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Abstract

In the fifth-generation new radio (5G-NR) high-speed railway (HSR) downlink, a deep learn-
ing (DL) based Doppler frequency offset ( DFO) estimation scheme is proposed by using the back
propagation neural network ( BPNN). The proposed method mainly includes pre-training, training,
and estimation phases, where the pre-training and training belong to the off-line stage, and the esti-
mation is the online stage. To reduce the performance loss caused by the random initialization, the
pre-training method is employed to acquire a desirable initialization, which is used as the initial pa-
rameters of the training phase. Moreover, the initial DFO estimation is used as input along with the
received pilots to further improve the estimation accuracy. Different from the training phase, the ini-
tial DFO estimation in pre-training phase is obtained by the data and pilot symbols. Simulation re-
sults show that the mean squared error ( MSE) performance of the proposed method is better than

those of the available algorithms, and it has acceptable computational complexity.
Key words: fifth-generation new radio (5G-NR) , high-speed railway (HSR), deep learning
(DL), back propagation neural network ( BPNN) , Doppler frequency offset (DFO) estimation

0 Introduction

With the rapid development of high-speed railway
(HSR), the HSR wireless communication has attrac-
ted more and more attentions around the world"'?’,
and HSR has been used as one of the important usage
scenarios of the fifth-generation new radio (5G-NR)
communication network. In the 5G-NR system, the
HSR is expected to achieve a moving speed of up to
500 km/h. However, the high mobility will significantly
limit the coverage area and transmission rate, and most
current wireless communication systems are designed
for the low or medium mobility scenarios. Therefore, it

is necessary to design a reliable and efficient communi-

cation system for 5G-NR HSR (up to 500 km/h) sce-
nario >’

In 5G-NR HSR scenario, the Doppler shift will
become large due to the increase in vehicle speed and
the use of high carrier frequency bands. The large

Doppler shift will cause more serious inter-carrier inter-

ference, which seriously affects the performance of the

71 Therefore, the anti-

HSR communication system
Doppler frequency shift technology is very important in
5G-NR HSR environment, where the Doppler frequen-
cy offset (DFO) estimation and compensation technol-
ogy is the basis.

Although many DFO estimation methods in high-
speed mobile scenarios have been developed, most of
them are carried out for HSR scenarios under 4G-LTE

systemsig_l !

. Due to the increase in vehicle speed and
the use of high carrier frequencies, the Doppler fre-
quency shift of 5G-NR HSR scenario is larger than that
of 4G-LTE HSR scenario, so the existing estimation
schemes in 4G-LTE HSR scenario cannot be directly
used for SG-NR HSR scenario.

Currently, there have been a few DFO estimation

methods for the 5G-NR HSR scenario ®'*"

the Ref. [6] gave a DFO estimation and compensation

, where
algorithm based on position and pre-compensation for
the millimeter-wave HSR system, which calculated the
Doppler shift according to the position and speed of the
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train. However, it relies on high-precision positioning,
while the positioning error cannot be avoided in prac-
tice. In Ref. [12], a DFO elimination method was
presented for a millimeter-wave HSR mobile communi-
cation system, where the frequency offsets of the re-
ceived signals of the head and the tail antennas located
on the train are assumed to be the same, but have op-
posite direction. By multiplying the received signals
from head and tail antennas, it can eliminate the
Doppler shift. However, when the train passes the base
station, the DFO will rapidly change, and the time of
the head-to-tail antennas passing through the base sta-
tion is different, so its performance will be deteriorated
when the train is handed over. In Ref. [13], a pilot-
based maximum likelihood DFO estimation method was
given, which estimates the DFO by segmenting the pi-
lot and solving the maximum likelihood function, but it
requires a large computational complexity to obtain
high estimation accuracy. To meet the requirements of
pilot special segmentation, the scheme in Ref. [13]
has a strict limit on the length of the pilot symbols, so
it is not suitable for systems where the pilot structure
has been determined.

