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Abstract
Dynamic networks have become popular to enhance the model capacity while maintaining effi-

cient inference by dynamically generating the weight based on over-parameters. They bring much
more parameters and increase the difficulty of the training. In this paper, a multi-layer dynamic con-
volution (MDConv) is proposed, which scatters the over-parameters over multi-layers with fewer pa-
rameters but stronger model capacity compared with scattering horizontally; it uses the expanding
form where the attention is applied to the features to facilitate the training; it uses the compact form
where the attention is applied to the weights to maintain efficient inference. Moreover, a multi-layer
asymmetric convolution (MAConv) is proposed, which has no extra parameters and computation cost
at inference time compared with static convolution. Experimental results show that MDConv achieves
better accuracy with fewer parameters and significantly facilitates the training; MAConv enhances the
accuracy without any extra cost of storage or computation at inference time compared with static con-
volution.
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0　 Introduction

Deep neural networks have received great succes-
ses in many areas of machine intelligence. Many re-
searchers have shown rising interest in designing light-
weight convolutional networks[1-8] . Light-weight net-
works improve the efficiency by decreasing the size of
the convolutions. That also leads to the decrease of the
model capacity.

Dynamic networks[9-12] have become popular to
enhance the model capacity while maintaining efficient
inference by applying attention on the weight. Condi-
tionally parameterized convolutions (CondConv) [9] and
dynamic convolution (DYConv) [10] were proposed to
use a dynamic linear combination of n experts as the
kernel of the convolution. CondConv and DYConv
bring much more parameters. WeightNet[11] used a
grouped fully-connected layer applied to the attention
vector to generate the weight in a group-wise manner,
achieving comparable accuracy with fewer parameters
than CondConv and DYConv. Dynamic convolution de-
composition ( DCD ) [12] replaced dynamic attention
over channel groups with dynamic channel fusion, re-
sulting in a more compact model. However, DCD

brings new problems: it increases the depth of the
weight, thus it hinders error back-propagation; it in-
creases the dynamic coefficients since it uses a full dy-
namic matrix. More dynamic coefficients make the
training more difficult.

To reduce the parameters and facilitate the train-
ing, a multi-layer dynamic convolution (MDConv) is
proposed, which scatters the over-parameters over
multi-layers with fewer parameters but stronger model
capacity compared with scattering horizontally; it uses
the expanding form where the attention is applied to the
features to facilitate the training; it uses the compact
form where the attention is applied to the weights to
maintain efficient inference. In CondConv and DY-
Conv, the over-parameters are scattered horizontally.
The key foundation for the success of deep learning is
that deeper layers have stronger model capacity. Un-
like CondConv and DYConv, MDConv scatters over-
parameters over multi-layers, enhancing the model ca-
pacity with fewer parameters. Moreover, MDConv
brings fewer dynamic coefficients thus is easier to train
compared with DCD. There are two additional mecha-
nisms to facilitate the training of deeper layers in the
expanding form. One is batch normalization (BN) af-
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ter each convolution. BN can significantly accelerate
and improve the training of deeper networks. The other
mechanism that helps the training is the bypass convo-
lution with the static kernel. The bypass convolution
shortens the path of error back-propagation.

At training time, the attention in MDConv is ap-
plied to features. While at inference time, the attention
becomes weight attention. Batch normalization can be
fused into the convolution. Squeeze-and-excite ( SE)
attention can be viewed as a diagonal matrix. Then,
the three convolutions and SE attention can be further
fused into a single convolution with dynamic weight for
efficient inference. After fusion, the weight of the final
convolution for inference is dynamically generated, and
only one convolution needs to be performed. When im-
plementing, there is no need to construct the diagonal
matrix. After generating the dynamic coefficients,
broadcasting multiply can be used instead of matrix
multiply. Thus MDConv costs fewer memories and
computational resources than DCD, which generates a
dense matrix.

Although dynamic attention could significantly en-
hance the model capacity, it brings extra parameters
and the number of float point operations ( FLOPs) at
inference time. Besides multi-layer dynamic convolu-
tion, a multi-layer asymmetric convolution (MAConv)
is proposed, which removes the dynamic attention from
multi-layer dynamic convolution. After the training,
the weights need to be fused just one time and re-pa-
rameterized as new static kernels since they do not de-
pend on the input anymore. As a result, there are no
extra parameters and FLOPs at inference time com-
pared with static convolution.

