array and the internal processor of
the reconfigurable array, the CNN calculation can be
improved by the method of near-memory computing
without changing the programming interface of the ex-
isting architecture.

(2) Utilizing the locality of memory access and
computational parallelism in near-memory computing
array, an array-type shared buffer structure is designed
to further improve the parallel access and calculation
speed of the near-memory computing array. At the same
time, the shared buffer array supports non-aligned

memory access modes and can update the access mode
in real-time.

The rest of this article is organized as follows.
Section 1 introduces the related work and motivation.
Section 2 introduces the architecture and characteristics
of near-memory computing array and shared cache ar-
ray. Section 3 introduces the structure of CNN and the
realization of parallelization. The experiment is carried
out in Section 4. Finally, Section 5 gives some conclu-
ding remarks.

1　 Related work and motivation

With the continuous development of data-intensive
applications, the cost of memory access caused by
moving data to the calculation location when processing
large amounts of data has gradually become a bottle-
neck in improving system performance. More and more
energy is consumed in the data transfer between the off-
chip memory and the processor[9] . To further improve
energy efficiency, near-memory computing technology
is used to place computing resources near the location
of the data, and application programs are reorganized
to take advantage of the distributed computing architec-
ture[10] . Ref. [11] used HMC to achieve near-memory
computing and used the atomic instructions provided by
HMC 2. 0 to propose a hardware and software mecha-
nism that effectively utilized near-data processing func-
tions. However, the excessively long data transmission
latency also limits the increase in processing speed. In
order to meet the high performance required by many
CNN applications, dedicated hardware accelerators are
usually designed. Ref. [12] proposed and assessed a
novel mechanism that operates at cache level, levera-
ging both data-proximity and parallel processing capa-
bilities, enabled by dedicated fully-digital vector func-
tional units (FUs). It also demonstrates the integration
of this mechanism in a conventional CPU. The ob-
tained results show that the engine provides perform-
ance improvements on CNNs ranging from 3. 92 × to
16. 6 × . However, due to the limitations of the physi-
cal characteristics of traditional memory device, it is
difficult to achieve further breakthroughs in near-mem-
ory computing simply by improving the existing memo-
ry. Therefore, new types of memory began to receive
widespread attention. Ref. [13] used binary resistive
random access memory (ReRAM) arrays to process
deep neural networks and does not require peripheral
computing circuits. This structure is trained on the
MNIST data set, and the verification accuracy can
reach 96. 33% . However, when using ReRAM, write
operations usually consume longer time and energy than

643 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022　

reading operations, and the reliability of ReRAM still
needs further research and exploration[14] .

Based on the above, the near-memory computing
array architecture based on a shared buffer is pro-
posed. On the one hand, it can effectively combine
with process element (PE) resources in the reconfigu-
rable array through user-defined instructions, and can
switch computing and memory access modes in real-
time. On the other hand, the shared buffer array not
only meets the high bandwidth requirements of new ap-
plications but also supports parallel access to further
improve computing efficiency.

2　 Near-memory computing array architec-
ture based on shared buffer

　 　 The proposed array architecture is composed of a
near-memory computing array and a shared buffer ar-
ray, as shown in Fig. 1. The near-memory computing
array is mainly responsible for executing the calculation
part through instructions with the characteristics of
store-calculation integration. The shared buffer array
takes charge of the part of buffer with a high data reuse
rate and further improves the parallel access and calcu-
lation speed of the near-memory computing array.

Fig. 1　 Near-memory computing architecture based on
reconfigurable array processor

Without changing the programming interface of the

original reconfigurable architecture, the near-memory
computing array integrates with the reconfigurable array
processor through custom instructions. The key part of
the reconfigurable array are the process elements group
(PEG), each PEG contains 4 × 4 process element PE,
16 PEs are connected topologically through adjacency
and interconnection of shared registers, and each PE is
realized based on reduced instruction set computer
(RISC) architecture. Each PE in the reconfigurable
array is used as the main processor. The calculation
and memory access modes are switched in real-time ac-
cording to memory access requirements. The PE array
can access the local memory directly, and can also is-
sue a near-memory computing instruction to the copro-
cessor to perform simple calculations on the main mem-
ory.

