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Abstract
At present, multi-channel electroencephalogram (EEG) signal acquisition equipment is used to

collect motor imagery EEG data, and there is a problem with selecting multiple acquisition channels.
Choosing too many channels will result in a large amount of calculation. Components irrelevant to the
task will interfere with the required features, which is not conducive to the real-time processing of
EEG data. Using too few channels will result in the loss of useful information and low robustness. A
method of selecting data channels for motion imagination is proposed based on the time-frequency
cross mutual information (TFCMI). This method determines the required data channels in a targeted
manner, uses the common spatial pattern mode for feature extraction, and uses support vector ma-
chine (SVM) for feature classification. An experiment is designed to collect motor imagery EEG da-
ta with four experimenters and adds brain-computer interface (BCI) Competition IV public motor
imagery experimental data to verify the method. The data demonstrates that compared with the meth-
od of selecting too many or too few data channels, the time-frequency cross mutual information meth-
od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.

Key words: electroencephalogram ( EEG) signal, time-frequency cross mutual information
(TFCMI), motion imaging, common spatial pattern (CSP), support vector machine (SVM)

0　 Introduction
Brain-computer interface (BCI) is a system that

connects brain thinking with computers or other exter-
nal devices for communication[1] . At present, BCI
technology is mainly used to help people with normal
brain thinking but unable to move independently and
freely to complete some daily activities[2] . Motor im-
agery (MI) refers to a person who does not have any
physical movement and directly imagines a specific
limb movement through the brain, motor imagination
generates an electroencephalogram ( EEG ). When
people only imagine a particular action but do not per-
form it, the brain’ s motor-sensory area will produce
the same EEG signal as the movement performed[3] .
There will be event-related synchronization / desynchro-
nization (ERD/ ERS) phenomena in motor imaging EEG
signals. By analyzing such signals, the imaginary’s in-
tention can be judged, and a new way can be found to
communicate between humans and the external envi-
ronment [4] .

At present, the EEG acquisition equipment used in
clinical and research mainly uses disk-shaped elec-
trodes. The electrodes are placed in the positions speci-
fied by the International 10 -20 System. The imaginer’s
intention through MI is mostly through the EEG signal,
but this also has its limitations. Refs[5,6] select the
C3 and C4 channels that record important MI informa-
tion according to neurophysiological knowledge as MI
information. This may be one of the reasons for the
wrong judgment. The time, spectrum, and spatial
characteristics of a small number of channels to distin-
guish different MI tasks cannot provide enough informa-
tion to support the judgment. Using global dozens of
channels to identify MI information will affect the de-
termination of motion intention results because of task-
independent information.

Ref. [7] used all 14 channels to classify six kinds
of motor imaging tasks through the common spatial pat-
tern (CSP) feature extraction method and probabilistic
neural network classification method. Ref. [8] used
the C3 and C4 channels to classify the left and right
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hands motor imagery EEG signals by using the fuzzy
Hopfield neural network clustering method, and the
highest classification accuracy rate can reach 87. 9% .
Ref. [9] used C3, Cz, and C4 channels to extract the
phase feature value through the amplitude-frequency
analysis method, and used linear discriminant analysis
for feature classification. In 2015, Ref. [10] used C3
and C4 channel signals to connect the rehabilitation ro-
bot with the BCI system and realized that patients use
EEG signals to control the rehabilitation robot’s upper
limbs. In 2017, Ref. [11] used 29 channels out of a
total of 60 channels to cover the signals recorded near
C3, Cz, and C4, and used 4 frequency bands for fea-
ture classification, without reducing the necessary fea-
tures and reducing the computational cost. In 2018,
Ref. [12] used C3 and C4 channels to propose an
EEG signal feature extraction method based on local
mean decomposition ( LMD) and multi-scale entropy
(MSE). It selected effective product function compo-
nents and formed features with multi-scale entropy vec-
tor. The optimal recognition accuracy can reach
85. 21% . In 2019, Ref. [13] used C3, Cz, and C4
channels to propose a capsule network ( CapsNet )
based on a convolutional neural network to improve the
accuracy of feature classification. It obtained an aver-
age recognition accuracy of 78. 44% . It is not difficult
to find that most researchers use C3 and C4 channel in-
formation for the data sources of motor imagination or
simply cover all channels with motor image information
areas. There is no basis for the EEG data source in the
case of multi-channel selection, and it will result in a
waste of effective information or computing power.

