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Abstract

Aiming at the problem of filtering precision degradation caused by the random outliers of
process noise and measurement noise in multi-target tracking ( MTT) system, a new Gaussian-
Student’ s t mixture distribution probability hypothesis density ( PHD) robust filtering algorithm
based on variational Bayesian inference ( GST-vbPHD) is proposed. Firstly, since it can accurately
describe the heavy-tailed characteristics of noise with outliers, Gaussian-Student’ s t mixture distri-
bution is employed to model process noise and measurement noise respectively. Then Bernoulli ran-
dom variable is introduced to correct the likelihood distribution of the mixture probability, leading
hierarchical Gaussian distribution constructed by the Gaussian-Student’ s t mixture distribution suit-
able to model non-stationary noise. Finally, the approximate solutions including target weights,
measurement noise covariance and state estimation error covariance are obtained according to varia-
tional Bayesian inference approach. The simulation results show that, in the heavy-tailed noise envi-
ronment, the proposed algorithm leads to strong improvements over the traditional PHD filter and the

Student’ s t distribution PHD filter.

Key words: multi-target tracking (MTT) , variational Bayesian inference, Gaussian-Student’ s

t mixture distribution, heavy-tailed noise

0 Introduction

Multi-target tracking ( MTT) technique based on
point measurements is used to real-time estimate the
number of targets, status, trajectory, and other attrib-
ute information with the processing of measurement in-
formation. The traditional implementation of MTT gen-
erally adopts the data association strategies, such as

M multi-

joint probabilistic data association ( JPDA)
hypothesis tracking ( MHT )'*' | and probabilistic
multi-hypothesis tracking (PMHT)"*’. However, these
above methods cannot deal well with the time-varying
characteristics of the target state, i. e. the time-varying
number of targets makes it difficult to achieve an effec-
tive correlation between the state set and the measure-
ment set of the target. Recently, since bypassing the
complex data association, the MTT based on random fi-
nite set ( RFS) theory and its improvements have at-

[4]

tracted extensive attention Specifically, their com-

plexity and track ability are better than those methods
using data association strategy. A typical implementa-
tion mentioned above is the probability hypothesis den-
sity ( PHD) filter which recursively solves the state
posterior first-order statistical moments, thus gives the
The exist-
ing PHD filter implementation strategies mainly include
sequential Monte Carlo PHD ( SMC-PHD ) ) and
Gaussian mixture PHD (GM-PHD) 7.

In practical engineering applications, the noise

first engineering implementation of RFS".

outlier induced by electromagnetic interference, aging
of the sensor, and uncertainty of the dynamic model
will deteriorate PHD filter tracking accuracy. Besides,
the outlier-containing noise usually exhibits heavy-
However, traditional GM-PHD

suffers poor robustness at heavy-tailed process noise

tailed characteristics.

and measurement noise existingm. Under the condi-
tion of Gaussian distribution, the SMC-PHD filter may
partially relieve the above problem with high computa-
tional cost. Huber’ s M-estimation theory can be used
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to improve the GM-PHD filter’ s performance when out-
liers exist in the measurement model, but it cannot
deal with outliers in process noisy. Moreover, since it
is based on Gaussian distribution approximation, GM-
PHD filter may induce biased estimates on the state
and number of targets, thus is unsuitable to handle
non-Gaussian noise system model with noisy outli-
ers''” . Existing literatures show that heavy-tailed noise
may not be efficiently tackled in Gaussian noise hypo-
thetical scenario, so heavy-tailed noise modeling be-
comes the key to deal with multi-target tracking prob-
lem with noise outliers''".