2. 1　 Near-memory computing array
The key part of the near-memory computing array

is 16 coprocessors, and each coprocessor has a one-to-
one correspondence with the main processor. When the
main processor PE receives the configuration informa-
tion issued in real-time through the H-tree configura-
tion network[15], it sends the instructions to the copro-
cessor through the communication interface with the
coprocessor. Before the coprocessor executes the in-
structions, the operation code represented by the high
6 bit of the instruction is used as a flag to determine
whether the currently issued instruction is a calculation
instruction supported by the coprocessor. If the opcode
of the current instruction does not point to the copro-
cessor, the instruction is executed in the main proces-
sor and the coprocessor does not work. Otherwise, the
instruction information of the current instruction except
the high 6 bit opcode is issued to the coprocessor for
execution.

According to the characteristics of convolutional
calculation, the near-memory computing instructions
are specially designed with the characteristics of store-
calculation integration, which can support the calcula-
tion of fetching from the memory and the update of the
data in the memory. The data does not need to be
transmitted to the PE array through multi-level buffe-
ring for calculation, which speeds up the calculation
process of the CNN.

Table 1 lists some of the special instructions sup-
ported by the coprocessor. Among them, M[Rs] and
M[Rt] indicate that the source operand comes from
external memory, and M[Rd] indicates that the result
of the operation is written back to the memory. To fur-
ther improve the calculation speed of the CNN algo-
rithm, according to the calculation characteristics of

743　 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022

the convolution operation in CNN, the multiplication
and accumulation instruction MAC and the accumula-
tion register Rm are designed. The input image pixels
from the external storage are multiplied by the weight
in the convolution kernel and directly added. The cal-
culation result of the previous convolution stored in the
register is accumulated, and the result is read from Rm
by executing the STRM2 instruction, and the accumu-
lation register is cleared in the next clock cycle after
the result is read.

Table 1　 Some special instructions supported by the coprocessor
Operation Description Function
ADDM0 Rd←Rs + M[Rt] Register addition
ADDM2 M[Rd]←Rs + M[Rt] Register addition
MAC2 Rm←M[Rs]macM[Rt] Multiply and accumulate
STRM2 M[Rd]←Rm Write to memory

To improve the efficiency of algorithm processing,
a three-stage pipeline architecture is adopted in the
coprocessor unit as shown in Fig. 2. Buffering instruc-
tion,decoding and fetching data, execution and write-
back are corresponding to the three levels respectively.
The first level is used to buffer the calculation instruc-
tions issued by the main processor. The second level is
used to decode instructions and obtain the source oper-
ands required for instruction execution according to the
decoding results. The main function of the third level
is to execute instructions and write the execution result
of the instruction back to the destination address.

Fig. 2　 The architecture of coprocessor

2. 2　 Shared buffer array
Near-memory computing arrays have the charac-

teristics of high parallelism, and the use of traditional
shared storage structures will have problems such as
large access conflicts. The continuous sliding of the
convolution window during the CNN processing will
cause the data in the main memory to be frequently ac-
cessed, resulting in a large memory access overhead.
Therefore, in order to reduce the data communication

between the near-memory computing array and the
main memory, an array-type shared buffer array storage
structure is proposed. At the same time, the array-type
storage structure can further improve the parallel access
of the near-memory computing array. Since each cop-
rocessor in the near-memory computing array can ac-
cess the main memory, at least 16 buffer units are
used. At the same time, considering that the convolu-
tion kernel is used in the convolution calculation of the
entire feature image, the global reusability is higher,
and the weight of the convolution kernel needs to be
buffered in the buffer unit. Therefore, the designed
shared cache array consists of 17 buffers that support
non-aligned storage access.