1　 Material and methods

1. 1　 Motor imagination experiment of EEG signal
The 64-lead equipment of Neuracle collected the

original EEG data of the experiment (only contains the
EEG data of 59 leads, and the leads with serial numbers
60 - 64 are invalid). The sampling rate is 1000 Hz,
and the data has been processed by 50 Hz notch. The
electrode arrangement position is arranged according to
the International 10 - 20 System, as shown in Fig. 1.

The experiment’ s content is to imagine using the
left and right hands to press the prompt lights. The ex-
periment interface has two reminders on the left and
right. When the reminder on one side is on, imagine
using that side hand to press the lit reminder. The ex-
periment interface is shown in Fig. 2. A complete ex-
periment is a block, and each experimenter completes
six blocks in three days. Each block contains continu-
ously collected EEG data and contains 20 left and right

Fig. 1　 Schematic diagram of lead electrode placement

Fig. 2　 Experimental interface

hands random motion imagination tasks. Each imagina-
tion is a trial, and each trial has a duration of 7. 5 s.
In a single block, there are left and right hands imagi-
nation task 10 times each. At the beginning of the ex-
periment, the experimenter will enter the target re-
minder stage. At this stage, one of the reminders will
flash on the screen to remind the experimenter that this
trial’ s motor imagination task is left-hand or right-
hand, and the duration is 1. 5 s. Then it is the motor
imagination stage. During the motor imagination
process, the indicator light will remain on, and the ex-
perimenter will start to imagine the left or right-hand
motor. After the motor imagination phase, the experi-
menter will have a rest period of 2 s. A Trigger signal
will be recorded at the beginning and end of a single
trial of motor imagery, which serves as an indicator for
the sorting of experimental data. The sequence diagram
of each trial experiment is shown in Fig. 3.

Fig. 3　 Timing diagram of a single experiment
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There are four people in this experiment as experi-
mental subjects, named as S1, S2, S3 and S4. Each
subject completed six experiments. All experimental
data are resampled, and down to 250 Hz, the baseline
drift is corrected, and a second-order IIR filter based
on Butterworth is used to perform band-pass filtering
with a passband of 8 - 30 Hz[14] . The 8 - 30 Hz band-
pass filter can retain the characteristics of the moving
image signal contained in the alpha and beta bands,
and at the same time, can remove most of the electro-
myographic noise interference[15] . Since the electrooc-
ulogram signal as noise also exists in the 8 - 30 Hz fre-
quency band, independent component analysis is used
to remove the electrooculogram signal to prevent it from
interfering with the experimental results. Finally,
through the Trigger logo, the data of several experi-
ments of each experimenter are combined separately for
further processing.

1. 2　 Time-frequency cross mutual information meth-
od to obtain relevant information

　 　 Ref. [16] proposed a method of assessing brain
functional connectivity based on the time-frequency
cross mutual information (TFCMI) method, which is
used to analyze changes in brain connectivity in a vol-
untary finger-movement task. TFCMI is a calculation
method that can simultaneously evaluate the correlation
between linear and nonlinear components, and the
method also demonstrates its better robustness than co-
herence analysis[17] .

A method of analyzing TFCMI and EEG signal
channels is proposed to obtain the correlation between
each channel. Based on the correlation, specific chan-
nels are selected for analysis to achieve the purpose of
reducing the amount of data. The channels related to
the C3 and C4 channels can be obtained by using this
method.

It is necessary to integrate the time and frequency
components of the EEG signal. This work uses the
time-frequency analysis method based on the wavelet
transform[18] . First, the preprocessed data is subjected
to wavelet transform to obtain the time-frequency power
information of each channel and each frequency.
Then, the power of the selected frequency band of each
channel is averaged to obtain the power change over
time in a specific frequency band. The corresponding
wavelet transform is

Wxi( t, f) = ∫xi(λ)·ϕt, f( t - λ)dλ (1)

where, Wxi( t, f) represents the power density of the
i-th channel at the time t and the frequency f. ϕt, f(λ)
is the wavelet basis function. ϕt, f (λ) = A·ei2πf(λ - t)

e( - ( i - t)^2) / ((2σ)^2), where σ = 8 / ( 2πf ), A = ( σ
2) - 1 / 2, the horizontal line above ϕt, f ( t - λ) is the
composite total of wavelet basis functions yoke.