In addition, artificial intelligence, especially deep
learning ( DL), has been applied into the fields of
computer vision, natural language processing, speech

4] Moreover, the DL is also applied

recognition, etc.
to the wireless communication systems, such as chan-
nel estimation, signal detection and channel decoding,
etc. In the previous work, a DL-based DFO estimation
method has been presented in Ref. [15], which is
mainly divided into two stages, off-line training and
online estimation. In the previous work, the training
samples are constructed only by the received pilot sig-
nals, and then the training samples are employed to
train the back propagation neural network ( BPNN) in
an off-line manner. Based on the trained network, the
DFO can be estimated. Although the algorithm in
Ref. [ 15] has a better estimation accuracy than the ex-
isting schemes, its performance still needs to be further
improved.

Currently, the existing DL-based algorithms are
mainly carried out from two aspects, one is to obtain
better estimation results by using different neural net-

[16-17]

works , and the other is to obtain good results from

18-19] .
U)o im-

designing the input values of the network
prove the performance of DFO estimation, a novel DL-
based method is proposed from designing the initial val-
ue or input value of the network in the paper, which
belongs to the second aspect.

The proposed DL-based method mainly contains

three phases, i. e., pre-training, training and estima-

tion stages. In the pre-training phase, the training
samples are constructed by the received signal and ini-
tial DFO estimation, where the initial DFO is estimated
by the data and pilot signals. In the training phase,
only the received pilots and initial DFO estimation is
used to train the BPNN, and the initial DFO estimation
is obtained by the pilots. Due to the pre-training and
initial DFO estimation, the performance of proposed
method is greatly improved.

The rest of this paper is organized as follows. Sec-
tion 1 introduces the system model. Section 2 presents
the proposed method in detail. The simulation results
and conclusions are given in Section 3 and Section 4
respectively.

1 Signal model

In a 5G-NR downlink single input single output-
orthogonal frequency division multiple access ( SISO-
OFDMA) system, assume that the nth transmitted time
domain signal during the mth OFDMA symbol in the
ith subframe is s; (m, n). Since the Ricean-fading
channel is often employed as the HSR channel ™'
the discrete-time multipath Ricean-fading channel dur-
ing the mth OFDMA symbol in the ith subframe is giv-
en as' ™'

h,(m,n) = cexpl2me;,,(mN, =N +n)/N]

I,-1

+ Zai,ll,(m, n)é(m, n _Tll,)

0,=0

()
where ¢, is the line of sight (LoS) path of Ricean-fa-
),and L, -
1 are the scattered paths, which follow the Rayleigh

ding channel, ai,l,,(m’ n), L (l, =0,

distribution, L, is the number of the paths of the mul-

tipath Ricean-fading channel. g, , is the normalized

DFO by the subcarrier spacing, 7, is the [,th time delay

normalized by the sampling time of the path. N, =N +
N, , N, is the length of the cyclic prefix (CP), and N

is ]the length of fast Fourier transform ( FFT).

Assume that the timing synchronization is perfect
at the receiver, and the nth received signal at the sam-
ple time during mth OFDMA symbol in the ith sub-

frame is
Raei p(mNp-N+n)
ri(m’ n) :Cisi(m’ n)e v
L,-1

+ Zai,/”(my n)si<m7 n-rm )

»
1,20

+wi<m’ TL)

(2)
where w;,(m, n) is the additive white Gaussian noise
(AWGN) with the covariance ¢

Since the change of frequency offset during one
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OFDMA symbol is relatively small, the frequency offset
in one subframe can be regarded as a constant. Moreo-
ver, the processing of the DFO estimation in each sub-
frame is the same. Therefore, the subscript ith and su-
perscript mth can be omitted to derive conveniently in
the following.

2 Proposed DFO estimation method

In the section, the architecture of BPNN is given
first, and then the proposed method will be introduced
in detail.

