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Abstract

Synthetic aperture radar ( SAR) image despeckling has been an attractive problem in remote
sensing. The main challenge is to suppress speckle while preserving edges and preventing unnatural
artifacts (such as annoying artifacts in homogeneous regions and over-smoothed edges). To address
these problems, this paper proposes a new variational model with a nonconvex nonsmooth Ip (0 <p
< 1) norm regularization. It incorporates Lp (0 <p <1) norm regularization and I-divergence fideli-
ty term. Due to the nonconvex nonsmooth property, the regularization can better recover neat edges
and homogeneous regions. The I-divergence fidelity term is used to suppress the multiplicative noise
effectively. Moreover, based on variable-splitting and alternating direction method of multipliers
(ADMM) method, an efficient algorithm is proposed for solving this model. Intensive experimental
results demonstrate that nonconvex nonsmooth model is superior to other state-of-the-art approaches
qualitatively and quantitatively.

Key words: synthetic aperture radar (SAR) image, speckle, nonconvex nonsmooth regulariza-

tion, variational method, alternating direction method of multiplier ( ADMM )

0 Introduction

Synthetic aperture radar ( SAR) is an active re-
mote sensing system, which is widely used in military,
agricultural, and disaster relief. Compared with other
imaging systems ( optical and infrared ), the all-day
and all-weather imaging capability of SAR is unique.
However, as coherent imaging systems, speckle noise
inevitably appears in SAR images. Over the years,
many methods have been proposed to suppress speckle
in SAR images, which can be classified into three ma-
jor categories: the filtering methods, the variational
methods, and the data-driven methods.

The filtering method is a classical speckle reduc-
tion strategy. Early filters were proposed to suppress
speckle in the spatial domain, for example, Lee fil-
ter'", Kuan filter'*' , Frost filter'®'. The above meth-
ods were based on maximum a posteriori ( MAP) ,
while these methods may lose features in the speckle

suppression result. Therefore, filters in the wavelet do-
main were proposed to preserve signal resolution well
so as to get the most suitable prior for the SAR im-
age >, Recently, the nonlocal filtering methods,
e. g. , nonlocal mean (NLM) '*’ | block matching 3D
(BM3D)""'| KSVD" | overlapping group sparsity'®’ |

!, are extended to suppress

and low rank recovery'"
speckle in SAR image. Due to the mechanism of self-
similarity search, nonlocal filters can usually obtain the
breakthrough speckle reduction results, such as PP-
Bit'"'!, SARBM3D'"?’ | FANS!"/,

The variational method is another popular speckle
suppression approach due to the favorable ability for re-
covering edges and homogeneous regions. The varia-
tional model usually incorporates a regularization and a
fidelity term. The fidelity term generally simulates the
random distribution of speckle noise, while the regular-
ization usually contains the prior information of SAR
image. Aubert and Aujol"*’ proposed a variational
model based on MAP to suppress speckle well, abbre-
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viated as the AA model. However, due to the noncon-
vex AA fidelity term, the global minimum of the AA
model is difficult to obtain by the common solving
method, such as gradient descent approach. For tack-
ling this problem, some studies were proposed, which
can be classified into two categories: the convex ap-
proximation and the logarithmic transformation of AA
model. In the first category, they usually add a penalty
function to the original AA model so as to transform the
117 The sec-
ond category is logarithmic transformation of the AA
model "%

nonconvex AA model can transform to a convex one.
[2123]

nonconvex model into a convex mode
By using logarithmic transformation, the

More recently, several deep learning methods

1. ") used

have attracted more attention. Chierchia et a
log-transformed and residual learning of SAR images
for a convolutional neural network (SAR-CNN) , which
are trained in the log-transformed original image. Once
the speckle-free log-transformed SAR image is ob-
tained, the restored image of the original domain is
mapping back through the exponential function. Wang
et al. '*

the original domain of the image, where a component-

proposed a convolutional neural network in

wise division-residual layer is used for recovering the
filtered image. The above methods can effectively sup-
press speckle noise, while they highly rely on the train-
ing data set.

Motivated by these issues, a mnonconvex nons-
mooth model is proposed to suppress speckle noise for
SAR image in this paper. The core idea of this work is
to use a nonconvex nonsmooth Ip (0 <p <1) norm
regularization for getting the most suitable sparsity with
SAR image, which can better recover neat edges and
homogeneous regions. The I-divergence fidelity term is
used to suppress the speckle noise effectively. Moreo-
ver, an efficient algorithm based on alternating direc-
tion method of multiplier ( ADMM) method is proposed
for solving this model. Specifically, the contributions
are summarized as follows.

