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Abstract

Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and
learns the graph relationship from its latent representations. Most existing graph embedding methods
focus on the topological structure of graph data, but ignore the semantic information of graph data,
which results in the unsatisfied performance in practical applications. To overcome the problem, this
paper proposes a novel deep convolutional adversarial graph autoencoder ( GAE) model. To embed
the semantic information between nodes in the graph data, the random walk strategy is first used to
construct the positive pointwise mutual information ( PPMI) matrix, then, graph convolutional net-
work (GCN) is employed to encode the PPMI matrix and node content into the latent representation.
Finally, the learned latent representation is used to reconstruct the topological structure of the graph
data by decoder. Furthermore, the deep convolutional adversarial training algorithm is introduced to
make the learned latent representation conform to the prior distribution better. The state-of-the-art
experimental results on the graph data validate the effectiveness of the proposed model in the link
prediction, node clustering and graph visualization tasks for three standard datasets, Cora, Citeseer
and Pubmed.

Key words: graph autoencoder (GAE) , positive pointwise mutual information (PPMI) , deep
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0 Introduction

Graph data has been widely used in various areas,
including social media, e-commence, citation networks
and protein-protein interaction networks. Analyzing the
graph data has become a hot topic of current resear-

ches, such as link predictionm,

[2]

node classifica-

, node clustering'®' and graph visualization'*.

tion
However, the irregularity and complexity of graph data
lead to the high computational complexity and low par-
allelism, which brings great challenges to existing
graph data researches.

Graph embedding maps the complex graph data
into the latent and low-dimensional feature representa-
tions, meanwhile it captures the network topological
and other information of

structure, vertex content,

graph data, which facilitates the processing and analy-

sis of graph data. With the graph embedding, tradi-
tional pattern recognition models (e. g. , linear support
vector machine ( SVM)) can easily achieve graph
Motivated
by this advantage, many improvement studies have

analysis tasks (e. g., classification tasks).

been proposed ™',

In recent years, graph autoencoder ( GAE)'”
combined with graph convolutional network ( GCN)"*
has received more and more attention. Graph autoen-
coder employs GCN'?! to encode the node structure in-
formation and node feature information at the same
time. Since the distribution of latent representations
learned by simple GAE'"’ has no restriction, which re-
sults in the poor embeddings. The variational graph au-
toencoder (VGAE )" applies Gaussian prior to learn
the distribution of the latent representation, which
greatly improves the effectiveness of the latent repre-
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sentation. The adversarially regularized graph autoen-
coder (ARGA) "™ uses the generative adversarial net-
work (GAN) ' to enforce the latent code to approxi-
mate the prior distribution. Although these graph au-
toencoder models make full use of the structural infor-
mation of graph data, they ignore the semantic informa-
tion between nodes.

In this paper, a novel graph autoencoder model is
proposed to capture the semantic information between
nodes. The proposed model firstly constructs the pos-

tive pointwise mutual information ( PPMI) matrix' "’

!, which learns the

through the random walk strategy'"'
semantic information between nodes of the graph data.
Then GCN'*' is employed to encode the PPMI matrix
and node content of the graph into the latent represen-
tation. Finally, the decoder is used to reconstruct the
topological structure of the graph data based on the
learned latent representation. To further enhance the
robustness of graph representation, this work intro-
duces the deep convolutional adversarial training
scheme to regularize the latent code. The purpose of
the deep convolutional adversarial training module is to
distinguish whether the latent code comes from the real
prior distribution or from the graph encoder. In the
unified framework, graph embedding learning and deep
convolutional adversarial regularization are jointly opti-
mized to benefit each other and eventually get better
graph embedding. The experimental results on the
benchmark datasets prove that the proposed algorithm
shows the good performance on link prediction, node
clustering and graph visualization tasks. The contribu-
tion of this paper can be summarized as follows.

A novel deep convolutional adversarial graph au-
toencoder model using positive pointwise mutual infor-
mation is proposed.

The PPMI matrix and node content of the graph
data are encoded into a latent and low-dimensional rep-
resentation, which better captures the semantic infor-
mation of graph data.

Deep convolutional adversarial regularized frame-
work is used to further match the learned latent code to
the prior distribution.