The experiments show that:
(1) MDConv achieves better accuracy with fewer

parameters compared with other dynamic convolutions
(DYConv and DCD). For example, for MobileNetV2
x1. 0 and ShuffleNetV2 x1. 0, multi-layer dynamic

convolution achieves better accuracy with about half of
the parameters compared with dynamic convolution.
Moreover, MDConv converges faster than the state-of-
the-art DCD and achieves higher accuracy, especially
on the smaller training dataset.

(2) MAConv enhances the accuracy without any
extra cost of storage or computation at inference time
compared with static convolution. For example, MA-
Conv improves the accuracy of MobileNetV2 x0. 5 by
0. 908% and MobileNetV2 x1. 0 by 0. 982% . These
improvements are decent since there is no extra cost of
storage or computation at inference time.

The remainder of this paper is structured as fol-
lows. Section 1 briefly presents related work. Section 2

describes the details of multi-layer dynamic convolu-
tion. Section 3 introduces multi-layer asymmetric con-
volution. In Section 4, the experiment settings and the
results are presented. Conclusions are made in Section 5.

1　 Related work

1. 1　 Dynamic networks
CondConv[9] and DYConv[10] compute convolu-

tional kernels as a function of the input instead of using
static convolutional kernels. In particular, the convolu-
tional kernels are over-parameterized as a linear combi-
nation of n experts. Although largely enhancing the
model capacity, CondConv and DYConv bring much
more parameters, thus are prone to over-fitting. Be-
sides, more parameters require more memory re-
sources. Moreover, the dynamics make the training
more difficult. To avoid over-fitting and facilitate the
training, these two methods apply additional con-
straints. For example, CondConv shares routing
weights between layers in a block. DYConv uses the
Softmax with a large temperature instead of Sigmoid on
the output of the routing network. WeightNet[11] uses a
grouped fully-connected layer applied to the attention
vector to generate the weight in a group-wise manner.
WeightNet achieves comparable accuracy with fewer
parameters than CondConv and DYConv. To further
compact the model, DCD[12] decomposes the convolu-
tional weight, which reduces the latent space of the
weight matrix and results in a more compact model.

Although dynamic weight attentions enhance the
model capacity, they increase the difficulty of the
training since they introduce dynamic factors. Extreme-
ly, dynamic filter network[13] generates all the convolu-
tional filters dynamically conditioned on the input. On
the other hand, SE[14] is an effective and robust mod-
ule by applying attention to the channel-wise features.
Other dynamic networks[15-20] try to learn dynamic net-
work structure with static convolution kernels.

1. 2　 Re-parameterization
ExpandNet[21] expands convolution into multiple

linear layers without adding any nonlinearity. The ex-
panding network can benefit from over-parameterization
during training and can be compressed back to the
compact one algebraically at inference. For example, a
k × k convolution is expanded by three convolutional
layers with kernel size 1 × 1, k × k and 1 × 1, respec-
tively. ExpandNet increases the network depth, thus
makes the training more difficult. ACNet[22] uses asym-
metric convolution to strengthen the kernel skeletons for
powerful networks. At training time, it uses three
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branches with 3 × 3, 1 × 3, and 3 × 1 kernels respec-
tively. At inference time, the three branches are fused
into one static kernel. RepVGG[23] constructs the train-
ing-time model using branches consisting of identity
map, 1 × 1 convolution and 3 × 3 convolution. After
training, RepVGG constructs a single 3 × 3 kernel by
re-parameterizing the trained parameters. ACNet and
RepVGG can only be used for k × k(k > 1) convolu-
tion.