The entire shared buffer array is mainly composed
of a judge unit, 17 buffer units (buffer00 - buffer16)
and an arbiter, as shown in Fig. 3. When the copro-
cessor sends an access request, it is first received by
judge unit to determine whether the access is hit. If it
is hit, the request will be sent to the corresponding hit
buffer to directly read or update the data in the destina-
tion buffer. If it is not hit, it will be arbitrated to ac-
cess the main memory. Each buffer is composed of a
tag register unit and a data buffer unit. The tag register
unit is used to store the state of the buffer unit and the
first address of the buffered data. If the write access
hits, the dirty location is to be set while updating the
data.

Fig. 3　 Shared buffer array structure

3　 CNN parallel mapping

3. 1　 Alex Net
CNN can be used to construct hierarchical classi-

fiers[16], and can also be used in fine-grained recogni-
tion to extract discriminative features of images for
learning by other classifiers[17] . Based on the hardware
platform architecture of the near-memory computing ar-
ray and the shared buffer array, the parallel mapping of
the AlexNet is completed and it conducts test verifica-
tion and performance analysis on the proposed architec-
ture. The specific structure of the AlexNet is shown in
Table 2.

843 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022　

Table 2　 Specific structure of AlexNet
Layer Layer type Input size Weight Stride
1 convolution 227 × 227 × 3 11 × 11 × 3 4
1 max pooling 55 × 55 × 96 3 × 3 2
2 convolution 31 × 31 × 96 5 × 5 × 96 1
2 max pooling 27 × 27 × 256 3 × 3 2
3 convolution 15 × 15 × 256 3 × 3 × 256 1
4 convolution 15 × 15 × 384 3 × 3 × 384 1
5 convolution 15 × 15 × 384 3 × 3 × 384 1
5 max pooling 13 × 13 × 256 3 × 3 2
6 FC 6 × 6 × 256 3 ×3 ×256 ×4096 -
7 FC 4096 4096 × 4096 -
8 FC 4096 4096 × 1000 -

Table 3 shows the calculation complexity and
memory occupancy of the network model of each type
of AlexNet network[18] . From the table, it can be seen
that the total amount of data of AlexNet network model
parameters is very large, which can reach 230 MB. It is
far more than on-chip memory capacity, so all parame-
ters can only be stored in off-chip memory. When clas-
sifying and identifying a frame of the input feature
map, the convolution operation process in CNN will
consume plenty of computational resources, and about
1. 33 GOPs are required in the AlexNet. Among all
sub-network layers, the convolutional layer is the most
computationally intensive part, accounting for more
than 90% of the total computational amount of the en-
tire network.

Table 3　 AlexNet network scale analysis

Layer type Conv
layers

FC
layers Others

Amount of operations (GOP) 1. 330 0. 120 0. 007
Data size of weights / MB 8. 9 223. 6 0

Data size of intermediates / MB 3. 07 0. 04 2. 29

3. 2　 Parallel mapping
According to the structural characteristics of the

near-memory computing array and the potential paral-
lelism of CNN, a parallel mapping method is proposed.
All memory access computing instructions will be exe-
cuted in the coprocessor, and the main processor main-
ly controls the loop in the convolution operation. In
this way, the parallelism of the CNN calculation can be
improved, and the calculation efficiency of the proces-
sor can be promoted.

In the AlexNet, the convolutional layer includes
three types of 11 × 11, 5 × 5, and 3 × 3[19] . The paral-
lel mapping method to implement the convolution oper-
ation is as follows.

(1) When the size of the convolution kernel is 11
× 11, the input image size is 227 × 227. PE00-PE22
respectively completes the 1 × 11 convolution calcula-
tion, and PE30 accumulates the intermediate calcula-
tion data of these eleven PEs to obtain the final convo-
lution result.

After the instruction is issued and the operands re-
quired for the calculation instruction are ready, PE00
starts to do the 1 × 11 multiply-accumulate operation in
the first line of the input image, and PE01 does the 1
× 11 multiply-accumulate operation in the second line,
and so on. PE00-PE22 will send a handshake signal to
PE30 after completing a 1 × 11 convolution. When
PE30 receives the handshake signal, it will read out
the eleven convolution results of PE00-PE22 and accu-
mulate them. Then, it is stored in the corresponding
memory location, and PE30 will also send a handshake
signal to eleven PEs to indicate that the reception is
complete. When PE00-PE22 receives the handshake
signal of PE30, they will slide the convolution window
to the right and continue to do the next 11 × 11 convo-
lution until all the convolution results of this layer are
obtained. The mapping structure is shown in Fig. 4.