The network structure of the existing graph au-
toencoder is changed. The adjacency matrix is replaced
by the PPMI matrix as the input of the autoencoder to
reconstruct the graph structure.

1 Related work

DeepWalk'*) extends language modeling tech-
niques from word sequences to paths in the graph,
which uses the random walk strategy to learn the graph

embedding. In this work, they treat the nodes obtained
from the random walk strategy as context nodes. Since
then, a number of probabilistic models have been pro-
posed including LIKE"?' | node2vec'™ and so on.
Ref. [ 14] further extended DeepWalk '*' to encode the
multi-scale node relationships in the graph. These
methods mentioned above embed the graph data base
on the random walk strategy, and they assume that the
nodes are similar if they are close to each other in sim-
ulated random walks over the graph. However, these
methods are only suitable to shallow models, which
cannot capture the complex graph structure.

In recent years, deep learning networks are widely
used for graph embedding, which can greatly explore

') used stacked
autoencoder to jointly preserve the first and second-or-

the nonlinear graph structures. SDNE

der proximities of nodes in the graph. DNGR'®' ex-
ploited the stacked denoising autoencoder to reconstruct
the PPMI matrix. But these methods only consider the
topological structure information of the graph and fail to
consider the content information of the nodes. GCN'*
embedded both the topological structure information of
the graph and the feature information of the nodes,
which greatly improves the performance of the graph
networks on various graph tasks. Ref. [7] proposed
GAE which uses GCN'?' as the encoder to reconstruct
the adjacency matrix of the graph. To further enforce
the latent representation to approximate the prior distri-
bution, Ref. [8] proposed ARGA which employs the
However, ARGA™' ig-

nores the semantic information. Inspired by this, the

training scheme of GAN''.

PPMI matrix and node content information of the graph
are embedded in the encoder to capture the semantic
information between nodes. Meanwhile, deep convolu-
[7) gp-
plies convolutional layers to generative adversarial net-

tional generative adversarial network ( DCGAN)

work, which greatly improves the stability of GAN'"
training and the quality of generated results. Motivated
by this, a deep convolutional adversarial training scheme
is incorporated to learn a more robust graph representa-

tion.
2 Problem definition and framework

2.1 Problem definition

This paper firstly defines some commonly used
symbols to represent the graph structure and then pres-
ents the unsupervised representation learning problem
of the nodes on the graph G.

G = {V, E, X} is used to represent an undirect-
ed graph, where V = {v,, -+, v, ] means the set of
nodes and N is the number of nodes. E denotes the set
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of edges, where e; € E represents the edge between the
node »; and the node v;. In addition, the adjacency
matrix A € B"*" is used to represent the topological
structure of the graph G, where A; =1 if ¢; € E, other-
wise A; =0. And X e R MM means the feature matrix
of the nodes, where x, € R " corresponds to the ith row
of matrix X, denoting the feature of node v,, and M is
the dimension of the feature.

Given a graph G, the goal is to learn the low-di-
¥*P of the nodes in the

graph, where z, € R"” represents the D-dimensional

mensional representation Z € R

representation of the node v;, and D << N. It is hoped
that Z as an embedded matrix can capture not only the
content information and topology information but also
the semantic information of nodes.
2.2 Opverall framework

The framework ( DCAG-AE ) consists of three

main parts: constructing PPMI matrix by the random
walk strategy, graph autoencoder, and the deep convo-
lutional adversarial network. Fig. 1 briefly displays the
workflow of DCAG-AE.

Constructing PPMI matrix On the basis of the
topological structure A of the graph, this work con-
structs the PPMI matrix with the random walk strategy.

Graph convolutional autoencoder The encoder
encodes the PPMI matrix and the node content X into a
latent representation Z, and then the decoder recon-
structs the topological structure A on the basis of Z.

Deep convolutional adversarial regularization
The deep convolutional adversarial network trains a dis-
criminator to discriminate whether z; € Z comes from
the encoder or the prior distribution, which further en-
hances the robustness of the encoder.