2　 Multi-layer dynamic convolution

The main problem of CondConv[9] and DYConv[10] is
that they bring much more parameters. DCD[12] re-
duces the latent space of the weight matrix by matrix
decomposition and results in a more compact model.
However, DCD brings new problems: (1) it increases
the depth of the weight, thus hinders error back-propa-
gation; (2) it increases the dynamic coefficients since
it uses a full dynamic matrix. More dynamic coeffi-
cients make the training more difficult. In the extreme
situation, e. g. , dynamic filter network[13], all the
convolutional weights are dynamically conditioned on
the input. It is hard to train and can not be applied in
modern deep architecture successfully.

To reduce the parameters and facilitate the train-
ing, MDConv is proposed. As shown in Fig. 1, MD-
Conv has two branches: (1) the dynamic branch con-
sists of a k × k(k > = 1) convolution, a SE module,
and a 1 × 1 convolution; (2) the bypass branch con-
sists of a k × k convolution with a static kernel. The
output of MDConv is the addition of the two branches.

Fig. 1　 Training and inference of MDConv

Unlike CondConv and DYConv, MDConv encap-
sulates the dynamic information into multi-layer convo-
lutions by applying SE attention between two convolu-
tional layers. By scattering the over-parameters over
multi-layers, MDConv increases the model capacity

with fewer parameters than horizontally scattering. Mo-
reover, MDConv facilitates the training of dynamic net-
works. In MDConv, SE can be viewed as a diagonal
matrix A.
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where the diagonal element π(x) is computed as
π(x) = Sigmoid(F(GlobalAveragePool(x)))

(2)
where F is a multi-layer fully-connected attention net-
work. Compared with DCD, which uses a full dynamic
matrix, MDConv brings fewer dynamic coefficients thus
is easier to train. There are two additional mechanisms
to facilitate the training of deeper layers in MDConv.
One is batch normalization after each convolution.
Batch normalization can significantly accelerate and im-
prove the training of deeper networks. Another mecha-
nism that helps the training is the bypass convolution
with the static kernel. The bypass convolution shortens
the path of error back-propagation.

MDConv uses two layer convolutions in the dy-
namic branch. Three or more layers bring the following
problems: (1) more convolutions bring more computa-
tion FLOPs; (2) more dynamic layers are harder to
train and need more training data.

Although the expanding form of MDConv facili-
tates the training, it is more expensive since there are
three convolutional operators at training time. The
compact form of MDConv can be used for efficient in-
ference. MDConv can be defined as

y =
W2 􀱋 A W1 􀱋 x - μ1

σ1
( )( ) - μ2

σ2
+
W0 􀱋 x - μ0

σ0

(3)
where μ i and σi( i = {1,2,3}) are the mean and the
standard deviation (STD) used in batch normalization.
The normalization is channel-wise and broadcastable.
For simplicity, the broadcast notation is ignored in the
equation. At inference time, μ i and σi are constant and
they can be fused into the convolutional weight and bi-
as.

y =
w2

σ2
􀱋 A W1

σ1
􀱋 x -

μ1

σ1
( )( ) - μ2

σ2
+
W0

σ0
􀱋 x -
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(4)
Then the three convolutions of MDConv can be

fused into a single convolution for efficient inference.

y = W2
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A
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σ1
+
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Winfer =
W2

σ2
A
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σ1
+
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σ0
(6)

binfer = -
W2

σ2
A
μ1

σ1
-
μ2

σ2
-
μ0

σ0
(7)

where Winfer and binfer are the new weight and bias of the
convolution after re-parameterization.

Assume the input x has the size p × h × w, the
output y has the size q × h × w, where p is the input
channel, q is the output channel, h and w are the height
and width of the feature. The size of convolutional
weight W1 is defined as m × p × k × k, where m is the
intermediate channel, k × k is the receptive field size.
It is important to set W2 as pointwise kernel with the
size of q × m × 1 × 1, otherwise the bias cannot pass
forward and fused with the bias of the next layer. W2

can be reshaped into the shape of q × m. Then
W2

σ2
A
W1

σ1

has the size of q × p × k × k. W0 also has the size of q
× p × k × k. As a result, Winfer has the size of q × p ×

k × k. For the term of bias,
μ1

σ1
has the size of m × 1,

then
W2

σ2
A
μ1

σ1
has the size of q × 1.