Fig. 4　 11 × 11 convolution operation map

(2) When the size of the convolution kernel is 5
× 5, the input image size is 27 × 27. PE00-PE10 re-
spectively completes the 1 × 5 convolution operation,
and PE30 accumulates the intermediate calculation da-
ta of five PEs to obtain a 5 × 5 convolution result. At
the same time, after PE11-PE21 respectively completes
the 1 × 5 convolution operation, they send the result to
PE31 for accumulation and output a 5 × 5 convolution
result.

After the instruction is issued, PE00 does the 1 ×
5 multiplication and accumulation operation of the first
line of this layer of input, PE01 does the 1 × 5 multi-
plication and accumulation operation of the second line
of the input image, and so on. At the same time,
PE11-PE21 will multiply and accumulate lines 2 to 6 of

943　 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022

the input image of this layer. Take PE00-PE10 convo-
lution and accumulation in PE30 as an example: after
PE00-PE10 completes a 1 × 5 convolution, they will
send handshake signals to PE30 respectively. When
PE30 receives the handshake signals, it will read out
the intermediate calculation data of five PEs and write
them back to the main memory after accumulation.
PE30 will also send handshake signals to PE00-PE10
to indicate that the reception is complete. When PE00-
PE10 receives the handshake signal of PE30, they will
slide the convolution window to the right and continue
to do the next 5 × 5 convolution until all results are ob-
tained. The mapping structure is shown in Fig. 5.

Fig. 5　 5 × 5 convolution operation map

(3) When the size of the convolution kernel is 3
× 3, the input image size is 15 × 15. PE00-PE02 com-
pletes the 1 × 3 convolution operation respectively, and
PE30 accumulates the intermediate calculation data of
3 PEs to obtain a 3 × 3 convolution result. At the same
time, PE03-PE11 respectively completes the 1 × 5 con-
volution operation, sends the result to PE31 for accu-
mulation and outputs a 3 × 3 convolution result. PE12-
PE20 respectively completes 1 × 3 convolution opera-
tions and PE30 performs accumulation to obtain a 3 × 3
convolution result.

When the instruction is issued, PE00 will start
the 1 × 3 multiplication and accumulation operation of
the first line of the input image, PE01 will do the 1 × 3
multiplication and accumulation operation of the second
line of the input image, and PE02 will do the third line
of the input image. PE03-PE11 will do 1 × 3 multiply
and accumulate operations from rows 2 to 4 at the same
time, while PE12-PE20 will do 1 × 3 from rows 3 to 5
multiply and accumulate operations. Take PE00-PE02
convolution and accumulate in PE30 as an example:
when PE00-PE02 completes a 1 × 3 convolution, they
will send handshake signals to PE30, and when PE30
receives the handshake signals, it will read intermedi-
ate calculation data of PE00-PE02, sum this data and
write back the result to the corresponding memory loca-

tion. Meanwhile, PE30 will send handshake signals to
these PEs to indicate that the reception is complete.
When PE00-PE02 receives the handshake signal of
PE30, they will slide the convolution window to the
right and continue to do the following 3 × 3 convolution
until all the results are obtained. The mapping struc-
ture is shown in Fig. 6.