@ \ i
: R - B |
/ z zr A
Random walk
Fake Decoder
Encoder
A PPMI
Z~p(2) Real
Real \E Fatke

Discriminator

Fig.1 The brief architecture of the deep convolutional adversarial graph autoencoder using positive pointwise mutual information for

graph embedding (DCAG-AE). Top half of the network corresponds to the graph convolutional autoencoder which exploits the

PPMI matrix and node content X to reconstruct the topological structure A. Bottom half is a deep convolutional adversarial net-

work , which discriminates whether a sample comes from the encoder or the prior distribution

3 Proposed model

3.1 Constructing PPMI matrix

Motivated by DGCN'"®' | which uses the random
walk strategy to construct the PPMI matrix for the graph
nodes classification task. Specifically, with the topolo-
gical structure A, this paper firstly exploits the random
walk strategy to build a co-occurrence matrix C € R “*"
of nodes on the entire graph. Then, according to the
matrix C, this paper constructs the PPMI matrix and
explains how to capture the semantic information be-
tween nodes of the graph G.

Constructing nodes co-occurrence matrix C.
DeepWalk'* proves that in the connected graph, the
degree of nodes and the frequency of nodes in the short

random walk conform to the same distribution. So, in

this work, the short random walk strategy is used to
construct the nodes co-occurrence matrix C.

Algorithm 1 shows the construction process of
nodes co-occurrence matrix C. First, randomly select a
node v, from the graph as the current node, then a
node v, is randomly selected from the neighbors of the
current node and is made as the new current node. Re-
peating this random sampling process to obtain a ran-
dom walk sequence T until the number of nodes in the
sequence reaches the walk length s. Then sample the
node pairs (v,, v,) from the sequence T uniformly,
and add 1.0 to the value of C, , and C, , in the matrix
C. Finally repeat the above process y times which is
called the total walk. Note that the probability of reac-
hing any of its neighbors from the current node in the

algorithm is equal.
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Algorithm 1  Construct nodes co-occurrence matrix C

Input;
graph G = {V, E, X} with adjacency matrix A ;
window size w;
walks per node 7y ;
walk length s;
Output: the nodes co-occurrence matrix C € R VXN
1 Initialization: initialize the matrix C e R """ to 0;
2. fori=0toy do
3. O = Shuffle (V) ;
4. for each v, € O do
5 T =RandomWalk (A, v,, s);
6

Uniformly sample all node pairs (v,, v,) € T
within w;
7. for each pair (v,, v,) do
C,,+=10;
C,,+=10;
10. end for
11. end for
12.  end for

13.  return nodes co-occurrence matrix C.

Constructing PPMI matrix. Based on the nodes
co-occurrence matrix C, the PPMI matrix is calculated

p(i) :(Ej Ci,j)/(EijCi,j) (1)
P(J) = (Eici,j)/(zijci,j) (2)
p(i,j) = Ci,j/(E[jCi,j) (3)

PPMI(i, j) =max{log, (p(i, j)/(p(i)p(j))), O
(4)
where p (i) is the probability that node v, appears,
p(j) is the probability that context ¢; appears, p(i, j)
is the probability that node v; and context ¢; appear at
the same time.

It can be seen from the calculation formula of the
PPMI matrix that when the node v; and the context c;
are independent, p(i, j) =p(i)p(j), thus PPMI(i,
j) =0. When the node v; and the context ¢; are relat-
ed, i.e., p(i,j) >p(i)p(j), that is PPMI(i, j) >
0. Furthermore, the higher the correlation between the
node v; and the context ¢;, the greater the value of PP-
MI(i, j). Therefore, PPMI matrix can capture the se-
mantic information between the node and its context
nodes, which is not captured by the adjacent matrix A.
Additionally , when calculating the nodes co-occurrence
matrix C using the random walk strategy, the PPMI
matrix not only captures the information of the first-or-
der neighbor nodes, but also is associated with higher-
order neighbor nodes. That means the PPMI matrix can
mine more potential relationships between the nodes.

