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Abstract

Residual learning based deep generative networks have achieved promising performance in im-
age enhancement. However, due to the large color gap between a low-quality image and its high-
quality version, the identical mapping in conventional residual learning cannot explore the elaborate
detail differences, resulting in color deviations and texture losses in enhanced images. To address
this issue, an innovative non-identical residual learning architecture is proposed, which views image
enhancement as two complementary branches, namely a holistic color adjustment branch and a fine-
grained residual generation branch. In the holistic color adjustment, an adjusting map is calculated
for each input low-quality image, in order to regulate the low-quality image to the high-quality repre-
sentation in an overall way. In the fine-grained residual generation branch, a novel attention-aware
recursive network is designed to generate residual images. This design can alleviate the overfitting
problem by reusing parameters and promoting the network’ s adaptability for different input condi-
tions. In addition, a novel dynamic multi-level perceptual loss based on the error feedback ideology
is proposed. Consequently, the proposed network can be dynamically optimized by the hybrid per-
ceptual loss provided by a well-trained VGG, so as to improve the perceptual quality of enhanced
images in a guided way. Extensive experiments conducted on publicly available datasets demonstrate
the state-of-the-art performance of the proposed method.
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0 Introduction

Image enhancement, as a classical computer vi-
sion task, aims at recovering high-quality image from
its low-quality version. High-quality images should
have abundant color, clear texture, and satisfactory
perception, etc. . It is an important task that can facil-
itate various industrial communities, e. g. satellite''” |

) Many traditional en-

medical, and 4K television
hancement methods including Gaussian smoothing, and
bilateral filtering have been proposed without super-
vised information. With the flourish of deep neural net-
works, convolutional neural networks ( CNNs) have
shown the powerful capability in image enhancement by
learning pairwise training patches. Some existing meth-
ods mainly focus on solving image enhancement prob-
lem from specific aspects, such as enhancing illumina-
tion, adjusting contrast, and denoising.

It can be noticed that low-quality images and their
high-quality targets have great similarity in contents,

thus their detail differences, i. e. texture, edge and
color recovery are important for image enhancement.
Consequently, residual learning has become a success-
ful method to excavate those details by building an
identical mapping from low-quality to high-quality ima-
ges. Later, generative adversarial networks ( GANs)
based image enhancement frameworks are proposed.
They adopt deep residual network as generative model
for enhancing low-quality images, and take multiple
loss function, e. g. a perceptual loss and an adversarial
loss, to optimize network for promoting visual quality.
However, those methods still remains three deficien-
cies. (1) A low-quality image and its high-quality ver-
sion exist large gaps in holistic color. The identical
mapping in the residual learning cannot force genera-
tive models to accurately capture the detailed informa-
tion. (2) Generative models usually have large num-
ber of parameters, causing great storage cost and rising
the risk of overfitting. (3) Although one or multi-level
perceptual losses are widely applied for network optimi-
zation, the loss weight allocated to each level are
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fixed, resulting in unpleasant artifacts or unfavorable
color representations in enhanced images.

To address the above-mentioned issues, non-iden-
tical residual learning is first considered to adjust low-
quality images to high-quality style. Hence, a novel
image enhancement framework is proposed, which con-
sists of two complementary branches: holistic color ad-
justment and fine-grained residual generation. In the
fine-grained residual generation branch, recursive
structures are employed to construct the proposed net-
work with less parameters meanwhile alleviate overfit-
ting. However, the feature representations are still lim-
ited due to model capacity, and it lacks flexibility to
adapt to different image scenes. Consequently, a light-
weight attention-aware recursive network is proposed.
It is composed of fully multi-scale feature extraction to
extract more representative primary features, and a re-
cursive convolutional function, which collocates multi-
level channel-wise attention to promote the flexibility of
the network by dynamically excavating color informa-
tion. The holistic color adjustment can adjust global in-
formation and facilitate the generative network to learn
local details. It is tried to compute the overall residuals
between low-quality images and high-quality images.
Then, an adjusting map is estimated for input low-
quality images adaptively. Accordingly, low-level fea-
ture maps extracted from a well-trained network have
abundant color information, while the extracted high-
level feature maps contain more spatial and texture in-
formation. Optimizing single one-level perceptual loss
cannot comprehensively promote enhanced quality.
Therefore, a multi-level perceptual loss is considered
to comprehensively optimize the proposed network.
However, the loss weight of each level cannot be easily
determined, and it lacks of flexibility during the train-
ing process. Consequently, a dynamic multi-level per-
ceptual loss is introduced for optimization based on the
error feedback. Detailedly, feature contents of high-
quality and enhanced images are extracted from max-
pooling layers of VGG16, and content errors between
high-quality and enhanced features are computed. Ac-
cording to the value of the errors, a weight is decided
for perceptual loss of each level. Thus, enhanced ima-
ges will have rational color representations and tex-
tures.