Fig. 6　 3 × 3 convolution operation map

3. 3　 Data reuse analysis
The shared buffer array is used to buffer data to

realize data reuse. Take the convolution operation of 3
× 3 size as an example, as shown in Fig. 7. When the
size of the convolution kernel is 3 × 3, twelve coproces-
sors are used to process three 3 × 3 convolution opera-
tions at the same time, of which nine coprocessors are
used to perform 1 × 3 convolution operation, and three
coprocessors are used to accumulate intermediate cal-
culation data. When twelve coprocessors perform cal-
culations at a time, twelve buffer units are required.
Because the 3 × 3 convolution operation stride is one,
each buffer unit can buffer sixteen 32-bit data of con-
secutive addresses. Therefore, when the convolution
window slides to the right, if the buffer is hit, the data
of the destination address can be directly read or upda-
ted, which extremely improves the data reuse of the
convolution process and reduces the data communica-
tion between the near-memory computing array and the

Fig. 7　 3 × 3 convolutional data reuse situation

053 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022　

main memory. It also reduces the memory access laten-
cy and overhead. The occupancy of 5 × 5 and 11 × 11
convolution buffers is similar, but compared with 5 × 5
and 11 × 11 convolutions, the data reuse rate with the
3 × 3 convolution operation is the highest.

4　 Experimental results and analysis

Xilinx’ s Virtex 6 field programmable gate array
(FPGA) development board is chosen to verify the
proposed architecture and AlexNet CNN is realized on
it. The source occupation can be seen in Table 4. The
working frequency on FPGA is 110 MHz.

Table 4　 Hardware resource usage

Logic device Number of
resources occupied

Resource
utilization

Slice LUTs 120 317 35%
Slice registers 39 290 5%
LUT-FF pairs 22 992 16%

The computing time of single convolution is coun-
ted as shown in Table 5. Compared with Ref. [20],
the performance is improved by 69. 60% , 75. 00% ,

and 55. 32% , respectively.
The execution clock cycle of each layer of the

convolutional layer is shown in Table 6. The proposed
parallel computing method is used to perform convolu-
tion operations in the near-memory computing array ar-
chitecture based on the reconfigurable array processor,
and the designed architecture is verified and tested. In
this paper, C1 inputs 3 images and outputs 96 feature
maps, C2 inputs 96 feature images, and outputs 256
feature maps. The processing speed of the CNN accel-
erator proposed in Ref. [21] is faster than this paper.
It is because each layer of C1 - C5 has 2 input feature
maps, and the amount of data processing is much lower
than this paper. Comparing in processing single feature
maps, this paper is faster than Ref. [21]. Ref. [20]
based on the multiple parallel features of CNN calcula-
tions proposed an architecture of CNN forward propaga-
tion process in parallel calculation, but the calculation
speed is slower than this article. Ref. [22] used a
reconfigurable array processor that does not support
near-memory computing. Compared with it, the overall
processing speed of the architecture designed in this
paper is increased by 8. 81% .

Table 5　 Comparison of the consumption time of single convolution

Weight Ref. [20]
(cycles)

Non-near-memory
computing function (cycles)

Near-memory computing
function array (cycles)

Performance
improvement

3 × 3 250 112 76 69. 60%
5 × 5 428 126 107 75. 00%

11 × 11 555 425 248 55. 32%

Table 6　 Convolutional layer execution time comparison

Layer type This paper
(cycles) Ref. [20] Ref. [21] Ref. [22] Compared with Ref. [22],

the speed is improved / %
C1 447 876 000 483 516 000 23 134 272 130 745 725 --
C2 1 101 815 808 2 556 002 304 89 235 456 1 159 290 528 4. 96
C3 537 821 184 1 384 448 000 62 668 800 684 206 336 21. 39
C4 806 731 776 2 076 672 000 94 003 200 1 055 531 136 23. 57
C5 538 249 264 1 384 448 000 62 668 800 734 371 968 26. 71

Total execution
cycle 3 432 494 032 7 885 086 304 331 710 528 3 764 145 693 8. 81

　 　 Ref. [23] proposed a CNN hardware accelerator
with an array architecture, which can reconfigure the
layer parameters adapt to different CNN structures. By
using multiple PEs to perform convolution operations at
the same time, the calculation parallelism is improved.
And the convolution processing speed is further en-
hanced. The frequency of the circuit under this archi-
tecture can reach 100 MHz. Ref. [24] designed and

implemented an efficient and reusable CNN FPGA ac-
celerator. Based on the modified roofline model, the
microstructure of accelerator was optimized, the under-
lying FPGA calculation and bandwidth resource utiliza-
tion were maximized. But the accuracy of this architec-
ture is lower, and the power consumption is higher
than this paper. Ref. [25] proposed a configurable
neural network computing architecture by using recon-

153　 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022

figurable data quantification to reduce power consump-
tion and on-chip memory requirements, but this archi-
tecture is not universal. The maximum frequency of
this paper can reach 110 MHz, which is greatly im-
proved compared with Ref. [17] and Ref. [19] and
supports 32-bit operand width. Table 7 shows the com-
parison of frequency, precision and power for different
architectures.