(1) A new variational model with a nonconvex
nonsmooth Lp (0 < p < 1) norm regularization is pro-
posed for recovering neat edges and homogeneous re-
gions well.

(2) An efficient algorithm based on variable-
splitting and ADMM method is proposed for solving the
propose nonconvex nonsmooth model.

(3) Intensive experimental results demonstrate
that the new model is superior to other state-of-the-art
approaches in recovering neat edges and homogeneous

regions.

1 Variational methods for speckle reduction

In this section, firstly the basic notations are de-
fined, then the major variational methods for suppress-
ing multiplicative noise are described. Finally, the mo-
tivations of the new nonconvex nonsmooth variational

model are expressed.

1.1 Basic notation

For generality, SAR image intensity # is represen-
ted as an M x N matrix. The Euclidean space R """ is
denoted as V, and the discrete gradient operator is a
mapping V :V—Q, where Q =V XxV. ForueV, Vu
is given by

(vu>i,j = ((D:u)i,j, (D:u),,) (1)
where, i (i =1,2,--- M) andj (j = 1,2,---,N) are
the pixel position of the SAR image. D. and D are re-
spectively horizontal and vertical forward difference op-
erators with periodic boundary condition. The inner
product and norm in space V and Q are as follows.

(W', u*y, =u' - ', VYu,u,u’ eV

lully = /{u, uy,, Yuu,uecV (2)

<P"1>Q = {pisqi)y +<{P2sta)v, Yp,qgeQ

IPle = V<P, Pl Vp.geQ

(3)

The discrete divergence operator div:Q — V,

(diVP)g,j = ((D,;pl)i,j5 (D;pz)i,j) (4)
where D! and D] are respectively horizontal and vertical
backward difference operators.

The Laplace operator A:V — V has the following

form.

(Au), , = (D Du), , + (D;D/u), ; (5)

1.2 Variational methods for speckle reduction

Speckle noise is usually regarded as multiplicative
noise in SAR image as follows.

£ = un (6)
where f and u € V are respectively the observed SAR
image intensity and the underlying true image intensi-
ty. m is assumed as speckle noise that follows a Gamma
distribution in L-look SAR image.

PGn) = ppytn™ e H () (7)
where [ is the classical Gamma function, and H is a

Heaviside function. The AA model " is defined as
min{ (logu +%) + 0] Va |, (8)
where A > 0 is a regularization parameter. The AA
model is highly effective for suppressing speckle in
SAR image, they adopted gradient descent method to
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solve the model Eq. (8). However, due to the non-
convex property of the model, their method cannot find
a global minimum. In order to tackle this problem, re-
searchers have done many work, which can be classi-
fied into two categories; the convex approximation and
the logarithmic transformation of the AA model.

In the first category, Dong and Zeng'"' proposed
a strictly convex model with a quadratic penalty func-
tion, which is formulated as

Iungi{/l{(logu +£) +oz(«/ﬁ)2 + A Vu | ,f

(9)
where > 0 is a convex approximation parameter. To
cope with the staircase artifacts produced by Eq. (9) ,
Shama et al. '™ replaced the TV regularizer in Eq. (9)
with TGV regularization. Li et al. """ applied a differ-
ence of convex algorithm (DCA) to solve the original
AA model Eq. (8), which can split the AA model into
a difference of two convex functions.

The second category is logarithmic transformation
of the AA model. By using logarithmic transformation
the nonconvex AA model can transform to a convex
one. Feng et al. '™ adopted this strategy with a TGV
regularizer, but this method will result in low value
pixels weakeness due to nonlinear logarithmic trans-
form. To tackle this problem, Steidl and Teuber'**’
proposed a variational model with I-divergence fidelity
term which is convex and not require the deficiency of
logarithmic transformation. The proposed model is for-
mulated as

min{ (# - flogu) + A || Vu | o} (10)

Feng et al. 8] also modified the model Eq. (10)
with TGV regularization term for reducing staircase
effects. However, due to the using of high-order opera-
tor in their model, the results produced by their meth-
od also are over-blurring in edges and corners.

The regularizer of the aforementioned models are
all convex L1 norm regularizer. However, for many
problems based on recovery of sparse and discontinuous
signals, using nonconvex regularizer ( Lp norm) can
usually obtain better results than the convex regularizer
(L1 norm ), which is verified by numerical experi-

2280 TInspired by these

ments in numerous papers
studies, this paper proposes a new variational model
with a nonconvex nonsmooth Lp (0 < p < 1) norm reg-

ularization.