In summary, the main contributions of this paper
are as follows.

(1) A novel non-identical residual learning
frame-work is tailored for image enhancement, in
which an adjusting map is carefully computed to adjust
global color to high-quality target.

(2) A novel attention-aware recursive network is

proposed to adaptively enhance residual details accord-
ing to input low-quality images.

(3) An innovative dynamic multi-level perceptual
loss (DPL) is presented to approximate color represen-
tation of high-quality images, hence promoting percep-
tual effect in a more comprehensive way.

(4) Extensive experiments on publicly available
dataset show the state-of-the-art performance of the
proposed method, both quantitatively and qualitatively.

The rest of paper is organized as follows. Section
1 overviews related work. Section 2 describes the en-
hancement architecture. Experimental results and their
analysis are presented in Section 3. Section 4 con-
cludes this paper.

1 Related work

1.1 Image enhancement

The pioneer image enhancement work often con-
centrate on improving image contrast, such as histogram
equalization ( HE) and its variants bi-HE. Ref. [3]
proposed a low-light image enhancement method by esti-
mating illumination maps. However, those methods do
not use external information and the performance of
them is usually inadequate and limited. An external
example-based approach was proposed for low-light im-
age enhancement in Ref. [4], which adopts an auto-
encoder to learn a mapping function. Ref. [5] pro-
posed a unified image enhancement framework, which
combines learning based methods with reconstruction
based methods. Some work enhance images in specific
conditions, e. g. hyper-spectral image and underwater
image.

Recent years, CNNs show promising performance
in many image enhancement sub-tasks, e. g. image su-
per-resolution, image denosing'®’ and image coloriza-
tion. In Ref.[7], a reconstruction-based pairwise
depth dataset for depth image enhancement was pro-
posed. CNNs for weakly illuminated image enhance-
ment was proposed in Ref. [3]. Deep residual learning
was proposed in Ref. [8], and it showed effectiveness
for deep network construction. However, those deep
networks significantly increase the number of parame-
ters and the overfitting problem is highly likely. Recur-
sive structures have become an effective way to relieve
overfitting for the less parameters. Ref. [9] proposed
DRRN that combines residual learning for easy training
by a 52-layers network, showing the promising per-
formance in image super-resolution. Employing the re-
cursive structure is tried to construct a lightweight mod-
el for image enhancement. However, those methods
are limited by optimizing single MSE loss and it will
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cause some blurry and unrealistic enhancement results.

1.2 Deep residual learning

Deep learning firstly attracts great attention in
Ref. [10], and it showed significant promotions in im-
age classification tasks. Then, VGG networks were
presented in Ref.[11], and they become universal
feature extraction models. Ref. [12] proposed Incep-
tion network to introduce multi-scale feature represen-
tation in CNN. Ref. [12] demonstrated that deeper
network can accordingly achieve better performance.
Afterwards, many work focus on increasing depth of
CNN to promote performance. However, when deeper
networks are able to start converging, a degradation
problem is exposed, that is, with the network depth in-
creasing the performance gets saturated and then de-
grades rapidly. Besides, vanishing gradient problem
still limits the performance of CNN.

Residual learning tries to solve those problems by
constructing identical mapping, and the depth of CNN
is substantially increased. It can be written asy = x +
F(x), where x and y are the input and output vectors
of the layers, and F represents the residual mapping to
be learned. The ideology of residual learning can be
integrated into many previous networks'®’* and many
image-to-image translation tasks also adopt residual
learning method to abridge the gap of generated images
and input images. Ref. [8] proposed a residual learn-
ing based CNN for image denoising. In Ref. [6], a re-
sidual dense network was proposed for image super-res-
olution. However, residual learning has some bottle-
necks in image enhancement. The identical mapping x
cannot force F(x) to learn detailed difference between
low-quality and high-quality images. Therefore, non-
identical mapping is considered to adjusts input X to an
appropriate value.