Since Student’ s t distribution exhibits heavier tail
than Gaussian distribution and converges to Gaussian
distribution as its freedom increasing, it may be suit-
able for modeling non-Gaussian noise with significant
heavy-tailed. Assuming the measurement noise follows
Student’ s t distribution, Li et al. ""*' proposed a robust
PHD filter which used VB to update the posterior like-
lihood function, but the method is unsuitable for noisy
outliers. Liu et al. ' presented a robust Student’s t
mixture PHD filter by recursively propagating the inten-
sity as a mixture of Student’ s t components in PHD fil-
tering framework. In addition, to alleviate the unfavor-
able effects on filtering performance induced by heavy-
tailed noise, Liu re-weighted on true measurement,
outliers and clutter according to their value, and pro-
posed M-estimation based dual-gating strategy to con-
struct a Student’ s t mixture distribution. With approxi-
mately regarding the process noise and measurement
noise as the Student’ s t distribution, Hong et al. "’
proposed a Student’ s t mixture particle PHD ( STMP-
PHD) filter. They argued that the intensity of the
multi-target may be approximated by using a Student’ s
t mixture model, while Monte Carlo is utilized to calcu-
late the Student’ s t function integral, leading to a
closed Student’ s t hybrid recursive framework. Howev-
er, few literatures above focus on improving the filte-
ring robustness by using variational Bayesian infer-
ence. Zhang et al. "' designed a robust Student’ s t
based labeled multi-Bernoulli ( RSTLMB ) filter
through modeling the Student’ s t distribution with the
state prediction probability density and the measure-
ment likelihood function of individual targets. Moreo-
ver, a closed recursion filter is proposed to jointly esti-
mate the target state and the parameters of the
Student’ s t distribution. Due to the random occurrence
of the outliers in noise, RSTLMB hardly model non-
stationarity of noise by using one single Student’ s t
distribution.

Obviously, using fixed inverse scale matrix or
Student’ s t distribution can hardly model random noise

with heavy-tailed outliers. To address the above prob-
lem, a new Gaussian-Student’ s t mixture distribution
PHD robust filtering algorithm based on variational
Bayesian inference ( GST-vbPHD ) is proposed here.
The main contributions are summarized as follows.

(1) Random outliers existing in process noise and
measurement noise are modeled as Gaussian-Student’ s
t mixture distribution, in addition, the parameters of
the mixture distribution and kinematic state are inte-
grated in the augmentation matrix.

(2) Bernoulli random variables are introduced to
transform the mixture distribution model of noise outli-
ers into a hierarchical Gaussian form in which parame-
ters including targets states and weights are updated by
variational Bayesian inference.

(3) In different experiment scenarios, two types
of performance indicators, the optimal subpattern as-
signment ( OSPA) distance and the accuracy of the tar-
get number estimation, are used to verify the feasibility
and validity of the proposed algorithm. The experiment
results demonstrate that the proposed algorithm outper-
forms the comparison methods on tracking accuracy.

1 Gaussian mixed PHD filter

Suppose M (k) and N(x) denote respectively the
numbers of target states and measurements in the moni-
toring area at time k. The set of multi-target states and
the set of multi-target observations are denoted as X, =
s X b and Z =z, Z b, te-
spectively. Let X, , be the set of multi-target states at
time k — 1, then X, and Z, can be expressed as

X, = [XE&JHSMH(-X” U I:XE%JHBk\kq(x” ur,

(1)
Z, = (U 6(x)) U, (2)

where S, |, (x) and B, (x) denote the random fi-
nite sets of survival targets and spawned targets from
X,_, at time k, respectively. I', is the random finite sets
of birth targets at time k. @(x) and k, denote respec-
tively the observed random sets generated by targets
and clutters at time .