μ0

σ0
and

μ2

σ2
also have

the size of q × 1. As a result, binfer has the size of q × 1.
　 　 When implementing, the diagonal matrix A does
not need be constructed. After generating the dynamic
coefficients, the broadcasting multiply can be used in-
stead of matrix multiply. Thus MDConv costs fewer
memories and computational resources than DCD,
which generates a dense matrix A.

3　 Multi-layer asymmetric convolution

Although dynamic attention could significantly en-
hance model capacity, it still brings extra parameters
and FLOPs at inference time. Besides MDConv, this
paper also proposes MAConv, which removes the dy-
namic attention in MDConv.

y =
W2 􀱋 W1 􀱋 x - μ1

σ1
( ) - μ2

σ2
+
W0 􀱋 x - μ0

σ0

(8)
After expanding training, the weights need to be

fused just once and re-parameterized as new static ker-
nels since they are not dependent on the input any-
more. As a result, there are no extra parameters and
FLOPs at inference time compared with static convolu-
tion.
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In ExpandNet[21], a k × k( k > = 1) convolution
is expanded vertically by three convolutional layers
with kernel size 1 × 1, k × k, 1 × 1, respectively.
When k > 1, it cannot use BN in the intermediate lay-
er. The bias caused by BN fusion cannot pass forward
through the k × k kernel, thus cannot be fused with the
bias of the next layer. MAConv avoids this problem,
thus can use BN to facilitate the training. Besides,
MAConv uses the bypass convolution for shortening the
path of error back-propagation. BN and the bypass
shortcut in MAConv help the training of deep layers.
Both BN and the bypass shortcut can be compressed
and re-parameterized to the compact one, thus without
any extra cost at inference time.

ACNet[22] and RepVGG[23] horizontally expand
the k × k(k > 1) convolution into convolutions with dif-
ferent kernel shape. That hinders its usage for light-
weight networks, which heavily utilizes the 1 × 1 point-
wise convolutions. MAConv uses asymmetric depth in-
stead of asymmetric kernel shape and expands the con-
volution both vertically and horizontally. MAConv can
be used for both 1 × 1 convolution and k × k(k > 1)
convolution.

4　 Multi-layer asymmetric convolution

4. 1　 ImageNet
ImageNet classification dataset[24] has 1. 28 × 106

training images and 50 000 validation images with 1000
classes. The experiments are based on the official ex-
ample of Pytorch.

The standard augmentation is used for training im-
age as the same as the official example: (1) randomly
cropped with the size of 0. 08 to 1. 0 and aspect ratio of
3 / 4 to 4 / 3, and then resized to 224 × 224; (2) ran-
domly horizontal flipped. The validation image is re-
sized to 256 × 256, and then center cropped with size
224 × 224. Each channel of the input image is normal-
ized into 0 mean and 1 STD globally. The batch size is
256. Four TITAN Xp GPUs are used to train the mod-
els.

Five network architectures are employed on Ima-
geNet dataset: MobileNetV2 x0. 5, MobileNetV2
x1. 0, ShuffleNetV2 x0. 5, ShuffleNetV2 x1. 5, and
ResNet18. The training setups are as follows. (1) For
MobileNetV2 and ShuffleNetV2, the initial learning
rate is 0. 1 and is scheduled to arrive at zero by using
the linear-decay policy. The weight decay is 4e-5. All
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models are trained by using stochastic gradient descent
(SGD) optimizer with 0. 9 momentum for 300 epochs.
Dropout with 0. 2 is used in the last fully connected
layers of MobileNetV2. (2) For ResNet18, the initial
learning rate is 0. 1 and drops by 10 at epoch 30, 60,
and 90. The weight decay is 1e-4. The model is trained
using SGD optimizer with 0. 9 momentum for 100 ep-
ochs.

Firstly, comparisons are made between static con-
volution, DYConv[10], MAConv, and MDConv on Mo-
bileNetV2 and ShuffleNetV2. For DYConv, the num-
ber of experts is set to the default value 4[10] . For MD-
Conv and MAConv, the number of intermediate chan-
nels m is set to 20. For DYConv and MDConv, the at-
tention network is a two-layer fully-connected network
with the hidden units to be 1 / 4 input channels. As
recommended in the original paper[10], the temperature
of Softmax is set to 30 in DYConv. DYConv, MD-
Conv, and MAConv are applied to the pointwise convo-
lutional layer in the inverted bottlenecks of Mobile-

NetV2 or the blocks of ShuffleNetV2. They are used to
replace the static convolution.