Use an interactive information method to calculate
the linear and nonlinear correlation between any two
channels. The average power of each channel is used
as a random variable, and cross mutual information is
calculated through entropy and joint entropy. The ran-
dom variable F i is used to represent the average power
signal of the i-th channel, and p(F i,b) is used to re-
present its probability density function. The entropy of
F i means the uncertainty of the average amount of in-
formation. It is represented by H(F i) . H(F i) is ex-
pressed as

H(F i) = - 􀰐
50

b = 1
p(F i,b)lnp(F i,b) (2)

where, b = 1, …,50 represents the block index used
to construct the approximate probability density func-
tion. It will avoid underestimating the entropy of larger
samples and overestimating the entropy of smaller sam-
ples[19] . Its joint entropy H(F i, F j) is expressed as

H(F i, F j) = - 􀰐
50

b = 1
p(F i,b, F j,b)lnp(F i,b, F j,b)

(3)
where, p (F i,b, F j,b ) represents the joint probability
density function of the average power signal of the i-th
channel and the average power signal of the j-th chan-
nel.

Calculate the TFCMI of two random channels as
follows.

TFCMI(F i, F j) = H(F i) + H(F j) - H(F i, F j)
(4)

TFCMI(F i, F j) = 􀰐
50

b = 1
p(F i,b, F j,b)ln

p(F i,b, F j,b)
p(F i,b)p(F j,b)

(5)
The TFCMI value is an index. It evaluates the re-

lationship between the two channels based on the aver-
age power change and the signal-to-noise ratio of the
selected frequency band. It can get the relationship be-
tween each channel through the TFCMI value. Since
the experimental data consists of 59 channels, this pa-
per can finally get a 59 × 59 TFCMI map. Because the
model does not contain causal assumptions, the TFCMI
mapping is symmetrical. It means the relationship be-
tween the i-th channel and the j-th channel with the
j-th channel and the i-th channel are the same. Take
the first block EEG data in experimenter S1 as an ex-
ample. Fig. 4 is a TFCMI chart. The colors of different
color blocks represent the correlation between the cor-
responding row and column channels. The closer the
color corresponding value of the color block is to 1, the
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higher the correlation between the row and the column
channel is. Fig. 5 is an EEG topographic map showing
the correlation between all channels and C3 and C4
channels. Different colors represent the degree of cor-
relation with the target channel. The closer the color
value is to 1, the higher the correlation between the
EEG signal in the region and the target channel is.

Fig. 4　 Map of TFCMI

Fig. 5　 Map of C3 and C4 EEG channel topography

1. 3　 CSP feature extraction
CSP is a spatial filtering feature extraction algo-

rithm for two classification tasks, which can extract the
spatial distribution features of each category from multi-
channel data of BCI. The basic principle of the CSP
mode algorithm is to find a set of optimal spatial filters
for projection by using the diagonalization of the ma-
trix. The variance values of the two types of signals can
maximize the difference and obtain a feature vector with
a higher degree of discrimination [20] .

The existing two types of motor imagination tasks
can be expressed as X1∈RK × N and X2∈RK × N, where
K is the number of EEG channels, and N is the num-
ber of sampling points for each channel[21] . Ignoring
the influence of noise,X1 and X2 can be expressed as

X1 = [C1 CM]
S1

SM
[ ], X2 = [C2 CM]

S2

SM
[ ]

(6)

where, S1 and S2 respectively represent two types of
tasks, and SM represents a common source signal under
the two types of tasks. S1 is composed of m1 sources,
and S2 is composed of m2 sources. C1 and C2 are com-
posed of m1 and m2 common spatial patterns related to
S1 and S2 . CM represents the shared space mode corre-
sponding to SM .