1.3 Perceptual loss

A high-quality image should have clear textures,
abundant colors, and conform to human perception.
Thus, Ref. [13] introduced a pre-trained VGG net-
work to compute perceptual loss for improving the qual-
ity of generated images. Ref.[9] proposed an en-
hancement method based on perceptual loss, which en-
riches more high-frequency information of enhanced ima-
ges. Ref.[14] proposed generative adversarial nets
(GANs) , which has become an effective way for image
generation. A conditional GAN was proposed in Ref. [15]
for image-to-image translation task. Ref. [16] proposed
a cycle-consistent adversarial networks for style transfer.
Super-resolution based GAN adopts a generator, a fea-
ture extractor, and a discriminator to optimize hybrid

loss, and they also achieve state-of-the-art performance
in human perceptions. However, real-world image en-
hancement is a universal task for various image trans-
formations ( texture, luminance and resolutions). In
Ref. [17], universal image enhancement frameworks
were proposed. They publish a new large-scale image
enhancement dataset based on DSLR camera. And a
multi-term loss function is composed of color, texture
and content terms, allowing an efficient image quality
estimation. For image enhancement, optimizing high-
level perceptual loss tends to extrude the shape of ob-
jects, while optimizing low-level perceptual loss can
generate color-bright images. However, conventional
multi-level perceptual loss lacks of flexibility in balan-
cing those two aspects, because they allocate a fix loss
weight for each level. Those weights are dynamically
controlled to promote the flexibility.

2 The proposed method

2.1 General framework

The architecture of non-identical residual learning
for image enhancement via dynamic multi-level percep-
tual loss is shown in Fig. 1. The holistic color adjust-
ment globally adjusts the low-quality image to high-
quality target. The fine-grained residual generation can
recover texture and color details. Conventional residual
learning'"”’ for image enhancement can be represented
as

" =+I"+ G,(I') (1)
where I' € R denotes the low-quality image and I”
e R”™" denotes the enhanced high-quality image, G,
is the proposed attention-aware recursive network to
generate residual RGB image and 7 is a constant. In
the framework , the overall formulation of the non-iden-
tical residual learning for image enhancement can be
written as

I" =Yool + 6,1 (2)
where ¥ € RV is a trainable matrix rather than a
single value. In the fine-grained residual generation,
an attention-aware recursive network is proposed to
generate fine residuals, and it is composed of three
components. In the first component, the fully multi-
scale block (FMSB) aims to extract multi-scale prima-
ry features. By N-step recursions in the recursive
block, deep feature representations can be exploited.
Finally, the reconstruction component converts the
deep features to residual image. The generated residual
image will be added with the adjusted image for getting
the final enhanced image. In network training, three
losses, i. e. MSE loss, dynamic multilevel perceptual
loss (DPL) and adversarial loss are utilized.
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Fig.1 Framework of the proposed method ( the holistic color adjustment globally adjusts low-quality image, so the fine-grained residu-
al generation tends to generate elaborate details. FMSB denotes fully multi-scale block, and @ denotes element-wise addition.

DPL denotes dynamic multi-level perceptual loss,

2.2 Holistic color adjustment
According to Eq. (1)

ing sets 7 always is

, conventional residual learn-
1, which is called identical map-
ping. It cannot effectively force the attention-aware re-
cursive network to learn elaborately detail differences,
resulting in color deviations and texture losses in en-
hanced images. In the non-identical residual learning
framework , an adjusting rate A is firstly utilized to re-
place 7. According to Ref. [ 18] and the experiments,
the negative residual is detrimental for network optimiza-

tion. Thus, WHCZ m=1 2 q=1 Z

set to larger than 0 to generate positive residuals inte-

p,q,m) is

pq m

grally from the attention-aware recursive network. On
the other hand,

adopted in image enhancement It can be formulated as

A
= WHCZ qz:‘ 2 || ( p.g.m

- 6(L,.) N (3)
Given an input low-quality image and its corre-

the G(Illj
Thus, (IP - /\Ill;’q,m) is adjusted to
The computation of L

the pixel-wise MSE loss is usually

pqm)

mse

sponding high-quality image, ) are very

sq,m
small constant.

minimize L. is not heavy,

mse

and the computational complexity is O(n’). An appropri-
ate A should be calculated to make this term equal to 0.