2.1 BPNN

In the field of DL, BPNN is a multi-layer feedfor-
ward neural network, which is trained by the error
back propagation algorithm, and it has strong nonlinear
mapping ability and a wide range of applications. Con-
sidering the complex correlation of data in high-speed
mobile scenario, BPNN is employed to estimate DFO
in the proposed method.

Fig. 1 shows the structure of BPNN with L layers,
which contains L —2 hidden layers. In Fig. 1, the in-
put of the bth node of the lth layer can be expressed as

W = Wi, 3)

where a represents a set of nodes in the (L —1)th lay-
()

er connected to the node b. w,

is a weight vector be-
tween the node b and each node in a. I, is the input

vector of the (L —1)th layer node.

layer 0 1 -1 I L-2 L-1
A h v 74
Input layer Hiddenllayers Output layer

Fig.1 The structure of BPNN

In BPNN, the output of the node is the value ob-
tained by weighting all the inputs and then processing
them through the transfer function, so the output of the
node bth of the [th layer is

n = ") = fwil'l,) (4)
where f( +) represents the transfer function, and differ-
ent transfer functions can be selected according to the
specific application. In the proposed method, the Tan-
sig and Purelin transfer functions are respectively em-
ployed in the hidden layer and output layer, i.e. ,

2
- -
fl"annlg(x) 1 +6_2X (5)

fPurelin(x> =X
Define @' is the set of the weights and thresholds

for the Ith layer of BPNN, and 8V = {w'"”, v |
(@)

)
where w" and v respectively represent the weight
vector and threshold vector of the [th layer. w =
[wfll), o ,w(()l[),a] andv'” = [v]”zl e ,v&?a] , where Q,
is the number of the neurons of /th layer. Denote 8 =
10"} ZL;I, , and Loss, is the loss function, which is giv-
en as

-

1 — -
Lossy = UL . [y(u) —y(u) |, (6)

where y(u) is thé output of BPNN, and y(u) is the es-
timation of y(u). L, is the size of the vectory(u) , and
U is the number of the input data set. By minimizing
Loss, in and off-line training manner, one can obtain
the optimal 6.

2.2 DL-based DFO estimation algorithm

The proposed method contains pre-training, train-
ing, and estimation stages, which can be seen from
Fig.2, where I'; ( + ) represents the reshaping func-
tion given in Eq. (8). BPNN is firstly trained by an
off-line manner at the pre-training and training stages.
At the estimation stage, DFO will be estimated in real
time by using little pilots. Moreover, the initial DFO
estimation is also used as input to further improve the
estimation accuracy.

: P (ini)

Pilot based % pilot »
§ —» Doppler i Pre-training stage
| frequency offset >
r estimation

Pilot based -
> Training stage
Sp—> Doppler fdpzm raining stag
>
frequency offset
r B
cstimation
Extract
pilot ()
Pilot based - Estimation stage
Sp —> Doppler dpm s
frequency offset -
r >
7 final
d

estimation
Extract

Fig.2 The proposed algorithm

(1) Pre-training phase. To reduce the perform-
ance loss caused by the random initialization, the pre-
training approach is firstly employed to obtain a desira-
ble initialization, which is used as the initial parame-
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ters of the training stage.
In pre-training stage, assume that the uth training

sample set of BPNN is

X,.(u) =[R(1), R(2),--, R(N,), f;]

(7)
where 0 < u < U -1, U is the number of the training
sample sets. R(k) represents the received signal at the
kth subcarrier, which is obtained by IFFT of r(m, n)
given in Eq. (4) and includes pilot and information
symbols. N, is the number of the used subcarrier for

one OFDMA symbol, which includes N, pilot and N, -

N, information symbols. f, is the estimated Doppler fre-
quency offset by the algorithm given in Ref. [ 11] with
information symbols known.

The input data must be reshaped because BPNN
can only work in real domain. Assume that I'y(Z) is
the input reshaping function, i.e. ,

w(Z) = [RiZ}, J1Z)] (8)
where N {Z} and J{Z} are the operations of taking the
real and imaginary parts of Z, respectively.