Table1 shows that MAConv enhances the accuracy
compared with static convolution. The parameters and
FLOPs are the values at inference time. Gains refer to
the improvement compared with static convolution. For
example, MAConv improves the accuracy of Mobile-
NetV2 x0. 5 by 0. 908% and MobileNetV2 x1. 0 by
0. 982% . These improvements are decent since there
is no extra cost of storage or computation at inference
time. Besides, DYConv and MDConv significantly in-
crease the accuracy compared with static convolution.
Moreover, MDConv achieves better accuracy with fewer
parameters compared with DYConv. For example, Mo-
bileNetV2 x1. 0 and ShuffleNetV2 x1. 5 with MD-
Conv achieve better accuracies with about half parame-
ters compared with DYConv. For MobileNetV2 x1. 0
and ShuffleNetV2 x1. 5, the accuracies using MD-
Conv are 1. 108% and 0. 662% higher than DYConv,
respectively.

Table 1　 Top-1 accuracies of lightweight networks on ImageNet validation dataset
　 Parameters( × 106) FLOPs( × 106) Accuracies / % Gains / %

MobileNetV2 × 0. 5, static 2. 0 97 62. 712 -
MobileNetV2 × 0. 5, DYConv 3. 6 99 66. 504 3. 792
MobileNetV2 × 0. 5, MAConv 2. 0 97 63. 620 0. 908
MobileNetV2 × 0. 5, MDConv 2. 4 106 66. 950 4. 238

MobileNetV2 × 1. 0, static 3. 5 300 70. 806 -
MobileNetV2 × 1. 0,DYConv 9. 8 308 72. 806 2. 000
MobileNetV2 × 1. 0, MAConv 3. 5 300 71. 788 0. 982
MobileNetV2 × 1. 0,MDConv 5. 0 335 73. 914 3. 108

ShuffleNetV2 × 0. 5, static 1. 4 41 59. 068 -
ShuffleNetV2 × 0. 5,DYConv 1. 8 42 63. 108 4. 040
ShuffleNetV2 × 0. 5,MAConv 1. 4 41 59. 316 0. 248
ShuffleNetV2 × 0. 5,MDConv 1. 5 44 63. 210 4. 142

MobileNetV2 × 1. 0, static 3. 5 299 71. 690 -
MobileNetV2 × 1. 0,DYConv 9. 0 306 73. 430 1. 740
MobileNetV2 × 1. 0, MAConv 3. 5 299 72. 206 0. 516
MobileNetV2 × 1. 0,MDConv 4. 2 333 74. 092 2. 402

　 　 Comparisons are also made on k × k(k > 1) con-
volution. DYConv, MDConv, and MAConv are applied
in the 3 × 3 convolutional layer of ResNet18’s residual
block. Table 2 shows that MAConv is also effective on
k × k(k > 1) convolution. MDConv increases the ac-
curacy by 2. 086% with only 1 × 106 additional param-
eters compared with static convolution. Moreover, it
achieves higher accuracy with much fewer parameters
than DYConv.

Comparisons are then made between MDConv and
DCD[12] on MobileNetV2 × 1. 0. DCD generates a
full m × m attention matrix where m is set to 20, the
same as MDConv. To verify that MDConv facilitates the
training, the models are trained with different amounts
of data (100% , 50% , and 10% original training da-
ta). As shown in Table 3, MDConv achieves higher
accuracy with fewer parameters than DCD. As the
training data decreases, the advantage of MDConv is
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more obvious. The accuracy of MDConv is 0. 934% ,
3. 262% , and 3. 822% higher than DCD with 100% ,
50% , and 10% training data, respectively. That im-
plies DCD is more difficult to train, thus needs more
training data. Fig. 2 compares MDConv with DCD in
terms of training convergence. Without any additional
parameter tuning, MDConv converges faster than DCD
and achieves higher accuracy, especially on the smal-
ler training dataset. Moreover, MDConv costs fewer
memories and computational resources than DCD,
which generates a dense matrix A. Assume the size of
matrix A is m × m, then DCD brings m × m extra pa-
rameters and computation FLOPs, while MDConv only
brings m extra parameters and computation FLOPs
since A is diagonal matrix in MDConv.