Fig.2 shows the visualization of the sparsity pat-

tern of the normalized adjacency matrix and PPMI ma-
trix of the Cora'"”’ dataset. From Fig. 2, it can be seen
that the PPMI matrix is denser than the adjacency ma-
trix, 1. e. , the PPMI matrix embeds more latent rela-
tions between nodes.
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(b) The visualization of the sparsity pattern of the normalized PPMI matrix
Fig.2 The visualizations of the sparsity pattern of the normal-
ized adjacency matrix and PPMI matrix of the Cora data-

set

3.2 Graph convolutional autoencoder
The graph autoencoder is usually composed of an
encoder and a decoder. In the proposed method, the
encoder consists of a 2-layer GCN'*! which fuses the
PPMI matrix and the node content X into a latent and
low-dimensional representation, and the decoder uses
above latent representation to reconstruct the graph
structure A.
3.2.1
GCN'"! encodes the adjacency matrix A and node

Graph convolutional network

content X into the low-dimensional representation. Giv-
en a graph G = {V, E, X! with its adjacency matrix
A and the spectral convolutional function f(Z", Al
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W) | the output Z*" after convolution is
VAMEYTUACNY UL 4B (5)
where Z'" is the output of Ith hidden layer of the conv-
olutional network, W' is the filter parameter matrix of
[th layer. And the spectral convolutional function is de-
fined as
A(ZP, AIWD) 2o (D" 2AD 2O W)

] _(®)
where A =A +1, I is the identity matrix of A, D is the
diagonal node degree matrix of A, D, = Zj;lij, and
o( - ) is an activation function such as ReLU or Sig-
moid.

3.2.2 Graph convolutional autoencoder using PPMI
matrix

In this work, a 2-layer GCN'?! is used as the en-
coder model g(X, P). Instead of encoding node fea-
ture X and the adjacency matrix A, the proposed model
embeds X and PPMI matrix into a low-dimensional
space to better capture the semantic information of the
graph data. The convolutional operation is defined as
f(Z(/) , Pl W(U ) .
7200 —f(ZD PIWD) =o (D" PD 22O WD)

i (1)

where P is the PPMI matrix and D is the diagonal node
degree matrix of P, ie., Eii 22_/Pij-

The graph encoder ¢(Z1X, P) is

Z(l) :fReLU(Zm) , le(())) (8)

Z% = fipea (2", PIW) (9)
where Z” =X. For the activation function, this paper
employs the ReLU function in the first layer and the
linear function in the second layer. The output of the
graph encoder (1i.e., the latent representation in the
low-dimensional space) is Z =Z>.

Based on the embedding Z, this paper recon-
structs the graph structure A by decoder p(A1Z)

A=0(2Z") (10)
where the activation function o ( + ) is the linear func-
tion.

To optimize this network, this work minimizes the
reconstruction loss of the graph structure by

LR: EL,(le,P)[log(P(A|Z)>J (11)

3.3 Deep convolutional adversarial regularization

To improve the matching of the latent representa-
tion Z and the prior distribution, the proposed model
uses a deep convolutional adversarial training network ,
which is composed of a 2-layer GCN"*’ and a fully con-
nected layer. The adversarial model D(Z) is formula-
ted as

HY = f. (H” PIW") (12)

H® = f, (HY , PIW") (13)

H® =ac(HPW? +b) (14)
where H'” =Z is the input of the adversarial network ,
H'” denotes the output of /th hidden layer of the deep
convolutional adversarial network, H' represents the
binary output of the adversarial network, o is the Sig-
moid function, and b is the bias of the fully connected
layer.

The adversarial model acts as a discriminator to
distinguish whether the latent code Z comes from the
prior distribution p(Z) (p(Z) conforms to the Gaussi-
an distribution) or from the graph encoder model g( X,
P). The loss function of the discriminator is a cross-
entropy loss related to the binary classifier, and the
discriminator is optimized by minimizing the loss func-
tion.

1
L,=- ?Ez ~p(2) 10gD(Z)

—%Exlog[l -D(g(X, P))]

The graph encoder g( X, P) is regarded as a gen-
erator in this paper, and the joint training of the gener-
ator g(X, P) and discriminator D(Z) is as follows.

. 1
max, min,, | ?E2~p<z> logD(Z)

+%Exlog[1 -D(g(X, P)) ]}

Algorithm 2 displays the overall flow of the frame-
work.