1 H w C
m,;qzl ,Z:‘I [ (4)

Conventional residual connections set A is always

IH

L 2 _
p,q,m _Alp,q,m || 2 = O
1, thus it cannot acquire a very optimal solution. The
rational A should be computed as

A= WHCZ 2 Z 1>qm/11L>qm

>, (5)

The result of A is a fixed statistical value deter-
mined by training dataset as shown in Fig. 2. It should
be computed by

1

=1+— Mean(Pt.)) - Mean(P"
A + n;( ean(P(;)) ean( P, ))

(6)

and ADV is adversarial loss)

where Pf;) and Pﬁ.) denote a low-quality image patch
and a high-quality image patch; n is the total number
this
adjusting method treats every pixel equally and ignores

of selected patches. However, in the simulations,

the content of image. Consequently, some pixels can
be inappropriately adjusted. A should be viewed as a
matrix rather than a fixed value, and the matrix should
be adaptively produced according to input images. In-
spired by the traditional image enhancement meth-
Od[s]
quality version as

I =1"or (7)
where T e R™"" represents an adjusting map in the
method ,
For each pixel x, the globally adjusted representation
I"-(x) is calculated by

I'"(x) =1"(x)/(T(x) +€) (8)
where € is a very small constant to avoid the zero de-
I"-(x) is used instead of I”,

I"-(x) is a coarse enhanced result, and it should be

, a low-quality image can be obtained by its high-

and © means element-wise multiplication.

nominator. because
added with residual image for final high-quality genera-
tion.

I"(x) = 1" (x) + Gg(l"(x)) (9)
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Fig.2 Flow diagram of average residual computation

For obtaining T, a matrix A e R is defined,
in which all values are set to A stated in Eq. (6).
provides a standard to prevent improper T. Then, fea-
tures X” e R

sources for adjusting map estimation. Let’ s define two

of low-quality image is extracted as

: S . T 64961 x1
matrixes are randomly initialized, i.e. J, € R™
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and J1 € R to convert X'” to a 3-channel out-
put. Tis accordingly computed as
T=A+X"JI, (10)
X can be obtained from FMSB and will be illus-
trated in the next section. The parameters of adjusting
map T, can be updated with the network together.

2.3 Fine-grained residual generation

Fully multi-scale block. The success of incep-
tion network *’ has shown that the multi-scale informa-
tion can provide multiple views to detect one image.
So, the extracted features can benefit final image re-
construction. Motivated by Ref. [4], a fully multi-
scale block is designed to extract primary features. It is
composed of two multi-scale convolutional layers and a
compressive layer, as shown in Fig.3. In the first lay-
er, convolutional kernels are adopted with three sizes
W (i e {1,3,5) to extract multi-scale features, in
which PReLU is selected as activation functions'"’.
Each convolutional kernel introduces all multi-scale
features from the first layer, which utilizes features ex-
tracted by three kinds of receptive field. While the
conventional multi-scale block only utilizes one kind of
receptive field. Thus, FMSB can obtain more abundant
information from the first layer to bring diversity repre-
sentation. Finally, 1 x 1 convolutional kernel is used
to compress feature maps and perform non-linear map-

ping.

Input Input

T ———— e o — —

Conv 1 X1| |Conv 3X3| |Conv 5X5| |[Conv 1X1||Conv 3X3| Cony 5X5 I
PReLU PReLU PReLU : PReLU PReLU PReLU

—=

iTstTayer
e

| —
| |Conv 1 X1| |Conv 3 X3| |Conv 5X5 I
: PReLU PRelLU PReLU | |

—_— = p—
| /Séfond layer
Third layerl

Conv 3X3||Conv 3X3||Conv3X3

PReLU PReLU PReLU

Conv 1X1 L
(a) Conventional multi-scale block (b) Proposed fully multi-scale block
Fig.3 Comparison of the proposed fully multi-scaleblock
against the conventional multi-scale block
Recursive block. Recently, residual recursive
structures are proposed and show promising performance

Pl Tt can construct large re-

in super-resolution tasks
ceptive fields by reusing convolutional layers. Howev-
er, a well-behaved image enhancement model should
flexibly consider different input conditions ( light and
color etc. ), and feature representations in convention-
al recursive structures are limited due to parameters
sharing. So some dynamic factors are introduced in this

structure by adaptively selecting appropriate channels

according to input images. Based on this motivation,
) and three kinds
of attention-aware recursive units are built.