Table 2　 Top-1 accuracies of ResNet18 on ImageNet
validation dataset

　 Parameters ( × 106) Accuracies / %
Static 11. 7 70. 342

DYConv 44. 9 71. 736
MAConv 11. 7 70. 722
MDConv 12. 7 72. 428

Table 3 　 Comparison of validation accuracies (% ) between
DCD and MDConv on MobileNetV2 x1. 0 trained
with different amounts of data

　 Parameters
Training data

100% 50% 10%
DCD 5. 9 × 106 72. 980 67. 306 47. 764

MDConv 5. 0 × 106 73. 914 70. 568 51. 586

Fig. 2　 Comparison of training and validation accuracy curves between DCD and MDConv on MobileNetV2 x1. 0
trained with different amounts of data

　 　 Comparisons are further made between MDConv
and the feature attention SE[13] . Table 4 shows that
MDConv outperforms the feature attention SE. On Mo-
bileNetV2 x0. 5 and MobileNetV2 x1. 0, the accu-
racy of MDConv is 1. 986% and 1. 488% higher than
SE respectively.

Table 4　 Comparison of validation accuracies on ImageNet be-
tween MDConv and SE

　 SE / % MDConv / %
MobileNetV2 × 0. 5 64. 964 66. 950
MobileNetV2 × 1. 0 72. 426 73. 914

4. 2　 CIFAR-10
CIFAR-10 is a dataset of natural 32 × 32 RGB im-

ages in 10 classes with 50 000 images for training and
10 000 for testing. The training images are padded with
0 to 36 × 36 and then randomly cropped to 32 × 32 pix-
els. Then randomly horizontal flipping is made. Each

channel of the input is normalized into 0 mean and 1 STD
globally.

SGD with momentum 0. 9 and weight decay 5e-4
are used. The batch size is set to 128. The learning
rate is set to 0. 1, and scheduled to arrive at zero using
the cosine annealing scheduler. The networks are
trained with 200 epochs.

MobileNetV2 with different width multipliers are
evaluated on this small dataset. The setups for different
attentions are the same as subsection 4. 1. Each test is
run 5 times. The mean and the STD of the accuracies
are listed in Table 5. MAConv increases the accuracy
compared with static convolution. MAConv even out-
performs DYConv on this small dataset. MDConv fur-
ther improves the performance and achieves the best
performance, while DCD achieves the worst perform-
ance and has large variance. That implies again DCD
brings more dynamics and is difficult to train on the
small dataset.
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Table 5　 Test accuracies on CIFAR-10 with MobileNetV2

Width
× 0. 35

mean / % STD
× 0. 5

mean / % STD
× 0. 75

mean / % STD
× 1. 0

mean / % STD
Static 90. 668 0. 207 91. 240 0. 268 92. 228 0. 146 92. 410 0. 084

DYConv 90. 974 0. 268 91. 614 0. 249 92. 506 0. 102 92. 694 0. 100
DCD 84. 178 3. 707 87. 286 2. 265 88. 346 2. 116 88. 706 2. 848

MAConv 91. 110 0. 306 91. 738 0. 198 92. 678 0. 137 92. 894 0. 285
MDConv 91. 352 0. 261 92. 118 0. 225 92. 638 0. 129 93. 060 0. 349

4. 3　 CIFAR-100
CIFAR-100 is a dataset of natural 32 × 32 RGB

images in 100 classes with 50 000 images for training
and 10 000 for testing. The training images are padded
with 0 to 36 × 36 and then randomly cropped to 32 × 32
pixels. Then randomly horizontal flipping is made.
Each channel of the input is normalized into 0 mean
and 1 STD globally. SGD with momentum 0. 9 and
weight decay 5e-4 are used. The batch size is set to
128. The learning rate is set to 0. 1, and scheduled to
arrive at zero using the cosine annealing scheduler.
The networks are trained with 200 epochs.