Algorithm 2 DCAG-AE
Input;

graph G = |V, E, X} with adjacency matrix A ;
the number of epochs L;

Output ;
the latent representation Z € R **"”;

the reconstructed graph structure A e R **";

1. Calculate the co-occurrence matrix C by Algorithm 1;
2. Calculate PPMI matrix P by Eq. (4) ;
3. fori=0to L do
4. Encoder g(X, P)—Z according to Eq. (9) ;
5. Sample m entities {a" -+, @™ | from the prior
distribution p(Z) ;
6. Sample m entities {z'" -+, 2"} from the latent
matrix Z
7. Calculate the output of the discriminator D(Z)
by Eq. (14);
8. Update the discriminator by
1 m . .
V — Z - [logD(a(’) ) +log(1 - D(z(j> )]
m =
9. Decoder o (ZZ")—A according to Eq. (10)
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10. Update encoder and decoder using Eq. (11) ;
11. end for

12. return the latent representation Z and the re-
constructed graph structure A.

Given a graph G and its adjacency matrix A, this
work firstly calculates the nodes co-occurrence matrix
C following Algorithm 1 and then calculates the PPMI
matrix according to the learned C. Then, the encoder
model g( X, P) encodes the PPMI matrix P and node
content X into the latent representation Z. After that,
the same number of samples are sampled from the gen-
erated representation Z and the real data distribution p
(Z) to train the discriminator with the cross-entropy
loss. Then the decoder reconstructs the graph structure
A based on the latent representation Z. Finally, the
encoder and decoder are updated by Eq. (11).

4 Experiments

To verify the effectiveness of the proposed model,
three unsupervised analysis tasks are performed on the
graph data; link prediction, node clustering, and
graph visualization.

4.1 Dataset

This paper conducts experiments on 3 benchmark
datasets. The details of these datasets are shown in Ta-
ble 1. Cora, Citeseer and Pubmed'"”’ are all composed
of citation networks, whose nodes represent the docu-
ments and edges represent the citation relations. All
datasets are divided into training set, validation set and
testing set. Among them, the validation set accounts
for 5% to optimize the hyperparameters, the testing set
accounts for 10% to verify the performance of the mod-
el, and the rest is used for training.

Table 1  The statistics of different datasets
Dataset Nodes Edges Classes
Cora 2708 5429 7
Citeseer 3327 4732 6
Pubmed 19717 44338 3

4.2 Link prediction

This paper uses the reconstructed graph structure
obtained from Eq. (10) to predict the edges and non-
edges between the nodes in the testing set.
4.2.1

Several classic link prediction methods are select-

Baseline

ed as the compared methods.
DeepWalk'*' is a graph embedding method,

which encodes social relations into a continuous vector
space by training Skipgram model ™’ using short ran-
dom walk strategy.

Spectral Clustering'?'” learns the social embedding
by generating a representation from the normalized
graph Laplacian.

GAE'" uses the graph convolutional network as its
encoder and leverages both topological and content in-
formation to reconstruct the graph structure.

VGAE'") is the variational version of GAE which
learns the distribution of the latent representation.

ARGA'® is an adversarially regularized autoen-
coder which uses the graph autoencoder to learn the
low dimensional embedding of graph.

ARVGA'® is the variational version of ARGA
which also uses the graph autoencoder to learn the low
dimensional embedding of graph.

4.2.2 Metrics

To measure the effectiveness of the proposed mod-
el on the link prediction task, the following two indexes
are adopted: AUC score (the area under a receiver op-
erating characteristic curve ) and average precision
(AP) score'”’.

times for each dataset, and adopts the mean value with

This work performs experiments 10

the standard errors as the final result.
4.2.3 Parameter settings

For Cora and Citesseer datasets, they have similar
parameter settings because they have a similar number
of nodes and edges. Therefore, the autoencoder model
is trained for 220 iterations. The learning rate and dis-
criminator’ s learning rate are set as 0. 005 and 0. 001 ,
respectively. Pubmed dataset has more nodes and ed-
ges, the model is trained for 350 iterations. The learn-
ing rate is set as 0. 009 and discriminator’ s learning
rate is 0. 001. For all experiments, the number of neu-
rons of hidden layer and embedding layer are both set
as 32, and the two hidden layers in the discriminator
are set as 32-neural and 64-neural, the walk length of
the random walk strategy is set as 2 and the total walk
is set as 100. For the other baselines, the parameter set-
tings are the same as that in the corresponding papers.
4.2.4 Results