2 Lp-regularized model and corresponding
numerical algorithm

As coherent imaging systems, speckle noise inevi-

tably appears in SAR images. Compared with Gaussian
noise of natural images, multiplicative speckle noise
can seriously blur geometry features, especially in SAR
images with intensity format. In order to recovery neat
edges and homogeneous regions well, this paper propo-
ses a new variational model with a nonconvex nons-
mooth Lp (0 < p < 1) norm regularization as follows.

rglei{}%a(u—flogu>+ Z | (Va),  |"

1<i<M, 1<j<N
(11)

| (Va),  II” = (J/(Diu)!, + (Du); )"
(12)

here, « > 0 is a regularization parameter, which is

used to balance the weight between the fidelity term
and the regularizer. p € [0,1] is a parameter for con-
trolling the nonconvexity of the Lp regularizer.

Because of the minimization problem Eq. (11) is
nonconvex, it is difficult to find the global minimum.
Inspired by Ref. [29 ], this paper uses variable-splitting
and ADMM to solve this nonconvex model. Firstly, two
auxiliary variables w and ¢ are introduced in the problem
Eq. (11), and then it is reformulated as follows.

e, 117,

1=i=M, 1=j=N
s.t. w=u,t=Vu (13)
The augmented Lagrangian of Eq. (13) reads:
(u9t’w;At’)\u~) = a(w —flOglU) + 2 ” ti,j || !

I<i<M, 1<j=<N

+ <)\w7w _u>V+ <A17t_ vu>0

mi{)%a(w - flogw) +

'y r
s e u g e g

(14)
where r, > 0 and r, > 0 are penalty coefficients, A, >
0 and A, > O are Lagrange multipliers. Eq. (14) can
be separated into three subproblems.

(1) t-subproblem. The t-subproblem can be writ-

ten as
. r )\ )
min Hti'”p"' t||t—(Vu— ,)H
teQ lsis,/!;‘lsjs/v ’J 2 r, 0

(15)

Eq. (15) can be spatially decomposed into M x N

subproblem in explicit component-wise format each pix-
el. For each ¢, ;, the following problem are solved.

. rz 2
mm()”ti,,jnp+?||tzt.j_qz:,j||g (16)

q;; = (Vu)i,j_<)\z)i,,'/r: (]7)

For minimization Eq. (15), the closed form solu-

t

tion has been proven in Ref. [29]. Thus, this paper
just gives the solution. Here, 1" is assumed as the so-
lution of Eq. (15), the corresponding equations are

given as

tifj :§$qi,js & e [0,1] (18)
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(a) 7 =0 g ;I =0
(b) ¢ =0 lg. Il >0,8<B
(c) € e {0, lg. ;I >0,8 =4

(d) " unique solution in (&, 1) of: )
pe ™ +B(e-1) =0 g, | >0,8>8

(19)

= 2_]) Iz — (2 _p)2_1) & :21 _p

B rt ||qt,j||Q 7B (2_21})1_,,7 2—p
(20)
(2) w-subproblem. The w-subproblem can be

written as

rp;{la(w —flogw) + (A,,w —u), + %‘ |w-ul|;
(21)

Eq. (21) is strictly convex, which can be easily
solved by first-order optimality conditions.
A,
W (v ww-%f =0 (22)
w ru' ru

Note that, Eq. (22) has an explicit solution, as

below :

A, A,
/4<“f> PR o) - (R T )
r w ru ru’ r w rﬂ'

2

w =

(23)
(3) u-subproblem. The u-subproblem can be
written as
mi{/l()\w,w —uy, +<{A,, t - Vu>Q

T 2 I v 2
$ 2wy - e

(24)
Eq. (24) is a quadratic minimization problem,
the corresponding first-order optimality conditions are

iu—Au =r7u<w+/\7u) —div<t+£> (25)
rl

t ru' rr

For Eq. (25), 2D discrete Fourier transform (FFT)
is used to solve the solutions.

u=f71(%) (26)
A = (rT w+%)) - F(D)F(¢ +%)

(DR + 50 (27)

ru:

B = - (D;D! +D.D) (28)

13
-1 . . .
where, F and f are respectively discrete Fourier trans-
form and inverse discrete Fourier transform, and ¢t =

(', ), A = (A0,
3 Experiments and analysis

In this section ,the proposed model is evaluated on

three real SAR images, which are presented in the first
row of Fig. 1(a), Fig.2(a), and Fig.3(a). The real
SAR images are accessed from https;//www. intelli-
gence-airtbusds. com/. The proposed SAR image
despeckling method is abbreviated as IDIVLP, which is
compared with the corresponding state-of-the-art meth-
ods, such as SARBM3D'?' | PPBit'"") | DCA'™, and
TGV'"®. All the methods tested in this paper are im-
plemented by using the code provided by their authors,
except TGV according to the published paper. All
of the examples are run on a laptop with an AMD
Ryzen7 core 2. 9 GHz processor and 16 GB RAM by
using Matlab R2016a.