Design of recursive units. A recursive block
consists of multiple recursive units. Fig.4(a) shows a

attention mechanisms are employed'

typical recursive structure proposed in Ref. [ 8 ], which
has no attention mechanism. In this work, three kinds
of attention based recursive units are designed to ex-
plore the effectiveness of dynamic factors in different
weighting scope. Their architectures are listed in
Fig.4(b), (c¢), and (d). Fig.4(b) is residual re-
cursive attentive unit ( RRAU) , which aims to effec-
tively extract local discriminative features via directly
weighting the convolutional features of the input image X.
Fig.4(c) is attentive residual recursive unit ( AR-
RU), which aims to adaptively select global recursive
features via weighting the residual recursive representa-
tions. Fig.4(d) is residual attentive recursive unit
(RARU) , which aims to enhance the mutual informa-
tion between convolutional features and inputs via sec-
ond-order residual attentive weighting. According to
the experiments, RARU is more appropriate for image
enhancement task. Hence, RARU is used in block
construction. Double 3 x 3 convolution and RelLU are
stacked to construct a convolutional function for convol-

ving.
X X X — X —
|
Conv
Conv Conv Conv
Conv | Conv Clerivy
Conv Att
Att Att
— <« <
(a) RRU (b) RRAU (c) ARRU (d) RARU

Fig.4 Four types of recursive units

Attention along with recursion. To {flexibly
adapt to different image scenes, the feature representa-
tions in every recursive step should have domain con-
sistency and be beneficial for the high-quality recon-
struction. Inspired by Ref. [20], an attention along
with recursive structures is designed to provide more
flexible feature representations. Specifically, an adap-
tive average pooling function f, is firstly adopted to ob-
tain global information for each feature map:

H® = f,(X') (11)
where H” e R is the average result of X'”. Then,
H'” is embedded into low-dimension space ;

EY = Embed(H”) = (W H") (12)

where W denotes the parameter matrices of linear lay-
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er, and W."

A reconstruction matrix Wz(el)

e R™”, o is tangent function.
e R7*is used to re-
build the original dimension vectors. The purpose is to
encourage the attention module to learn meaningful
weights from low dimension vectors. A is defined as re-
construction function. The output attention weights can
be computed

a” = A(E") = softmax(W E") (13)

Finally, the attention weights perform an element-
wise product with X

The multi-level channel attention can constantly
add attentive information by @ along with recursions.

Local residual learning. It is introduced to fur-
ther improve information flow and transmit gradient for
element-wise addition

recursive structure. Therefore,

is taken for X"

att

and the output of the i step can be
written as

X(i+1) — X(O) X<<m> (15)

The local residual learning is designated to always
start from X'* for efficient and stable training'"®’. No-
tably, due to the global non-identical residual learning
can adjust the above-mentioned residual gap, local
identical residual learning is normally adopted in the
recursive block.

2.4 Dynamic multi-level perceptual loss
An individual MSE loss based optimization ap-
proaches usually lead to generating blurry and unrealis-

161 Inspired

tic results in image-to-image translation

by Ref. [177],

are considered. They are accomplished by utilizing an

the generative adversarial nets ( GANs)
adversarial loss, which minimizes KL-divergence be-
tween the distribution of images produced by the gener-
ator and the distribution of images in the training data-
set. An adversarial learning framework based on dy-
namic multi-level perceptual loss is proposed, which
mainly contains a attention-aware recursive generator,
a pre-trained VGG-19-based feature extractor, and a
CNN-based discriminator.
tractor and the discriminator are used as two constraints

Specially, the feature ex-

to optimize the enhanced images generated by the gen-
erator from low-quality images. Among them, the fea-
ture extractor provides dynamic multi-level perceptual
loss of hierarchical content, and the discriminator pro-
vides the measure of similarity between the generated
images and corresponding ground-truths.

The feature extractor can provide perceptual loss
based on content error between enhanced images and
their high-quality versions. However, conventional
GAN based methods for image enhancement usually op-

timize high-level perceptual loss, losing accuracy in

color representations. Based on the motivation that op-
timizing high-level perceptual loss is beneficial for re-
covering spatial and texture information, and optimi-
zing low- level perceptual loss is helpful for color recon-

, hierarchical features are utilized, which
[21] [22]

struction'’
are widely apphed to classification'”"' and detectlon
tasks. Instead of solely optimizing high-level content
loss, five content losses are optimized from the output
of each max-pooling layer cooperatively. In this way,
the generated patches tend to be more consistent with
human perception. The overall formulation of the

multi-level perceptual loss is

Zaw (16)

where, a; is a weight for the ith level and LE” denotes
the corresponding perceptual loss.