The experimental results of link prediction task
are shown in Table 2. For link prediction task, the
proposed model outperforms all other baseline meth-
ods, achieving state-of-the-art results on the three
benchmark datasets. All the AUC and AP scores are as
higher as 97% . For the Cora dataset, the method im-
proves the AUC score by 5.6% compared with the AR-
GA or ARVGA and improves the AP score by 4. 2%
and 4. 8% , respectively, compared with the ARGA
and ARVGA. For Citeseer dataset, the proposed meth-
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od improves the AUC score by 7.4% and the AP score
by 6.1% compared with the ARGA, 18.8% and 15.5%
compared with DeepWalk. On the Pubmed dataset, the
method improves upon the ARGA by 1.9% in terms of

the AUC score and 1.5% in the AP score. In addition,
the standard errors of the proposed method are smaller,
indicating that the model is more robust.

Table 2 The results of link prediction on various datasets

Approaches Cora Citeseer Pubmed
AUC AP AUC AP AUC AP
SC 84.6 +0.01 88.5+0.00 80.5 +0.01 85.0+0.01 84.2 +0.02 87.8 +0.01
DeepWalk 83.1+0.01 85.0+0.00 80.5 +0.02 83.6 £0.01 84.4 +0.00 84.1+0.00
GAE 91.0 £0.02 92.0+£0.03 89.5+0.04 89.9 +0.05 96.4 +0.00 96.5 +0.00
VGAE 91.4 £0.01 92.6 £0.01 90.8 +0.02 92.0+£0.02 94.4 +0.02 94.7 £0.02
ARGA 92.4+£0.003 93.2+0.003 91.9£0.003  93.0+0.003 96.8 £0.001  97.1+0.001
ARVGA 92.4+£0.004 92.6 +0.004 92.4+£0.003 93.0+0.003 96.5+0.001 96.8 +0.001
DCAG-AE  98.0+0.0002 97.4+0.0002 99.3+0.0001 99.1+0.0002 98.7 +£0.0002 98.6 +0.0002

4.2.5 Parameter study

Change the walk length of the random walk strate-
gy from 1 to 10 to learn the effect of walk length on em-
bedding. The results of the Cora dataset are shown in

Fig. 3.

0.98 1
0.94 1
0.90 1
0.86 1
0.82 1
0.78
0.74
0.70
0.66 1
0.62 1
0.58 1
0.54 1
0.50 -

AUC

4 5 6 7 8 9 10
Walk length
(a) AUC score

—
N A
(98]

0.98
0.94 -
0.90 -
0.86 1
0.82 1
0.78 -
0.74 1
0.70 1
0.66 -
0.62 1
0.58 -
0.54 1
0.50 1

AP

3 4 5 6 7 8 9 10
Walk length

—_
N

(b) Average precision score
Fig.3 The embedded performance on different walk
lengths of the Cora dataset

When the walk length is equal to 1, the PPMI
matrix contains only the information of the node itself,
which results in the learned embedding being invalid.
When the walk length is 2, the embedding performance
is the best. At this time, the PPMI matrix embeds the
semantic information of the first-order and second-order
neighbor nodes, which are also the neighbor nodes that
has the greatest semantic correlation with the node. As
the walk length increases, although the PPMI matrix
captures the semantic information of higher-order
neighbor nodes, it also embeds some semantic informa-
tion with lower correlation. So, there must be a bal-
ance between more neighbor semantic information and

neighbor information with higher semantic correlation.

4.3 Node clustering

After learning the latent embeddings, this paper
uses the spectral clustering algorithm to cluster the
nodes of the graph.
4.3.1

In addition to the baselines compared in the link

Baseline

prediction task, it is also compared with other state-of-
the-art clustering algorithms.

Kmeans is the basis of many clustering algo-
rithms. Graph Encoder'”’ uses a stacked autoencoder
to learn representations for spectral graph clustering.
DNGR'"! uses a stacked denoising autoencoder to re-
construct the PPMI matrix for learning a low dimension-
al embedding. RMSC'' is a multi-view spectral clus-
tering approach which considers both the information
view of structure and content data. TADW'**' is based
on matrix decomposition which adds node feature for
the representation learning.