MobileNetV2 x0. 35 is evaluated on this dataset.
The setups for different attentions are the same as sub-
section 4. 1. Each test is run 5 times. The mean and
the standard deviation of the accuracies are reported in
Table 6. Results show that dynamic networks do not
improve the accuracy compared with the static net-
work. Moreover, more dynamic factors lead to worse
performance. For example, DCD is worse than MD-
Conv, and MDConv is worse than DyConv. That is be-
cause dynamic networks are harder to train and need
more training data and CIFAR-100 has 100 classes, and
each class has fewer training examples than CIFAR-10.
MAConv achieves the best performance, 70. 032% .
When the training dataset is small, MAConv is still ef-
fective to enhance the model capacity instead of dynam-
ic ones.

Table 6　 Test accuracies on CIFAR-100

　
Accuracies

mean / % STD
Static 69. 574 0. 358

DYConv 69. 564 0. 281
DCD 57. 920 4. 814

MAConv 70. 032 0. 404
MDConv 68. 470 0. 862

4. 4　 SVHN
The street view house numbers ( SVHN) dataset

includes 73 257 digits for training, 26 032 digits for
testing, and 531 131 additional digits. Each digit is a

32 × 32 RGB image. The training images are padded
with 0 to 36 × 36 and then randomly cropped to 32 × 32
pixels. Then randomly horizontal flipping is made.
Each channel of the input is normalized into 0 mean
and 1 STD globally. SGD with momentum 0. 9 and weight
decay 5e-4 are used. The batch size is set to 128. The
learning rate is set to 0. 1, and scheduled to arrive at
zero using the cosine annealing scheduler. The net-
works are trained with 200 epochs.

MobileNetV2 x0. 35 is used on this dataset. The
setups for different attentions are the same as subsec-
tion 4. 1. Each test is run 5 times. The mean and the
standard deviation of the accuracies are reported in Ta-
ble 7. Results show that DCD decreases the perform-
ance compared with the static one. DCD is hard to
train on the small dataset. DYConv, MAConv, and
MDConv increase the accuracy compared with the static
one. Among them, MAConv and MDConv achieve sim-
ilar performance, better than DYConv.

Table 7　 Test accuracies on SVHN

　
Accuracies

mean / % STD
Static 95. 681 0. 085

DYConv 95. 829 0. 079
DCD 95. 108 0. 352

MAConv 95. 911 0. 074
MDConv 95. 937 0. 475

4. 5　 Ablation study
Ablation experiments are carried out on CIFAR-10

using two network architectures. One is MobileNetV2
x0. 35. To make the comparison more distinct, a smal-
ler and simpler network named SmallNet is also used.
SmallNet has the first convolutional layer with 3 × 3
kernels and 16 output channels, followed by three
blocks. Each block comprises of a 1 × 1 pointwise con-
volution with 1 stride and no padding, and a 3 × 3
depthwise convolution with 2 strides and 1 padding.
These 3 blocks have 16, 32 and 64 output channels,
respectively. Each convolutional layer is followed by
batch normalization, and ReLU activation. The output
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of the last layer is passed through a global average poo-
ling layer, followed by a Softmax layer with 10 classifi-
cation output. Other experiment settings are the same
as subsection 4. 2.

The effect of the bypass shortcut in the MAConv
and MDConv is investigated firstly. To show the effect
of dynamic attention, ReLU activation is further used
instead of dynamic attention in the multi-layer branch.
The results are shown in Table 8, w / means with by-
pass shortcut, w / o means without bypass shortcut. Re-
sults show that the bypass shortcut improves the accu-
racy, especially in deeper networks ( MobileNetV2
x0. 35). Moreover, MDConv (with dynamic attention)
increases the capabilities of models compared with MA-
Conv (without dynamic attention). Using ReLU acti-
vation instead of dynamic attention can further increase
the capabilities. However, the weights cannot be fused
into compact one anymore because of the non-linear ac-
tivation function. Thus the costs of storage and compu-
tation are much higher than single-layer convolution at
inference time.