3.1 Parameters tuning

Most SAR image despeckling methods have pa-
rameters, which need to be manually tuned to produce
satisfactory results. The proposed variational model
Eq. (11) has two parameters: o and p. o is a weight
between the fidelity term and the regularization, which
is used to prevent the output deviating far from the in-
put. If o is too large, the speckle noise cannot be sup-
pressed fully; if & is too small, the fine features will be
oversmoothed. To obtain satisfactory despeckling re-
sults, this paper empirically gives the following param-
eter setting guidance; L < 4,00 € [0.1,20]; L > 4,
ae [10,100]. p € [0,1] is a parameter for control-
ling the nonconvexity of the Lp regularizer. The smaller
of p means that the nonconvexity of the new proposed
model is stronger. If p is too small for the SAR image,
staircase effects and other annoying artifacts appear in
recovering results.

On the contrary, too large p will blur edges and
leave some speckles. Therefore, p is suggested to be
set a suitable value. For cartoon images, p € [0.1,

0. 6] ; for images with rich details, p € [0.5,0.9].

3.2 Qualitative comparisons

In this subsection, some visual experiments are
executed to compare the new model IDIVLP with the
state-of-the-art methods including SARBM3D, PPBit,
DCA, and TGV. All the parameters used in these
methods are elaborately tuned for yielding visually best
speckle suppression results. In addition, to better eval-
uate the ability of edges recovery visually, ratio images
are adopted in the tests (see the second row of Figsl,
2, and 3). More structures appear in the ratio images,
which means that this method loses more features and
flattens more edges in the recover results.

Fig.1 demonstrates and compares results of
SARI1, which has sharp features and homogeneous are-
as. All of the methods are capable of removing speck-
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le. However, it can be seen that, except the new
method, all the other methods smooth some sharp ed-
ges and over-blur homogeneous regions more or less,
especially for TGV ( see the first row of Fig. 1 (e) ). At
the same time, the ratio image of TGV leaves the most
structures ( see the second row of Fig.1(e) ). This is
because that it uses the second derivative in its model ,
which tends to produce over-blurring results. DCA pro-
duces better results than TGV, but it also loses more
features (see Fig. 1(d)). In addition, it yields some
staircase artifacts in homogeneous regions. Compared
the new method with the non-local methods PPBit and
SARBM3D, they usually yield better results than DZ
and DCA. In ratio images, they leave fewer structures
(see the second row of Fig. 1(b), (c¢)). However,
because of the attempt to recognize structures even
when these structures are absent, the despeckling re-
sult of SARBM3D suffers from ghost artifacts in the
homogeneous regions ( see Fig. 1(b) for example ).
For the same reason as SARBM3D, PPBit tends to pro-

duce some brushstrokes in homogeneous regions as

shown in the first row of Fig. 1(c¢). These unnatural
artifacts produced by PPBbit and SARBM3D reduce the
quality of the despeckling results evidently. In contrast
to these methods, the new method IDIVLP yields the
more attractive result with neat edge preserving and
homogeneous regions recovery ( see the first row of
Fig. 1(f) ). In addition, IDIVLP also produces the fe-
west structures in ratio images ( see the second row of
Fig. 1(f)).

Fig. 2 shows despeckling results on SAR2 contai-
ning city scene. TGV over-blurs weak edges and homo-
geneous regions in various degrees, and it leaves the
most structures in ratio image ( see the second row of
Fig.2(e) ). DCA produces better results than TGV in
preserving edges, but it also produces staircase arti-
facts (see the second row of Fig.2(d) ). Again, PPBit
suffers from serious brushstrokes, and SARBM3D shows
severe ghost artifacts ( see the first rows of Fig.2(b)
and (c¢)). In contrast, IDIVLP preserves clearer ed-
ges and recovers homogeneous regions better, and it
yields the fewest structures in ratio images (Fig.2(f)).