The PHD filter estimates the states of targets and
its number by iteratively propagating the posterior in-
tensity , which is a first order statistic of the random fi-
nite set'’). The linear Gaussian MTT system develops
Gaussian mixture implementation in finding the analytic
solution of the Bayesian integral, the process of which
clearly demonstrates how the Gaussian components
propagate analytically to the next moment. Assume that
the prior intensity function v,_; at time £ — 1 obeys the

Gaussian distribution



HIGH TECHNOLOGY LETTERSI Vol. 28 No. 2| June 2022

183

Ji-1
Viar = Zwlil—)l]v(x; mS, P (3)
ey

J,_, is the Gaussian component at time k — 1, w”, is

the weight corresponding to the i-th Gaussian compo-
nent. N(;;m, P) denotes the Gaussian density func-
tion with the mean m and covariance P. m.”, and P\",
denote the target state and the state error covariance,
respectively. At time k, the target predicted intensity
function v,;, , (x) and updated intensity function v, (x)
are obtained from the Bayesian recursive estimation as

follows
Jhk-1

Vi (X) = 2 wlilil)c—lN<x; ml(flil);—l ) P;:\il)r—l) (4)
=

v.(x) = (1 _Pl),k>vklk—1(x> +
Jh k-1 ' ‘ _
> Y w ()Nx; m” (z), P,)
zelp i=1

(5)
where J,,,_, and !} _, denote respectively the predicted
Gaussian components and the corresponding prediction
weights. The target state prediction estimates is repre-
sented as m\/)_, and the state prediction error covari-
ance is marked as P\ . P, refers to the detection

', m.” and P” denote the updated tar-

probability. w}’
get weights, state estimates and state estimation error

covariance at time k, respectively.

2 GST-vbPHD filter

2.1 Gaussian-Student’ s t mixture distribution
The outliers of the process noise and measurement
noise may appear at different moments in practical en-
gineering application, resulting in the non-stationarity
characteristic of the non-Gaussian noise. The modeling
of noise with outliers, by adopting the mixed probabili-
ty 7 as a mixed Gaussian-Student’ s t distribution, is as
follows
p(xln) =9yN(x;m, P) + (1 —n)St(x; m, P, v)
(6)
p(m) = Be(n; e, 1 —e) (7)
where St(:; m, P, v) denotes the Student’ s t density
function, the parameters contain the mean m, scale
matrix P and degree of freedom ( DOF) parameter v.
Assuming that 1 is unknown and obeys the beta distri-
bution Be( :; e, 1 —e), erefers to the prior shape pa-
rameter. In order to model the noise outlier, the Ber-
noulli random variable ¢ is introduced as the conjugate
prior distribution of the beta distribution
pleln) =9°(1 -9 s.t. & e {0,1}
(8)
The auxiliary variable A is introduced to transform
the mixed Gaussian-Student’ s t distribution into the

following hierarchical Gaussian form"'®’

p(x1&,A) = [N(x;m, p)]°[N(x; m, p/x)]"™
(9)

=) (10)

p(A) = G()\; %, >

where G(:- v L) is the gamma density function

22
with DOF parameter v.

2.2 GST-vbPHD filting
2.2.1 Predict

Combined with the model constructed by Eq. (9)
and Eq. (10), the implementation of GST-vbPHD is
derived for linear multi-target systems. According to
Bayesian probability theory, a beta distribution is se-
lected as the conjugate prior distribution of unknown
mixing probability 5,"'*’. The likelihood distribution of
the 7, is expressed as Bernoulli distribution, and Ber-
noulli component g, is introduced to select Gaussian or
Student’ s t distribution. It is well known that the
Student’ s t distribution can be expressed as the prod-
uct of gamma distribution and Gaussian distribution af-
ter introducing auxiliary variables A,.

Suppose the augmented state ¢, of one single tar-
get, which contains one single target state and a set of
parameters for constructing the distribution, can be re-
presented as 9, & (x,,n,,&,,A,), where 1,, &, and
A, respectively refer to the mixed probability, Bernoulli
random variables and auxiliary variables, and they are
mutually independent of x,. The components of the
predicted intensity are the same as Eq. (1), so the mixed
distribution model of joint probability density is ex-
pressed as

Vie (Jm) = Ve () +

Vouit (g i) +8,(9)
(11)

Ji-1

)