However, the weight a; is usually hard to design
due to uncertainty of the importance of each level per-
ceptual loss. Although equally allocating weights is an
intuitive way, but the importance of each level percep-
tual loss is also dynamic with training process. Hence,
a weight a; can be computed via a dynamic way based
on error feedback ideology. Firstly, the ith average
content error z, between generated patches P¢ and high-
quality patches P" is computed. Then the weight a; is
gotten via a softmax function for normalizing those er-

TOrS 2, :

1 H w c

zi :mzlz Z] ||¢(PF mqp ¢i(PH)rl1,q,p ||I
m=1g=1 p=

(17)

a’ = —5— (18)

DINS
where ¢, is a non-linear function for dynamically com-
puting the content error between P° and P". H, W,
and C are the feature size. e denotes nature exponen-
tial. Notably, the structure of the discriminator is ref-

erenced in Ref. [22].
3 Experiments

3.1 Dataset and metrics

Following Ref. [17], the classic DSLR enhance-
ment dataset (DPED) is adopted to train and test the
method. The DSLR is specially collected for image en-
hancement tasks. The image quadruples in DSLR are
captured by cameras with different qualities. Detailed-
ly, DPED contains 4549 photos from Sony smartphone,
5727 photos from iPhone, and 6015 photos from Can-
on. The peak signal-to-noise ratio (PSNR) and struc-
tural similarity ( SSIM) index are two prevailing crite-
ria selected for evaluations. In the experiments, PSNR
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and SSIM are all calculated on RGB space. In ablation

s se-

studies, the most challenging iPhone dataset'”
lected to conduct validation and 400 pairs of patches
for testing are randomly selected. Without loss of gen-

erality, NRL is optimized by MSE loss. The detailed

settings are introduced in next section.

3.2 Ablation study for network architectures

Fully multi-scale block ( FMSB) can better ex-
tract features compared with conventional multi-scale
block (MSB). Other three methods are compared: (1)
double convolutional layer with 3 x3 kernel size (Conv-
3); (2) a large convolutional layer with 9 x 9 kernel
size (Conv9 ); (3) multi-scale block ( MSB) as
shown in Fig.4; (4) fully multi-scale block, in which
the second convolutional layers are all 3 x 3 ( FMSB-
3). In line with the settings in Ref. [12], ResNet is
used as backbone network. As shown in Table 1,
FMSB achieves the highest scores both in PSNR and
SSIM and it is 0. 04 dB PSNR and 0. 0025 SSIM higher
than MSB.

Table 1  Results of different blocks on the iPhone dataset

Method ~ Conv3 Conv9 MSB FMSB-3  FMSB
PSNR 22.35 22.31 22.37 22.38 22.41
SSIM  0.8868 0.8897 0.8876 0.8862 0.8901

It demonstrates the superiority of FMSB. Conv3
and Conv9, large kernel size tends to achieve higher
SSIM but low PSNR. FMSB-3 gains a very close PSNR
to FMSB, but FMSB has different sizes of kernel in the
second layer, which can better exploit holistic color in-
formation. In summary, the proposed FMSB is an ef-
fective block for primary feature extraction.

To verify the effectiveness of the attention along
with recursive architectures, a comparison for different
designs is shown in Fig. 4. Besides, RRU + A is intro-
duced which adds single attention mechanism in the
last recursive step. Without loss of generality, PSNR is
compared for verifying modeling capability in 1, 3, 6,
12, 24 recursive steps (N steps). Experimental results
are listed in Table 2.

Table 2 PSNR results of different recursive steps

Method RRU RRAU ARRU RRU+A RARU
N =1 22.45 22.75 22.69 - 22.72
N =3 22.53 22.81 22.74 22.77 22.78
N =6 22.50 22.81 22.67 22.81 22.86
N =12 22.56 22.73 22.72 22.78 22.82
N =24 22.60 22.79 22.73 22.82 22.91

It can be seen that except for N =1 and N =3,
RARU achieves the best performance compared with
the others. From N =6 to N =12, it can be seen that
simply increasing recursive steps sometimes can decrease
performance. Especially, RRAU degrades performance
with NV increasing. It can be seen that the setting of 6-
step recursions is cost-effective. The 6-step RARU
achieves promising performance meanwhile has less re-
cursive steps. It outperforms RRU, RRAU and ARRU
by 0. 36, 0. 05, and 0. 05 dB PSNR, respectively.
Training curves are exhibited in the condition of 6-step
recursions in Fig.5. The pink curve is conventional
ResNet structure as illustrated in Ref. [ 17 ]. Tt can get
similar results before 20 epochs. While RARU can
stably increase PSNR, resulting in the best perform-
ance. Therefore, RARU is considered as the final
structure.