Find the covariance of X1 and X2 and normalize
them as

R1 =
X1XT

1

Trace(X1, XT
1)

, R2 =
X2XT

2

Trace(X2, XT
2)
(7)

where, XT represents the transposition of X, and Trace
(X) represents the sum of matrix object elements.

Then find the composite covariance matrix:
R = R1 + R2 (8)

where, R1 and R2 respectively represents the two types
of the average covariance matrix.

Since the compound covariance matrix R is a posi-
tive definite matrix, it is decomposed by the singular
value decomposition theorem:

R = UλUT (9)
where, U is the eigenvector matrix, and λ is the diago-
nal matrix composed of the corresponding eigenvalues.

Arrange the eigenvalues in descending order to get
the whitening matrix:

P = 1
λ
UT (10)

Apply the matrix P to the average covariance
matrix R1 and R2 to obtain:

S1 = PR1PT (11)
S2 = PR2PT (12)
Principal component decomposition of R1 and R2

can be obtained:
S1 = PR1PT = Bλ1BT (13)
S2 = PR2PT = Bλ2BT (14)
At this time, S1 and S2 have the same feature vec-

tor and the same feature matrix B. At the same time,
the sum of the diagonal matrix of the two eigenvalues
λ1 and λ2 is the identity matrix. So, when the eigen-
value λ of one type of signal is the maximum, the ei-
genvalue of the other type of signal is the minimum.

The classification of two types of signals can be
realized through matrix B, and the spatial filter W can
be obtained:

W = BTP (15)
The matrix Z can be obtained by inputting the mo-

tion image signal into the spatial filter. Take the first m
rows and the last m rows of the matrix Z to form the
signal Zp, and the m is the feature selection parameter
of the CSP. The original motor imaging signal is divid-
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ed into a training set and a test set. According to the
definition of the CSP algorithm in the multi-electrode
acquisition of EEG signal feature extraction, the fea-
ture vectors representing the two task features in the
training set can be represented by fp1 and fp2 respective-
ly[22]:

fp1 =
var(Zp1)

sum(var(Zp1))
(16)

fp2 =
var(Zp2)

sum(var(Zp2))
(17)

For the test set, its feature vector can be repre-
sented by fpi:

fpi =
var(Zpi)

sum(var(Zpi))
(18)

By comparing fpi with fp1 and fp2, the task type of
the i-th experiment can be determined.

1. 4　 Support vector machine feature classification
Support vector machine ( SVM) is a supervised

machine learning technology that has been widely used
in data analysis. The goal of SVM is to create an m-di-
mensional hyperplane and find the maximum distance
between classes to maximize the distinction between
task features and make classification more accurate.
After defining the SVM, according to the position of
the task feature relative to the hyperplane in space, it
is classified as belonging to a certain category or other
categories. A key advantage of SVM over other classifi-
cation methods is that it can classify nonlinear separa-
ble data. The reason is that by introducing a kernel

function, it cleverly solves the inner product operation
in high-dimensional space and thus solves the nonlinear
classification problem well[23] .

If an SVM is constructed with good performance,
the key is to choose a kernel function suitable for the
characteristics of the current task. Currently commonly
used kernel functions include linear kernel, polynomial
kernel, Gaussian kernel, Sigmoid kernel, and so on.

The preprocessed data is divided into a training
set and test set, and the features after CSP feature ex-
traction are input into SVM for training. The first 100
trials of each subject are classified as the training set,
and the last 20 trials are classified as the test set.
Using 10-layer cross-validation, the prediction of the
training set model of all the subjects (Table 1) shows
that the SVM based on the medium Gaussian kernel
can achieve better results. Fig. 6 shows the prediction
results of the training set of subject A2 of BCI Competi-
tion IV 2a data set using SVM based on the medium
Gaussian kernel. In the figure, 1 and 2 represent the
two types of motor imaging tasks.

Table 1　 SVM prediction average accuracy based on
different kernel functions

Kernel function Linear Quadratic Cubic
SVM accuracy 66. 44% 65. 44% 60. 22%

Kernel function Fine
Gaussian

Medium
Gaussian

Coarse
Gaussian

SVM accuracy 59. 89% 67. 00% 65. 56%

Fig. 6　 Subject A2 of BCI Competition IV 2a data set uses a medium Gaussian SVM to predict the results

2　 Results and discussion

The method is tested on two EEG data sets. The
first data set is the motion imagination experiment com-
pleted by the laboratory described above. The second

data set comes from the BCI Competition IV 2a open
motor imagination experiment data.