Vo Hi-1 (0%\1;-1 ) = Py, z w,”,
im

[N(x; mi‘{;ﬁlk—l , Pé{;«lk—l )]
(12)
where P , and vg |, (O, |,_,) are the target survival
probability and the intensity of the target surviving to
time k, respectively. To obtain the priori model state
information, by one-step nominal prediction state vec-
tor mé{llk_l and the corresponding error covariance ma-
trix ng Wit » the predicted probability density functions
mg{/,_, and P {) | are approximated as
mé{?ﬂm =~ m;,z(ujlq = Fk7|m1(f];>1 (13)
Pé{;clk—l = Ps*,/(f\]i-fl = kaijf)lFZ +0,., (14)
where Q,_, represents the nominal process covariance
matrix. And v, (954,.,) is given by
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Tt gk
vﬂ,k\kfl('?ﬁ,k\k—l) = Z 121 w;c]f)lw;l;c
==
[NCxs mly, Pt ]
(15)
m;é{’klllzfl =~ mﬁ*zllkf)l = F,[gl;r—lm;‘]—)l + d[(s{;ﬁl (16)
R O TN TR
(17)

The birth target intensity can be written as
sk

6,(9) = Y w”[N(x;my), Py))]  (18)
i=1

where, vy 1, (9 4, ) is the spawning target intensity
and 8,(4,) is birth target intensity, both of which
have the same mixed distribution form with
Vs ot (s i)

2.2.2 Variational Bayesian approximation

Considering the measurement noise and process
noise both exist outliers, the state one-step prediction
PDF and the measurement likelihood PDF are modeled
by the above model at the same time, and the same
distribution type is used in the modeling process. Since
the parameters in the mixed distribution are unknown,
the posterior PDF p( 9, | z,,) is difficult to obtain an
analytical solution. To simplify calculations, the VB
method'"” is adopted to solve the approximate distribu-
tion

p(xpmen A z,) = q(x)q(n)q(e)q(A,)
(19)
where ¢( +) is the approximate posterior PDF of p( - ).
After minimizing the KLD scatter'®’ between the ap-
proximate posterior PDF and the true posterior PDF,
there is
ta(x,), q(n,), q(er), q(A,) | = argminKLD
(q(x,)q(n)qCe)q(A) 1 p(x,mse0,A, 1 21,))
(20)

With the VB approximation strategy, the posterior
PDF satisfies the following equation

logq(9) = Ey-o[logp(, 2,,) ] +¢,  (21)
where E( +) is the expectation operation and log( * )
is logarithmic operation. @ is any element in the set ¢, ,
and 9. is all elements in the set of I, except 6. c, 1s
the constant associated with ',

The posterior PDF is estimated for joint fixed-point
iterations using the VB approximation, which can be
used to obtain

g () = Ny P

(22)
B el 1)
(23)

¢ (i) = G L T
(24)

q(n+1)(j) (ni,k>

where i = [1,2]. Since outliers are assumed to appear
in the measurement noise, it may also appear in the
process noise. Two sets of parameters are used to cor-
rect measurement noise R, and state prediction error co-
variance P/} | respectively. When i = 1, the P{/,_, is
corrected , correction for R, ati = 2.

According to Eq. (17) , the PDFs of 5, , are upda-
ted as beta distributions by using the mixture distribu-
tion model of the state prediction PDF and the meas-
urement likelihood PDF, where the shape parameters
are updated as follow

e;il;”(j) =e + E("+1) I:Sl,k:l (25)
tiiblf‘rl)(/) -9 _ e, - E(u+l) [gl,kJ (26)
eét,kJr])(j) =e, + E<n+1) [82,1,,] (27)
(VO _ g e g ] (28)

and the shape parameters and the rate parameters of
the gamma distributions are updated as