23.0 &R
\ “ 4
2251 ! '{f ! \,(' :‘J' NTEAT ,x \
LA h
g 22,01
% RARU
$ | ARRU
21.5 RRAU
RRU+A
RRU
21.01 ResNet
0 20 40 60 80 100

Epochs

Fig.5 PSNR testing results with different recursive structures

3.3 Evaluation for non-identical residual learning

For evaluating the non-identical residual learning
(denoted as RL) , three control group are set, i.e. re-
sidual learning is not utilized in the holistic color ad-
justment ( denote as no-RL), conventional residual
learning, incomplete non-identical residual learning as
illustrated in Eq. (6) ( denoted as NRL-). Experi-
mental results are shown in Table 3. Compared with
no-RL and RL, RL outperforms no-RL by 0.47 dB
PSNR and 0. 0097 SSIM on the iPhone dataset. The
advantage of residual learning is clearly demonstrated.
The performance of NRL- is slightly lower than RL,
because some pixels cannot be accurately adjusted.
While the NRL achieves the best performance, it out-
performs RL by 0. 09 dB PSNR and 0. 013 SSIM on the
Sony dataset, respectively. Although both RL and NRL
achieve identical PSNR value (22. 54 dB) on the
BlackBerry dataset, NRL precedes RL by 0.0027 SSIM,
showing the effectiveness of NRL. The training curve of
RL and NRL are visualized in Fig.6. It can be seen
that the NRL lines are higher than the RL lines in the
most conditions. Though both RL and NRL cause un-
stable PSNR curves on the Sony dataset, the NRL is



HIGH TECHNOLOGY LETTERSI Vol. 28 No. 2| June 2022

149

still higher than RL in some peak values. Conclusive-
ly, the non-identical residual learning is an effective

method, which is superior to conventional residual
learning in the image enhancement task.

Table 3  Experimental results of residual learning

Method no-RL RL NRL- NRL
e (PSNR/SSIM)  (PSNR/SSIM)  (PSNR/SSIM)  ( PSNR/SSIM)
iPhone 22.86/0.9114 23.33/0.9211 23.26/0.9190 23.36/0.9211
BlackBerry 22.38/0.9245 22.54/0.9306 22.44/0.9277 22.54/0.9333
Sony 24.20/0. 9401 24.48/0.9435 24.42/0.9421 24.57/0. 9448
' , 246 1
23.25 1 22.50 |
g 23.00 1 g 2295 g 24.4 1 l
E 2275 1 E 22.00 E 2421
Qﬂ 1 1 | \
22.50 A 2175 24.0
2225 1 — NRL ' — g}le 238 g}le
92,00 | RL 21.50 L ‘ ' ] .
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(a) Results conducted on the iPhone dataset

(b) Results conducted on the BlackBerry dataset

(¢) Results performed on the Sony dataset

Fig.6 Comparisons of non-identical residual learning and conventional residual learning with N =6

3.4 Comparisons with state-of-the-art methods
The proposed method is compared with the state-
of-the-art methods ( Apple photo enhancer ( APE) is
taken as a baseline). Ref. [23] was a 3-layer CNN
and was optimized by MSE. Ref. [9] was classical im-
age-to-image translation method based on perceptual
losses. Refs[ 17,24 ] were all state-of-the-art enhance-
ment methods. Ref. [25] was an adversarial learning
framework and its generator is replaced by the atten-
tion-aware recursive network for fair comparison. NRL
denotes the non-identical residual learning framework
optimized by individual MSE loss. Besides, NRL is in-
troduced with the proposed dynamic multi-level percep-
tual loss (denotes as NRL-DPL). Experimental results
are shown in Table 4, where NRL-DPL achieves the

highest SSIM among all others. Concretely, NRL-DPL
outperforms by 0.0072""" and 0.0046'**! SSIM on the
iPhone dataset, respectively. It also outperforms by
3.82 dB'®! and 1. 14 dB'®’ PSNR on the Sony data-
set, respectively. It demonstrates the state-of-the-art
performance of the method for image enhancement.
NRL also achieves favourable PSNR results compared
with others. It reveals the strong generalization ability
of the network architecture. NRL-DPL outperforms NRL
except for PNSR on the BlackBerry dataset, showing
superiority of the proposed DPL and adversarial learn-
ing strategy. According to Fig. 7, the method achieves
better visual effect and less unpleasant artifacts. In the
first group comparison, the bag can be enhanced more
distinctly by the method.