4.3.2 Metrics

In this paper, the following four indexes are used

to measure the effectiveness of the proposed model on
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the node clustering task ; accuracy (ACC) , normalized
mutual information ( NMI) , precision, F-score (F1)
and average rand index (ARI).
4.3.3 Results

The experimental results of node clustering tasks
on the Cora and Citeseer datasets are shown in Table 3
and Table 4. Through the experimental results it can
be seen that the proposed method performs better than
other baselines for all evaluation metrics on the node
clustering task. For instance, for the Cora dataset, the
method outperforms ARGA by 7.1% in the ACC score,
8.0% in the NMI score and 16.5% in the API score.
For the Citeseer dataset, the proposed method improves
the ACC score by 8.2% and the F1 score by 5. 6%
compared with the ARGA, the precision score by 6. 8%
and the NMI score by 11.7% compared with the ARV-
GA.

Table 3 The results of node clustering on the Cora dataset

Approaches ACC NMI Fl1 Precision  ARI

K-Means 0.492 0.321 0.368 0.369 0.230
SC 0.367 0.127 0.318 0.193  0.031
GraphEncoder 0.325 0.109 0.298 0.182  0.006
DeepWalk ~ 0.484 0.327 0.392 0.361 0.243
DNGR 0.419 0.318 0.340 0.266 0.142
RMSC 0.407 0.255 0.331 0.227  0.090
TADW 0.560 0.441 0.481 0.396 0.332
GAE 0.596 0.429 0.595 0.596 0.347
VGAE 0.609 0.436 0.609 0.609 0.346
ARGA 0.640 0.449 0.619 0.646 0.352
ARVGA 0.638 0.450 0.627 0.624 0.374
DCAG-AE  0.711 0.529 0.688 0.730 0.517

Table 4  The results of node clustering on the Citeseer dataset

Approaches ACC NMI Fl1 Precision  ARI

K-Means 0.540 0.305 0.409 0.405 0.279
SC 0.239 0.056 0.299 0.179 0.010
GraphEncoder 0.225 0.033 0.301 0.179  0.010
DeepWalk ~ 0.337 0.088 0.270 0.248  0.092
DNGR 0.326 0.180 0.300 0.200 0.044
RMSC 0.295 0.139 0.320 0.204 0.049
TADW 0.455 0.291 0.414 0.312 0.228
GAE 0.408 0.176 0.372 0.418 0.124
VGAE 0.344 0.156 0.308 0.349 0.093
ARGA 0.573 0.350 0.546 0.573 0.341
ARVGA 0.544 0.261 0.529 0.549 0.245
DCAG-AE  0.655 0.378 0.602 0.617 0.374

4.4 Graph visualization
t-SNE algorithm'*’ is used to realize the visualiza-
tion of Cora dataset in the two-dimensional space.

Fig.4 shows the visualization results using different
walk lengths on the Cora dataset.

As the walk length increases, the nodes in the
cluster are close to each other. To verify this view, the
intra-cluster distance is calculated, which is defined as
the average value of the Euclidean distance from the
node to the centroid in the cluster. As the walk length
increases, the intra-cluster distance gradually decrea-
ses, therefore, the embeddings of the nodes in the
cluster are more similar to each other. When the walk
length increases, the nodes will obtain richer context
information, and the nodes with similar contexts will

obtain similar low-dimensional representations.

wg?’

(d) Walk length=50

Fig.4 Visualization of the Cora dataset on embeddings genera-
ted by DCAG-AE using different walk lengths. From left
to right, the intra-cluster distance = {1.221, 0.902,
0.662, 0.548}

(c) Walk length=10

5 Conclusions

A novel deep convolutional adversarial graph au-
toencoder using PPMI matrix for graph embedding is
proposed. Most of the existing graph embedding algo-
rithms only focus on the topological information of the
graph data, and ignore the semantic information of the
graph data. To capture the semantic information be-
tween nodes, the proposed model encodes the PPMI
matrix generated by the random walk strategy and the
node content information into a latent representation,
and then uses this latent representation to reconstruct
the graph structure. Additionally, to enhance the ro-
bustness of embedding, this paper introduces the deep
convolutional adversarial training schemes. The effec-
tiveness of the proposed model is verified by evaluating
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the performance of link prediction, node clustering and

graph visualization tasks on the benchmark datasets.
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