wftl,:l)(j) =0.5n(1 - E"Y [e14]) +0.50,
(29)
wy Y = 0.5m(1 —E"V [£,,]) +0.50,
(30)
WY = 0.5uw(A (PO T
(1-E""[g,]) +0.50, (31)
hy'tVY = 0.5u(B" " R;")
(1 -E""[e,,]) +0.50, (32)
When the Bernoulli parameters g, , and &, , take O and
1 respectively, the probabilities are given as
PrvtY (s, = 1) = A" expl ™ [logn, ]
= 0.5t (A (P ) T |
(33)
pri) (&,, =1) = A" exp{E™ [ logm, , |
-0.5u(B"""R,") | (34)
primh® (g, =0) = A" exp{E™ [log(1 - M)
+0.5n E™ [logh, ,] —0.5 E™
[Al,thr(Az(f”H) <P]E“j1){—| ) - ) }
(35)
prim0) (82,A- =0) = énﬂ) exp{E(") “02%(1 - nz,k)]
+0.5m E™ [logh, , ]
—~0.5E" [ A, Ju(B" R ) |
(36)
where A" and A{"*" are normalization constants and
tr( + ) is trace operation on matrix. m, n are the di-
mension of the state vector and the measurement vec-
tor, respectively. A" and B{"*" are the auxiliary pa-
rameters.
AI(C"H) — P,(rj)("H) + (mffj)(nﬂ) _ mlEIJ;L-l
("0 —myfy ) (37)

(n+l) _ (j) (n+1) T (j) (n+1)
B, = H/P,; H, + (z, - Hmy )
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(z - Hkmij)(nﬂ))T (38)
The expectations of the mixture probability param-
eters logn, , and log(1 - 7, ) are

B Tlogn, ) = (™) = (e 410
(39)
E™ [log(1 =m0 ] = ¢ (") =™+
(40)
At time k, eV tf?,:l)(j) and g, , denote the
parameters of the state prediction PDF for the j-th tar-
get at the n + 1 variational iteration. e’y 15"
and &, , denote the parameters of the measurement like-
lihood PDF under same conditions.
2.2.3 Update
At time k, the target posterior intensity function is
updated with
vi(9) = (1 =pp)vi e (D) + 2/, Vou (D5 2)
FevA
(41)
where
Ji-1

vou(Ds2) = Z wz(ij)<z)[N<xk§ ml(fj)<z) ) Pl(fj))gl'k
=

NCxs mi? (), PP/0 0 016 92
(i) (1= ) BeCm s e, 1 - e)) (42)
In addition to integrating VB inference into the
update step, which is different from the traditional
PHD framework, the calculation of target weight is also
improved. The corrected state prediction error covari-

() (n) .
ance P, and the corrected measurement noise covar-

iance R are used to update the target weights,
which improves the accuracy of calculating Gaussian
Student’ s t mixture components and reduces the error
caused by the interference of colored noise.
Pyl (2)

J | k-1

(@)
Kk(z) + Pl),k [z, wmk-l‘]/(fw(uﬁ)(z)
=1

(43)

() (n+1) () () (n) () (n)
q; (z) = N(z,; Ham/,_, ,R/ +H,P,/,"'H,)
(44)
In the standard Kalman filtering measurement up-

. j) (n+1
date framework, the target state estimates m,i/ 1 and

w}(ij)(n+l) (Z) —

its corresponding state estimation error covariance ma-
. ) (n+1 . .
trix P,(fmm " are updated iteratively

() (n+1) ) () 7T H () (n) 4T ) (n) N -1
K, =Py H,(HP; H, +R, )

(45)
() (n+1) ) () (n+1) ()
m, =my,, +K; (z, - Hmy,
(46)
() (n+1) () (n+1) () (n)
Pk = [I_Kk Hk]Pk\k—l (47)

) (n+l) . . . .
where K,(f])( Y is the Kalman filter gain. With the nom-

inal state error covariance and the nominal measure-
. . ) (n) P ) (n)
ment noise covariance, P, | and R, are respec-

tively used to correct as follows

- pu®
PLY = =) W
E [81,1:] + (1 -E [Sl,k])E [)\1,1:]
(48)
Ryﬂw = 6% ()
E [‘92,k] + (1 -E [‘92,1;])E [)\2,1:]
(49)