Then, the real input data of the BPNN in the pre-

training stage are given as

X,.(u) = [TR(R(1)) -, TR(R(N,)), f,]
(9)
In the pre-training stage, the biases of the BPNN
are initialized to be constants close to 0, and 8™ is
denoted as the initial parameters of the BPNN''®/.
Based on the initial parameters, the training sample set
is employed to train BPNN. By minimizing Loss(@)
with the Levenberg-Marquardt ( LM ) algorithm, one
can obtain the converged parameters of the BPNN
0.
(2) Training phase. Assume that X, (u) is the

uth real training sample set in this stage, i.e. ,
X,.(u) = [TR(R(1)), -, Tx(R(N,)),
09'”509.fd] (10)
[S—)

Na N,
where R(1) ,--+,R(N,) are the received pﬂot,ﬂ is the
estimated Doppler frequency offset by the algorithm
given in Ref. [ 11] only with pilot.

In the training stage, the @ obtained in the
pre-training phase are used as initial parameters of the
BPNN, and the training sample set is used to train the
network. By minimizing Loss(@) with the LM algo-
rithm, one can obtain the final weights and thresholds
0.

In the training phase, the training samples are the
received pilots and estimated DFO, where the DFO is
estimated only by the pilots. However, training sam-
ples are the estimated DFO and received signal in the

pre-training phase, where the DFO is estimated by the
information and pilot symbols, which can improve the
estimation accuracy. Moreover, the proposed DL-based

estimator adopts ﬁ, as part of the input such that the
BPNN can further improve the performance.

(3) Estimation phase. The estimation stage is the
process of DFO estimation in an online manner by
using the network model obtained in the training stage.
Moreover, the input data in the estimation stage has
same structure as that in the training stage. By feeding
the input data into the trained BPNN, one can obtain
the DFO estimation.

3 Simulation results

3.1 MSE performance

To evaluate the performance of the proposed meth-
od, a 5G-NR for HSR scenario is considered'*?".
The simulation parameters are given as follows: the
length of one slot is 250 ws, and each slot contains 14
OFDMA symbols. The length of FFT is 1024, and the
carrier frequency is 30 GHz. The pilot uses the central-
ized placement. The cyclic prefix (CP) length is 128.
The sub-carrier spacing is 60 kHz, and the vehicle
speed is 500 km/h. The single path Ricean channel
model is considered, and the Ricean factors are 5 and
10. In comparison with the proposed method, the pre-
vious work in Ref. [ 15], the pilot segment based DFO
estimation method in Ref. [11], and the pilot based
maximum likelihood estimation ( ML ) method in
Ref. [13] are also simulated.

Fig. 3 gives the mean squared error ( MSE) per-
formances of the DL-based DFO estimation method with
different training methods and training parameters. In
Fig.3, the DL-based without pre-training and only using

MSE

A DL-based without pre-training,only using pilot \E\m
(Ref[15])

—©— DL-based with pre-training, only u§ing pilot
=B~ Proposed method, using pilot and f;
L i L

0 5 10 15 20 25
SNR/dB

MSE performances of the DL-based DFO estimation

method with different training methods and training pa-

Fig. 3

rameters ( Ricean factor is 10)
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pilot symbols is the previous work given in Ref. [ 15].
In the simulation, the number of used pilot is 72 for
DL-based without pre-training, and the number of used
pilot for pre-training and training are 72 and 16 respec-
tively for both DL-based with pre-training and proposed
method. Compared with the DL-based without pre-
training given in Ref. [15], the DIL-based with pre-
training method has a better performance due to its
using pre-training. However, the proposed method has
a best performance due to employing the pre-training
and initial estimation]d.

Fig. 4 shows the MSE performance under the dif-
ferent numbers of training sample sets for the proposed
method. In the simulation, the number of pilots N, in
each sample set is the same, and N, =16. In Fig. 4,
one can see that the accuracy of DFO estimation is im-
proved as the number of sample sets U increases,
which indicates that the larger training sample sets can
improve the learning efficiency of the neural network,
but it will also increase the complexity of offline train-
ing. Therefore, the choice of the number of training
sample sets should be a compromise between perform-
ance and computational complexity in practice.