Table 4  Comparisons with the state-of-the-art methods in PSNR/SSIM

APE

Method . Ref. [21] Ref. [9] Ref. [17 ] Ref. [24 ] Ref. [23] NRL NRL-DPL
(baseline)
iPhone  17.28/0.8631 19.27/0.8992 20.32/0.9161 21.35/0.9201 22.69/0.9205 22.52/0.9227 23.34/0.9210 23.38/0.9273
BlackBerry 18.91/0.8922 18.89/0.9134 20.11/0.9298 20.66/0.9328 21.97/0.9331 22.39/0.9336 22.53/0.9333 22.48/0.9354

S()l'ly

19.45/0.9168 21.21/0.9382 21.33/0.9434 22.01/0.9437 23.89/0.9428 23.86/0.9461 24.55/0.9448 25.03/0.9477




150

HIGH TECHNOLOGY LETTERSI Vol. 28 No. 2| June 2022

(a) Original

(b) Ref.[23]

(c¢) Ref. [17]

(d) Ref.[25] (e) NRL-DPL

Fig.7 Examples of visual enhancement comparisons on DPED

In the second group, the edges of the window has
less artifacts compared with Ref. [17]. In the last
group, the method achieves a very high-quality result
both in overall and local details. Notably, the model
has only 190 x 10° parameters compared with 400 x 10
in Ref. [17]; it also demonstrates the advantage of the
proposed recursive architecture.

The proposed framework is trained with 6 recur-
sive steps without batch normalization ( BN ). All
channel numbers are set to 64 in the recursive block.
1/6 patches are randomly selected in training dataset
as one epoch. The Adam is adopted for optimizing the
network , and the initial learning rate is set to 0. 0005.
Training batch is set to 32. For each 5 epochs, the
learning rate will decrease by the scale of 0.95. Train-
ing is stopped at 100 epoch. Experiments are per-
formed on double NVIDIA Titan XP GPUs for training
and testing. The training process costs about 14 h for
100 epochs,and the average testing speed of a 256 x
256 patch is 0. 04 s.

3.5 User study

Previous classical work are followed to perform
mean opinion score ( MOS) tests, which quantify the
ability of different approaches to re-construct perceptu-
ally convincing images. 100 low-quality images are se-
lected from VOC2012 ( VOC2012-LQ100) for testing.
Specifically, 29 raters are asked for assigning an inte-
gral score from 1 (bad quality) to 5 (excellent quali-
ty). The score criterion is four-fold: Color( Col) , Tex-
ture (Tex), Luminance ( Lumin), Overall ( Over).
Four methods are evaluated,i.e. , Ref. [17], Ref.[23],
Ref. [25] and the method NRL-DPL. They are all
trained on the iPhone dataset for evaluating their adapt-
ability. According to results in Table 5, the proposed
method achieves the highest average MOS scores. Al-
though Ref. [ 17 ]

score, it causes many harsh textures. Overall, the

achieved the highest luminance

method performs the best scores in color, texture and
overall feeling.
Fig. 8 shows some visual examples. Apparently,
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the enhanced images obtained by the method have more
perceptual comfortableness and textural softness.

4 Conclusions

In this paper, a non-identical residual learning for
image enhancement via dynamic multi-level perceptual

(a) Original

(b) Ref.[23]

Table 5 MOS testing results on VOC2012-LQ100

Method Col  Tex  Lumin Over Average
Original 2.0 2.7 1.6 2.9  2.30
Ref. [23] 3.1 2.6 2.0 2.5 2.55
Ref. [17] 3.0 1.8 3.8 3.1 2.93
Ref. [25] 3.3 2.7 3.3 3.4 3.18
NRL-DPL 3.9 3.0 3.4 3.6 3.48

(c) Ref.[17]

(d) Ref.[25]

Fig.8 The selected visual demonstration on VOC2012-LQ100

loss is proposed, which views image enhancement as
two branches. In the first branch, a holistic color ad-
justment method is designed to adjust global color rep-
resentation to the high-qualities. It forces the second
branch to accurately capture color and texture details
by learning elaborate difference. In the second branch,
an attention-aware recursive network is proposed to
adaptively transform features according to image color
conditions, as well as mitigate overfitting problem. Last
but not least, a dynamic multi-level content loss is de-
signed to improve color effect as high-quality images.
Extensive experiments conducted on publicly available
datasets demonstrate the state-of-the-art performance of
the proposed method.
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