To achieve the expectation solutions for the pa-
rameters £, , and &, ,, A, ; and A, ;, variational fixed-

point iteration is performed as follows

prim? (e, = 1)

E(n+l) . =
[EL.;,J Pr(m‘l)(é‘i,k — 1) +Pr<”+l)(6‘i,k = 0)
(50)
E<"+l)|:)\ :I _M (51)
ik - h(n+l)

E(n+l)|:10gA[‘kJ — w(w(nﬂ)) _ logh(n+l) (52)

wheren € [1,N] and N is the maximum number of

() (n+1)

variational iterations. If (m, < ¢ then

stop the variational iteration, else the loop continues.

—mP™)

The updated m,iﬂ , Plij) and w,ij> (z) are output, and all
the outputs values are used as the input values of the
clipping step and merging step. As the sampling time
grows, the Gaussian Student’ s t mixture components
increases exponentially, so each update time requires
clipping of the mixture terms with existence probability
below the threshold'™’.

terms with merging distance less than the threshold are

Furthermore, the remaining

output. Finally, the target state is extracted.

To summarize the update steps visualization of the
GST-vbPHD algorithm, the pseudocode of implementa-
tion flow is given in Algorithm 1.

Algorithm 1 The variational iteration process for each

Gaussian Student’ s t mixture components

W ) )
Inputs: my;,_, Py, wiy, Hy, Ry, 2z, Py, 7,6, e,

w;, 0y, N
1. Initialization: E” [y] =1, E9[logy] =0, E¥[&] =1,

E? [log(1 —a) ] = mp(1 =) =y(1)

E® [logor] = y(e) —y(1),

2. m/ij>(0) — m,({j)k,| , P/ij)(O) — P:—/\)/{,]

3. forn =0: N-1do

4. Calculate P/, and RY" using Eqs(48) and (49)

5. Calculate m,f_muﬂ) and P:,/M"H) using Eqs(45) - (47)

6. Calculate w”"*" (z) using Eqs(43) - (44)

7. Calculate A,E_”H) , B,i“” using Eqs (39) — (40) Update
q

n "*!(&,,) as Bernoulli distributions

(‘91,k)7 q
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8. Calculate Pr"*' (g, , = 1), Pr""' (6,4 =0) and
Prtt(e,, =1), Pr'*'(&,, =0) using Eqs(33) - (36)

9. Calculate E"*' [eis], E" [ &, ] using Eq. (50)
Update ¢"*' ('y, ), ¢"*' (y,,,) as Gamma distributions

+1

10. Calculate w;’, , h?;l and w;f; , h;fkl using Eqs (29) -
(32)
11. Calculate E™*' [yiil, E™! [v,,] and
E"! [logy, ], E"! [logy, ;] using Eqs(51) - (52)

n+l

Update ¢"*' (o, ), ¢""' (o, ,) as Bate distributions
12. Calculate e]"Tk] , t'llf,bl and e;Tk] s t;f,tl using Eqs(25) - (28)
13. Calculate E"*' [logo, , ], E"*' [logo, , ] and
E"' [log(1 - g, E"' [log(1 - 7,.;) ] using
Eqs(39) - (40)

14, itm" " —mU " < g then
15. Stop the iteration

16. end if

17. end for

Outputs : miﬂ \Pz_/) and wiﬂ

3 Simulation results and analysis

3.1 Scenario design

To verify the tracking performance of the proposed
algorithm, two simulation scenarios are designed in the
2-D plane, i. e. the scenario of the measurement noise
with outliers and the scenario of outliers in both process
noise and measurement noise. In addition, the differ-
ent probabilities of generating outliers are compared in
the two scenarios. For comparison, the tracking per-
formance of the Gaussian mixture PHD filter ( GM-
PHD) , the robust Student’ s t based PHD filter ( RST-
PHD) and the GST-vbPHD are employed.