2. 1　 Motion imagination experiment in the labora-
tory

　 　 Obtain the channel information related to C3 and
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C4, according to TFCMI. Table 2 lists the first four
channels that have the highest correlation with the C3
and C4 channels for each subject. The channels are ar-
ranged in descending order of relevance from left to
right.

Table 2　 Channel correlation analysis results of
the laboratory’s data set

Object Subject Related channels

C3

S1 C5 C1 FC3 CP3
S2 C5 CP1 C1 CP5
S3 C1 CP3 FC3 C5
S4 C5 CP3 FC3 FC5

C4

S1 C6 FC4 CP6 CP4
S2 C6 FC4 C2 CP4
S3 CP4 C6 C2 CP2
S4 PO4 FC4 C6 CP4

It can be concluded from Table 2 that for different
subjects, the correlation between channels is slightly
different. Select the channel with the most occurrences
in Table 2 as the channel related to the target channel.
Extract the FC3, C1, C3, C5, CP3, FC4, C2, C4,
C6, CP4 channels information from the preprocessed
EEG data of the four research subjects and compose the
data set. Then extract the C3 and C4 channels infor-
mation of the four research subjects’ EEG data after
preprocessing, and form a data set.

All data sets are divided into a training set and
test set in the ratio of 5∶ 1. The 100 trials are divided
into a training set, and the remaining 20 trials are di-
vided into the test set. The test set and training set are
extracted through the CSP feature, and then the train-
ing set is used to train SVM. The trained SVM is used
to identify tasks on the test set. The recognition results
are compared with the original experimental records,
and the effects of two-channel extraction methods on
the recognition accuracy of motor imagination are ob-
tained.

2. 2　 BCI Competition IV 2a data set
The BCI Competition IV 2a data set contains four

types of motor imagination data from 9 subjects, name-
ly left hand, right hand, foot, and tongue. Nine sub-
jects are numbered from A1 to A9. Each subject will
complete two experiments, one for training and the oth-
er for testing. Each subject completes 288 trials in
each experiment, including 72 sets of 4 types of motor
imaging. The experimental data records 22 EEG chan-
nels and three monopolar electrooculogram ( EOG)
channels (with the left mastoid as a reference). The
sequence diagram of each test is shown in Fig. 7. At

the beginning of a trial, a fixation cross appeared on
the black screen. In addition, a short acoustic warning
tone is presented. After 2 s, a cue in the form of an ar-
row pointing either to the left, right, down or up (cor-
responding to one of the four classes left hand, right
hand, foot or tongue) appeared and stayed on the
screen for 1. 25 s. This prompted the subjects to per-
form the desired motor imagery task. Since the BCI
Competition IV 2a data set does not give the correct la-
bel for the test set, all data in this experiment comes
from the training set in the original data set [24] .

Fig. 7　 BCI Competition IV 2a timing diagram of a single exper-
iment

The focus of this article is to study the effective-
ness of the channel selection method and does not in-
volve the classification of multi-category features.
Therefore, only the left and right hand movement imag-
ination part of the data set is selected. Table 3 lists the
first four channels that have the highest correlation with
the C3 and C4 channels for each subject.

Table 3　 Channel correlation analysis results of BCI
Competition IV 2a data set

Object Subject Related channel number

C3(8)

A1 9 7 14 15
A2 9 7 15 16
A3 7 9 2 14
A4 7 9 2 14
A5 7 9 2 10
A6 7 9 10 2
A7 7 14 9 2
A8 7 9 10 11
A9 7 9 14 2

C4(12)

A1 11 6 13 5
A2 17 18 11 13
A3 18 11 13 6
A4 11 13 6 18
A5 13 11 6 18
A6 13 11 6 18
A7 18 13 11 6
A8 13 11 9 6
A9 13 11 6 18
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According to the same data processing as above,
select channels with a high correlation with C3 and C4
to form a data set together. The data set contains chan-
nels numbered 2, 7, 8, 9, 14, 6, 11, 12, 13, and
18. According to the ratio of 7 ∶3, all data sets are di-
vided into a training set and test set. The 100 trials are
divided into a training set, and the remaining 44 trials
are divided into a test set.