Table 7　 Comparison of frequency, precision and power
　 Ref. [23] Ref. [24] Ref. [25] This paper

Frequency
/ MHz 100 150 100 110

Precision / bit 16 8 8 32
Power -- 26 W 107 mW 6. 4443 W

5　 Conclusion

For data-intensive applications such as deep learn-
ing, a near-memory computing array architecture based
on the shared buffer is designed to improve the speed of
intensive computing and alleviate bandwidth pressure.
The memory occupancy is analyzed, and a method to
realize the parallel calculation of the CNN is designed.
The experimental results show that the architecture of
this paper increases the speed of convolution operation
while reducing memory access latency and improving
data reuse. The highest frequency can reach 110 MHz.
Compared with previous studies, the calculation speed
of a single convolution operation is increased by
66. 64% on average. Compared with the reconfigurable
array processor that does not support near-memory
computing, the processing speed of the entire convolu-
tional layer is increased by 8. 81% .

References
[1] SHAN R, DENG J Y, JIANG L, et al. Design of a clus-

tered data-driven array processor for computer vision[J].
High Technology Letters, 2020, 26(4):78-88

[2] TANG C, DAN L, XING Z, et al. Memory access analy-
sis of many-core system with abundant bandwidth[C]∥
2015 IEEE 9th International Symposium on Embedded
Multicore / Many-core Systems-on-Chip, Turin, Italy,
2015: 187-194

[3] WANG G, GE J, YAN Y, et al. A data-sharing aware
and scalable cache miss rates model for multi-core proces-
sors with multi-level cache hierarchies[C]∥Proceedings
of the 2019 IEEE 25th International Conference on Paral-
lel and Distributed Systems (ICPADS), Tianjin, China,
2019: 267-274

[4] LI X, ZHAO J. GNP: a global-sensitive mechanism for
near-data processing[C]∥2020 IEEE International Con-
ference on Power, Intelligent Computing and Systems

(ICPICS), Shenyang, China, 2020: 661-664
[5] CHOE J, HUANG A, MORESHET T, et al. Concurrent

data structures with near-data-processing: an architecture-
aware implementation[C]∥The 31st ACM Symposium on
Parallelism in Algorithms and Architectures, Association
for Computing Machinery, New York, USA, 2019: 297-
308

[6] GIANNOULA C, VIJAYKUMAR N, PAPADOPOULOU
N, et al. SynCron: efficient synchronization support for
near-data-processing architectures[C]∥2021 IEEE Inter-
national Symposium on High-Performance Computer Ar-
chitecture (HPCA), Seoul, Korea, 2021: 263-276

[7] CHOI J, KIM B, JEON J Y, et al. A lightweight and ef-
ficient GPU for near data processing utilizing data access
pattern of image processing [J]. IEEE Transactions on
Computers, 2020, 71(1):13-26

[8] DAS P, LAKHOTIA S, SHETTY P, et al. Towards near
data processing of convolutional neural networks [C] ∥
2018 31st International Conference on VLSI Design and
2018 17th International Conference on Embedded Systems
(VLSID), Pune, India, 2018:380-385

[9] HAN S, LIU X, MAO H, et al. EIE: efficient inference
engine on compressed deep neural network[J]. ACM SI-
GARCH Computer Architecture News, 2016, 44(3): 243-
254

[10] KIM N S, MEHRA P. Practical near-data processing to
evolve memory and storage devices into mainstream heter-
ogeneous computing systems[C]∥2019 56th ACM / IEEE
Design Automation Conference (DAC), Las Vegas,
USA, 2019:1-4