Assuming that there are four targets in the surveil-
lance range, they are present at time [1 8 12 26](s)
until time [20 25 25 40] (s) in turn disappears,
with uniform motion during the survival period. The re-
al trajectories of all targets are plotted in Fig. 1.

30 > T ;
arget
201 ol —o— Target 2 []
—o— Target 3
101 #— Target 4
o e ]
g I ; T,
=710 *x g
'S T
-20+t *, e i
W e
-30 S,
)kﬁ
-40 ©
-50
-10 0 10 20 30 40 50

x/m

Fig.1 The true trajectory of multiple targets

3.2 Simulation parameters

A total of 40 steps are running in the simulation
process, and the simulation results are the average af-
ter 300 Monte Carlo (MC) trials. What is more, the
objective survival probability Py, = 0.99, detection
probability P, , = 0. 98 and the clutter rate A = 3. The
state and measurement equations of the targets are
modeled as the following form

x, =Fx,, +0,

z, = Hx, + R,
1 T
0 1
0), & represent

where the state transfer matrix F = I, & (

) and

the observation matrix H = I, ® (1
Cartesian product operators.

Same as RST-PHD, DOF parameter and variation-
al iteration number are all set to be 10 in proposed al-
gorithm. The clipping threshold and the merging
threshold for the target mixture are set as T = 10~ and
U = 4, respectively. The performance of the three fil-
ters is compared by using the two types of performance
metrics that are OPSA error and target number error.
The OSPA distance has two subsets of X and Z with di-
mensions m and n respectively.

d (X, Z) =

m

(S Cmin >0 200" € =)
mE ,liil

where the distance sensitivity parameter satisfies 1 < P

1/p

< ® , m < n, and the association sensitivity parameter
is usable at ¢ > 0. In this paper, we choose p = 2 and

¢ = 100. H refers to all permutations in {1,--+,n{.
If m > n, then
4" (X, 2) =d,"(Z, X)

3.3 Results and analysis
3.3.1

To observe the performance of MTT at measure-

Scenario 1

ment outliers existing, the measurement noise covariance
is constructed with outlier according to Ref. [21].
y, ~ { N(O, R,) P
N(0, 50R,) 1 -p,
where, pl is the probability of the measurement noise
without outliers and is set to be in a range of 5 =30 s
during the multi-target motion.

Fig.2 shows the OSPA distance errors for the
three filters with probability pl = 0. 98. Due to the
measurement outliers, it can be observed that the GM-
PHD has significantly inferior tracking performance to
the other two filters. Specifically, when there are outli-
ers in the measurement, because of the light-weight tail
property of Gaussian distribution, the weight of Gaussi-
an components tends to be a small value or even zero in
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some cases, which leads to a larger OSPA distance. In
contrast, although RST-PHD takes into account the
heavy-tailed feature of noise, it uses a fixed Student’ s
t distribution for modeling, which lacks robustness to
randomly occurring outliers. The OSPA distance curve
of GST-vbPHD is lower than that of GM-PHD and RST-
PHD, which demonstrates that the tracking perform-
ance of GST-vbPHD surpasses the other two algo-
rithms. Due to the random characteristic of the meas-
urement noise outliers, the noise cannot always remain
in a heavy-tailed or Gaussian distribution state. GST-
vbPHD employs the model with mixture distribution to
better estimate the target weights, which helps to track
the target without loss. The results of three algorithms
for estimating the number of targets are given in Fig. 3,
and it can be seen that GST-vbPHD significantly out-
performs GM-PHD and RST-PHD.
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Fig.3 The number of targets

To further analyze the impact of the probability p,
on the filter performance, the statistical analysis on the
average OSPA distance is shown in Fig.4. When the
probability of the measurement noise without outliers is
0.98, 0.96, 0.94, 0.92 and 0.9 respectively, OSPA
average distance all decrease with increasing of the
probability of the measurement noise, and that is be-
cause the effect of measurement noise outliers on the
system significantly weakens. GST-vbPHD has a lower

OSPA average distance than GM-PHD and RST-PHD,
and has better tracking accuracy under lighter-tailed
measurements or even heavy-tailed measurements.
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Fig.4 Average OSPA with different p,
3.3.2 Scenario 2

To evaluate the performance of MTT at outlier
both existing in process noise and measurement noise,
a new experiment Scenario 2 is constructed. The meas-
urement noise outliers can be generated according to
Scenario 1, and the process noise covariance with out-
liers is shown as follows.