102

—6— U=600

—8— U=1000
—4— U=2000
== U=4000
—*— U=6000

MSE

SNR /dB
Fig.4 MSE performance under different numbers of training

sample sets for the proposed method (Ricean factor is

10)

Fig. 5 shows the MSE performance of the DFO es-
timation by the network trained under different signal-
to-noise ratios ( SNRs) conditions for the proposed
method. When the SNR is lower than 12 dB, the per-
formance of proposed method with the network trained
under the fixed SNR of 10 dB is better than that of the
network trained under the 20 dB, and when the SNR is
greater than 12 dB, the performance of the network
trained under the 20 dB is better. When training the
network with varying SNRs, the proposed method can

maintain good performance regardless of whether SNR
is low or high. Therefore, when DFO estimation is per-
formed, in order to maintain better estimation perform-
ance, a suitable neural network can be selected ac-
cording to different SNRs for estimation.

1072

g —— SNR=10dB
—6— SNR=20dB
—E— AII SNRs

MSE

107}

107° . . . .
0 5 10 15 20 25

SNR/dB

Fig.5 MSE performance of proposed method by training
under different SNRs ( Rican factor is 10)

Fig. 6 shows the MSE performances of the differ-
ent DFO estimation methods with the different Ricean
factors. In simulation, U =4000 and N, =32 for the
proposed method, and N, = 1024 and the number of
the segments is 2 both for the schemes in Ref. [11]
and Ref. [13]. From Fig. 6, the proposed method can
obtain the best performance but only using a little pi-
lot, while the algorithms in Ref. [11] and Ref. [13]
are limited by the number of pilot segments, so they
have a poor estimation performance. Moreover, the
performance of all methods will be improved as Ricean
factor increases.

107 T T

- £F-Ref [11], Ricean factor=5
—B—Ref.[11], Ricean factor=10
-©--Ref.[13], Ricean factor=5
—©—Ref.[13], Ricean factor=10

=% -Proposed method, Ricean factor=5
. —¥— Proposed method, Ricean factor=10|

- S
~~~~~
=

~—— e

1073 L L L L
SNR/dB

Fig. 6 MSE performances of different DFO estimation
methods with different Ricean factors
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3.2 Complexity analysis

The section will give the comparison of the com-
putational complexity of different Doppler frequency
offset estimation methods. The number of floating point
operations ( FLOPs) is considered as the criterion of
complexity. Ref. [11] and Ref. [ 13 ] need 4N +2 and
N +3N,, + 11T FLOPs respectively, and the proposed

method needs 2U 2 :110,_10, FLOPs in off-line stage
and Z ::QHQ, FLOPs in online stage, where T is

the number of searches and L is the number of the
BPNN layers, (), is the number of neuron nodes of the
[th layer.

Assume that L =3 and T =100, the number of
neurons in the two hidden layers is 20 and 50 respec-
tively. In the case, the complexity of the proposed
method in the off-line stage is larger than those of the
algorithms in Ref. [ 11] and Ref. [ 13 ], while its com-
plexity in online stage is close to those of the algorithms
in Ref. [11] and Ref. [13].

method only needs to train the neural network once in

However, the proposed

an off-line manner for the same wireless environments,
and the network can be used to obtain the DFO estima-
tion in an on-line manner. Moreover, the estimation
performance of the proposed method is best, which can

be seen from Fig. 6.
4 Conclusions

A DL-based DFO estimation method is proposed
for 5G-NR HSR scenario. After training the network in
an off-line manner, the proposed method only uses lit-
tle pilots to obtain the high-precision DFO estimation in
an online manner, which has low computational com-
plexity. The proposed method is not only suitable for
5G-NR HSR scenarios, but also can be employed to
estimate the DFO in existing and future high-speed mo-
bile communication scenarios.
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