[11] NAI L, HADIDI R, SIM J, et al. Graphpim: enabling
instruction-level pim offloading in graph computing frame-
works[C]∥2017 IEEE International symposium on high
performance computer architecture (HPCA), Austin,
USA, 2017:457-468

[12] VIEIRA J, ROMA N, FALCAO G, et al. Processing
convolutional neural networks on cache[C]∥2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Barcelona, Spain, 2020: 1658-
1662

[13] GUAN Y, OHSAWA T. Co-design of DNN model optimi-
zation for binary ReRAM array in-memory processing[C]
∥ 2019 IEEE 11th International Memory Workshop
(IMW), Monterey, USA,2019:1-4

[14] HAN J, LIU H, WANG M, et al. ERA-LSTM: an effi-
cient ReRAM-based architecture for long short-term mem-
ory[J]. IEEE Transactions on Parallel and Distributed
Systems, 2020, 31(6): 1328-1342

[15] DENG J Y, JIANG L, ZHU Y, et al. HRM: H-tree
based reconfiguration mechanism in reconfigurable homo-
geneous PE array[J]. Journal of Semiconductors, 2020,
41(2): 44-52

[16] SRIVASTAVA N, SALAKHUTDINOV R. Discriminative
transfer learning with tree-based priors [J]. Advances in
Neural Information Processing Systems, 2013, 2:2094-
2102

[17] WANG Z, WANG X, WANG G. Learning fine-grained
features via a CNN tree for large-scale classification[J].

253 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022　

Neurocomputing, 2018, 275:1231-1240
[18] LIU Z, DOU Y, JIANG J, et al. Throughput-optimized

FPGA accelerator for deep convolutional neural networks
[J]. ACM Transactions on Reconfigurable Technology and
Systems, 2017, 10(3):1-23

[19] VENIERIS S I, BOUGANIS C S. FPGAConvNet: map-
ping regular and irregular convolutional neural networks
on FPGAs [J]. IEEE Transactions on Neural Networks
and Learning Systems, 2018, 30:326-342

[20] JIANG L, WANG X J, LIU Z T, et al. Design and im-
plementation of convolutional neural network based on FP-
GA[J]. Microelectronics and Computer, 2018, 35 (8):
138-142

[21] KOROL G, MORAES F G. A FPGA parameterizable
multi-layer architecture for CNNs[C]∥2019 32nd Sym-
posium on Integrated Circuits and Systems Design (SBC-
CI), Sao Paulo, Brazil, 2019:1-6

[22] SHAN R, JIANG L, DENG J Y, et al. Parallel design of
convolutional neural networks for remote sensing images
object recognition based on data-driven array processor
[J]. The Journal of China Universities of Posts and Tele-
communications, 2020,27(6):87-100

[23] WU C B, WANG C S, HSIAO Y K. Reconfigurable
hardware architecture design and implementation for AI
deep learning accelerator [C] ∥2020 IEEE 9th Global

Conference on Consumer Electronics (GCCE), Kobe, Ja-
pan, 2020:154-155

[24] ZHANG C, SUN G, FANG Z, et al. Caffeine: toward
uniformed representation and acceleration for deep convo-
lutional neural networks[J]. IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems,
2019, 38(11):2072-2085

[25] YUAN Z, LIU Y, YUE J, et al. CORAL: coarse-grained
reconfigurable architecture for convolutional neural net-
works[C] ∥2017 IEEE / ACM International Symposium
on Low Power Electronics and Design (ISLPED), Tai-
bei, China, 2017:1-6

SHAN Rui, born in 1986. She received her Ph. D.
degree from Xidian University in 2018. She received
her M. S. degree from Xi’an University of Posts and
Telecommunications in 2011. She received her B. S.
degree from Xi’an University of Posts and Telecommu-
nications in 2008. She is also an associate professor of
Xi’an University of Posts and Telecommunications. Her
research interests include the computer system archi-
tecture and integrated circuit system design.

353　 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022