(a) SAR1 (b) SARBM3D (c) PPBit

(d) DCA (e) TGV (f) IDIVLP

Fig.1 Despeckling results of SAR1 (the first row is: (a) noisy image, denoising results produced by (b) SARBM3D, (c¢) PPBit,
(d) DCA, (e) TGV, (f) IDIVLP (« =6, p = 0.7 ), respectively, the second row is the corresponding ratio images)

(a) SAR2 (b) SARBM3D (c) PPBit

(d) DCA (e) TGV (f) IDIVLP

Fig.2 Despeckling results of SAR2 (the first row is; (a) noisy image, denoising results produced by (b) SARBM3D, (c¢) PPBit,
(d) DCA, (e) TGV, (f) IDIVLP ( « = 11, p = 0.4 ), respectively, the second row is the corresponding ratio images)

To further testify the validity of the new method
IDIVLP, some tests are executed on SAR3 containing

hill scene in Fig.3. DCA produces slight staircase effects

in homogeneous regions, but it is superior in preserving
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edges compared with other tested despeckling methods.
Moreover, the new method IDIVLP produces the least
structures in ratio image ( see the second rows of

Fig.3(d)). TGV smoothes more sharp edges and

homogeneous regions. PPBit and SARBM3D suffers
from the annoying artifacts in homogeneous areas. In
contrast, the new method preserves features well and

outperforms the best structure recovery ability.

(a) SAR3 (b) SARBM3D (c) PPBit

(d) DCA (e) TGV (f) IDIVLP

Fig.3 Despeckling results of SAR3 (the first row is; (a) noisy image, denoising results produced by (b) SARBM3D, (c¢) PPBit,
(d) DCA, (e) TGV, (f) IDIVLP (« =7, p = 0.7 ), respectively, the second row is the corresponding ratio images )

3.3 Quantitative comparisons

For demonstrating more objective comparisons,
two indexes are adopted to further evaluate the perform-
ances of the despekling methods quantitatively. Specif-
ically, equivalent number of looks ( ENL) and edge
preservation index ( EPT) are used to respectively
measure the ability of speckle suppression and edge
preservation, which are widely suggested in previous
work 2" The ENL of tested SAR image were esti-

mated from the homogenous regions in the rectangles in
the first row of Figsl (a), 2(a) and 3(a). The higher
of ENL means that this method can suppress speckle
more thoroughly. The value of EPI is in the range of
[0,1] and EPI is close to 1 means that this method
yields a favorable despeckling results in edges preser-
ving. These assessment results of SAR1, SAR2, and
SAR3 by using the two indexes are listed in Table 1.

Table 1  Numerical evaluation results

Method ENL, EPI; Time/s

SAR1 SAR2 SAR3
Noisy 28.0, 1.00; - 20.3, 1.00; - 20.9, 1.00; -
SARBM3D  430.3, 0.40; 16.5 80.4, 0.62; 15.4 394.2,0.11; 15.1
PPBit 471.4, 0.40; 16.9 205.0, 0.69; 17.6 427, 0.09; 17.1
DCA 412.3, 0.26; 3.2 177.3, 0.54; 3.7 432, 0.08; 3.5
TGV 280.8, 0.22; 34.4 157.6, 0.30; 33.9 350.6, 0.09; 33.2
IDIVLP 501.7, 0.41; 5.8 224.7,0.75; 9.8 440.4, 0.15; 4.9

As shown in Table 1, for all tested SAR image,
the values of ENL and EPI of the new method IDIVLP
are consistently superior to the compared methods.
These show that IDIVLP not only suppresses speckle
noise effectively but also recovers neat edges well. In
the compared methods, the nonlocal methods ( PPBit
and SARBM3D ) usually can obtain better EPI but
worse ENL. This is because that the nonlocal methods
adopt the similar structures searching mechanism, so
they can recover features well. However, in the same
time, this mechanism produces the annoying artifacts
in homogeneous regions, which results in the lower
ENL than the tested variational methods. The computa-
tion time of all the tested methods is recorded in Table

1. As can be seen, for all scenes SAR images, the
proposed method has the least time costs in the tested
methods.

4 Conclusions

A variational model with a nonconvex nonsmooth
Lp norm regularization is, introduced to suppress speckle
noise for SAR image. By using the Ip (0 < p < 1)
regularizer, the proposed model can obtain the most
suitable sparsity with SAR image. Compared with ex-
isting depeckling methods, the proposed model is more
robust in preserving neat edges and recovering homoge-
neous regions. An effective algorithm based on varia-
ble-splitting and ADMM is also proposed to solve the
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model, which has smaller computational complexity.
Intensive experimental results demonstrate that the new
nonconvex nonsmooth model is superior to other state-

of-the-art approaches qualitatively and quantitatively.

In the future, more application with Lp regularizer in

other

fields will be explored. For example, Lp regulari-

zer is extended for mesh and point cloud denoising.
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