. { N(0, Q,) 2
£ AN(0, 100,) 1 -p,
where p, is the probability of the process noise without
outliers. Assume that the time period of outliers in the
noise is the same as Scenario 1.

For outliers of the process noise and the measure-
ment noise with the same probability, Fig.5 shows the
OSPA distance comparison of three filters. From Fig. 5
and Fig. 6, it can be found that GST-vbPHD shows a
better tracking result for both the tracking accuracy and
the estimation of target number. The process noise out-
liers may be induced by target maneuvers, while the
GM-PHD filter cannot capture the target due to the
light tail of the Gaussian distribution, and RST-PHD
lacks adaptability to random outliers. The proposed al-
gorithm utilizes the mixture distribution model of noise
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to correct state error covariance, effectively eliminates
the adverse effects induced by process noise outliers.
Overall, if there are outliers in both process noise and
measurement noise, the GST-vbPHD can achieve relia-
ble and effective performance in MTT.

In order to deeply analyze the tracking perform-
ance of the filters under different probabilities of outli-
ers, the additional experiments are executed. First, p,
is fixed, while p, is 0.9, 0.92, 0. 94, 0. 96, and
0.98 respectively. After that, the average OSPA dis-
tance is given in Fig. 7. On the contrary, when p, is
fixed, p, changes and the corresponding simulation re-
sults are shown in Fig. 8. The average OSPA distance
of the three filters gradually decreases, which means
that the poor tracking performance with the occurrence
probability of outliers increases. In Fig. 8, the average
OSPA distance of the three filters decreases less obvi-
ously than that in Fig. 7. The results can be attributed
to the different multiples of setting outliers in the dy-
namic model, and the filter is more sensitive to the
process noise. As shown in Fig.7 and Fig. 8, the pro-
posed algorithm achieves relatively stable tracking per-
formance for different probabilities of outliers in process

noise and measurement noise.
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The computation time of the RST-PHD and the
GST-vbPHD in this paper is 1.4 s and 3.5 s respec-
tively when both the variational approximation iterations
are used. The proposed algorithm not only improves the
accuracy of tracking and estimating the number of tar-
gets, but also increases the operation time. This is be-
cause we consider that both process noise and measure-
ment noise may have outliers. Two sets of parameters
are used to modify the measurement noise covariance
and state error covariance respectively, and participate
in the variational iteration. The contrast algorithm only
considers the heavy tail characteristics of noise outli-
ers, but ignores the associate the nonstationarity. It
simply uses student t distribution to model the noise.
Therefore, the proposed algorithm in this paper does
not perform well on the evaluation index of operation

time.
4 Conclusions

In this paper, a new Gaussian-Student’ s t mix-
ture distribution PHD robust filtering algorithm is pro-
posed based on variational Bayesian inference, which
models the one-step state prediction PDF and the meas-
urement likelihood PDF as the hierarchical Gaussian
forms. Concretely, the hierarchical Gaussian form is
employed to correct state error covariance matrix and
measurement noise covariance matrix, eliminating the
adverse effects of process noise and measurement noise
both with outliers on the tracking performance. In ad-
dition, the parameters in the mixed distribution term
are iteratively optimized by variational inference to ob-
tain the target posterior probability density. The simu-
lation results show that the proposed algorithm can
achieve competitive performance with the traditional
Gaussian hybrid PHD filter and the Student’ s t PHD
filter on tracking accuracy in MTT. Future work will
focus on how to construct a hierarchical Gaussian noise
distribution for nonlinear systems to effectively solve
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the influence of noise outliers.
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