Table 8　 Effect of bypass shortcut
　 　 MobileNetV2 / % SmallNet / %

MAConv
w / 91. 110 74. 458
w / o 85. 450 73. 276

MDConv
w / 91. 352 77. 998
w / o 86. 332 76. 164

ReLU
w / 91. 742 78. 500
w / o 87. 986 75. 250

Next, the networks are trained by using the com-
pact form directly. Table 9 shows the comparison be-
tween the expanding training and the compact training.
Results show that expanding training improves the per-
formance of MAConv and MDConv. To evaluate the
benefit of BN in expanding training, BN is applied af-
ter the addition of two branches instead of after each
convolution (without BN after each convolution). Results

Table 9　 Effect of expanding training
　 　 MobileNetV2 / % SmallNet / %

MAConv

Expanding 91. 110 74. 458
Compact 90. 768 73. 260
Expending
w / o BN 90. 564 74. 092

MDConv

Expanding 91. 352 77. 998
Compact 88. 474 77. 024
Expending
w / o BN 91. 096 77. 500

show that BN in expanding form helps the training
since it achieves better performance than that without
BN. Moreover, the expanding form without BN helps
training itself, since it achieves better performance
than compact training.

The effect of different input / output channels and
different intermediate channels are also investigated.
Different width multipliers are applied on all layers ex-
cept the first layer of SmallNet. The results are shown
in Table 10. Results show that the gains of MAConv
and MDConv are higher with fewer channels. These re-
sults imply that over-parameterization is more effective
in smaller networks. SmallNet are then trained with
different intermediate channels. The results are shown
in Table 11. Results show that the gains of MAConv
and MDConv are trivial when increasing the intermedi-
ate channel on the CIFAR-10 dataset. Using more in-
termediate channels means that the dynamic part takes
more influence, thus increases the difficulty of training
and needs more training data.

Table 10　 Effect of input / output channel width
Width

multipliers Static / % MAConv / % MDConv / %

x1 73. 936 74. 458 77. 998
x2 81. 010 81. 452 84. 204
x3 84. 356 84. 368 86. 398
x4 85. 650 85. 872 87. 424
x5 86. 912 86. 874 88. 140
x6 87. 290 87. 608 88. 552

Table 11　 Effect of different intermediate channel width
Width Static / % MAConv / % MDConv / %
20
30
40
50
60

73. 936

74. 458 77. 998
74. 924 77. 798
74. 216 78. 026
74. 294 77. 970
74. 156 78. 330

Finally, different setups for the attention network
are investigated in SmallNet with MDConv. Different
numbers of the hidden units are used, ranging from
1 / 4 times of the input channel to 4 times of the input
channel. Table 12 shows that increasing hidden units
can improve the performance until 4 times of the input
channel. Softmax and Softmax with different tempera-
tures, as proposed in Ref. [10], are used as the gate
function in the last layer of the attention network. As
shown in Table 13, Softmax achieves better accuracy
than Sigmoid. However, the temperature does not im-
prove the performance.
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Table 12　 Effect of the hidden layer in the attention network
Hidden layer Accuracy / %

1 / 4 × input channel 77. 998
1 / 2 × input channel 78. 096
1 × input channel 78. 550
2 × input channel 79. 074
4 × input channel 78. 472

Table 13　 Effect of the gate function in the last layer
of the attention network

Gate function Accuracy / %
Sigmoid 77. 998
Softmax 78. 148

Softmax temp = 5 77. 160
Softmax temp = 10 76. 612
Softmax temp = 20 76. 486
Softmax temp = 30 76. 326

5　 Conclusions

Two powerful convolutions are proposed to in-
crease the model’ s capacity: MDConv and MAConv.
MDConv expands the static convolution into multi-layer
dynamic one, with fewer parameters but stronger model
capacity than horizontally expanding. MAConv has no
extra parameters and FLOPs at inference time com-
pared with static convolution. MDConv and MAConv
are evaluated on different networks. Experimental re-
sults show that MDConv and MAConv improve the ac-
curacy compared with static convolution. Moreover,
MDConv achieves better accuracy with fewer parame-
ters and facilitates the training compared with other dy-
namic convolutions.
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