2. 3　 Experimental results and analysis
This paper combined the experimental results of

the two data sets, a total of 13 subjects. Subjects S1—
S4 are from experiments completed in the laboratory,
and subjects A1—A9 are from the BCI Competition IV
2a data set. Fig. 8 shows the recognition accuracy rates

obtained by all subjects through different channel se-
lection schemes.

The first column of data for each subject indicates
the correct rate of using all channels for motor imaging
feature classification. Subjects S1—S4 use 59 chan-
nels, and subjects A1—A9 use 22 channels. The sec-
ond column of data for each subject represents the cor-
rect rate of using C3, C4, and related channels. The
third column of each subject is the correct rate of using
the only C3, C4 channels. It can be concluded that for
most subjects, the correct rate of using C3, C4, and
related channels is higher than that of using the only
C3, C4 channels. In some cases, the correct rate of
using C3, C4, and related channels is also higher than
using all channels.

Fig. 8　 Comparison of correct rate of different channel selection methods

　 　 There are some reasons for the experimental re-
sults. When there are too few channels to be chosen, it
may cause some useful information to be lost, and the
result is insufficient robustness. When there are too many
channels to be chosen, it may cause interference of in-
formation irrelevant to motor imagination in unrelated
channels, resulting in insufficient feature resolution of
different motor imagery tasks. Besides, the real-time
calculation of large amounts of data generated by a
large number of channels is not conducive to the real-
time and precise requirements of the actual application
of MI. The experimental results show that the selection
of EEG channels through TFCMI can retain more infor-
mation related to motor imagination while reducing ex-
pected data calculations and reducing the interference
of irrelevant information. Therefore, it is necessary to
analyze the channel correlation of motor imagery data.

This work has compared the achievements of the
proposed TFCMI algorithm to those obtained with other
algorithms in this field. It uses data from the BCI Com-
petition IV 2a for comparative experiments.

The correlation-based channel selection ( CCS)
method is proposed to select the channels that contain

more correlated information[25] . The non-negative ma-
trix factorization (NMF) selects channels by extracting
the weight of the EEG channels based on their contri-
bution to MI detection[26] . All comparisons use the
same preprocessing method, feature extraction method
and feature classification method. Only the channel se-
lection method is different, and the selected channel is
also different. All three methods selected 10 channels
for comparison.

The comparison results are shown in Table 4. The
proposed TFCMI algorithm has more advantages. Its
accuracy rate is higher than the CCS model and NMF
model, and the performance is more stable.

3　 Conclusions

This paper proposes a channel selection method
based on TFCMI for feature extraction of multi-channel
EEG signals. Tests on a data set with 59 channels and
a data set with 22 channels show that compared with
only C3 and C4 channels are extracted as the features
of motor imagination, and the C3, C4 channels, and
several related channels are extracted. Features can
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Table 4　 Performance comparison with different
channel selection methods

Participant
Methods

CCS NMF TFCMI
accuracy / % accuracy / % accuracy / %

A1 61. 36 61. 36 54. 55
A2 38. 64 68. 18 50. 00
A3 77. 27 75. 00 81. 82
A4 63. 64 59. 09 54. 55
A5 61. 36 50. 00 61. 36
A6 50. 00 40. 91 56. 82
A7 61. 36 50. 00 63. 64
A8 88. 64 86. 36 84. 09
A9 65. 91 61. 36 70. 45

Average
accuracy 63. 13 61. 36 64. 14

Standard
deviation 14. 32 13. 87 12. 23

improve the classification accuracy of task types to a
certain extent. Compared with extracting all channels
as features of motion imagination, extracting C3, C4
channels, and several related channel features can sig-
nificantly reduce the amount of calculation. The classi-
fication accuracy rate does not decrease substantially.
Compared with the other two channel selection meth-
ods, the channel selection method proposed in this pa-
per has better performance.
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