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Abstract
Recently, sharded-blockchain has attracted more and more attention. Its inherited immutabili-

ty, decentralization, and promoted scalability effectively address the trust issue of the data sharing in
the Internet of Things ( IoT). Nevertheless, the traditional random allocation between validator
groups and transaction pools ignores the differences of shards, which reduces the overall system per-
formance due to the unbalance between computing capacity and transaction load. To solve this prob-
lem, a load balance optimization framework for sharded-blockchain enabled IoT is proposed, where
the allocation between the validator groups and transaction pools is implemented reasonably by deep
reinforcement learning (DRL). Specifically, based on the theoretical analysis of the intra-shard
consensus and the final system consensus, the optimization of system performance is formed as a
Markov decision process (MDP), and the allocation of the transaction pools, the block size, and
the block interval are jointly trained in the DRL agent. The simulation results show that the proposed
scheme improves the scalability of the sharded blockchain system for IoT.
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ment learning (DRL)

0　 Introduction

Recently, with the emergence of blockchain tech-
nology, the integration of blockchain and the Internet
of Things (IoT) has received great attention in both in-
dustry and academia[1-4] . On one hand, IoT is entering
a new phase of cross-industry integration, merging data
generated from various systems or domains to construct
a more powerful industrial sector, and thus requiring a
dedicated and large-scale cross-industry platform[5] .
However, the current centralized architecture in the
IoT network is challenged by single point of failure
(SPOF), data privacy, reliability, and robustness[6] .
On the other hand, the blockchain emerges by combi-
ning cryptography, distributed consensus, and
chained-block of data recording. With these advantages
of decentralized management and immutable storage,
blockchain has been regarded as one of the most reason-
able candidates to address the above issues of IoT[7] .

Blockchain firstly worked as a cryptography-based
decentralized public ledger to store transactions for Bit-

coin[8] . Then, along with Ethereum[9], the implemen-
tation of decentralized applications with smart contract
was developed. It means that the blockchain technolo-
gy can be used for the management of the interactions
in generalized multi-peer systems (e. g. , IoT sys-
tems). Subsequently, researches put more effort into
applying blockchain to IoT networks. For example,
Ref. [10] introduced a new IoT architecture to imple-
ment task offloading and resource allocation through
smart contracts on blockchain. Ref. [11] focused on
structural applications incorporating IoT and blockchain
into distributed systems. However, with the expansion
of blockchain application scenarios, transaction
throughput, as an important indicator of system per-
formance, has become the key point of improvement.

Fortunately, sharding comes up with the increase
in throughput by parallelizing the verification process of
the blockchain[6] . A representative platform is Zilliqa[12]

that maximizes the blockchain throughput in proportion
to the number of shards. Meanwhile, Ethereum 2. 0
proposed a version of a sharded blockchain that splits
the entire network into multiple portions.
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However, due to the impossible triangle of the
blockchain that decentralization, security, and scal-
ability cannot be satisfied at the same time, various ap-
proaches have been proposed to balance this three-way
trade-off issue. Specifically, many studies have fo-
cused on performance optimization schemes using rein-
forcement learning. Ref. [13] proposed a DQN-based
blockchain scheme for the IoT network, which optimi-
zes the blockchain throughput under decentralization
and security constraints. In Ref. [14], a sharded-
blockchain optimization framework based on DQN max-
imized the throughout by adjusting the shard number
and other blockchain parameters while ensuring con-
sensus security.

Nevertheless, the load unbalance issue exists in
the blockchain system due to uneven distribution be-
tween the different computing resources of nodes and
the different requirements of various blockchain users.
On one hand, in order to address the heavy computa-
tion load of the mining clusters of the blockchain ena-
bled cellular V2X networks, Ref. [15] proposed a
game-theoretic approach for balancing the load at min-
ing clusters while maintaining fairness among offloading
vehicles. In addition, Ref. [16] proposed a block-
chain-based storage system with financial incentives for
load-balancing the data storage between nodes. On the
other hand, for the requirement differences of users,
for instance, a single user is involved in a great num-
ber of transactions, monoxide blockchain system[17] re-
solves the issue with the co-design of a virtualization
applications at the upper layer, which virtualize the us-
er addresses in different shards for load balancing.
However, few studies have been published on the load
balance between validator groups and transaction
pools. There are often significant performance differ-
ences between nodes in the real blockchain system,
and these differences directly result in an even distribu-
tion of nodes with different performance within each
shard. Although the random sharding method reduces
the risk of a shard being controlled by a malicious
node, the large difference between shards usually af-
fects the throughput of the blockchain and, therefore
the quality of service for users.

In order to ensure the shards’ load balance and
improve the system throughput, in this paper, a per-
formance optimization framework for sharded-block-
chain enabled IoT is proposed based on deep reinforce-
ment learning (DRL), where the allocation of the vali-
dator groups and transaction pools is done according to
the computation capacity and transaction load. The
contributions of this paper are summarized as follows.
To meet the needs of data sharing in large-scale IoT

networks, a sharded based permissioned blockchain for
IoT is proposed, where transactions are parallelly pro-
cessed by validator groups. To keep the load balance of
different shards, the transaction load requirements is
quantified based on the computation cost of intra-shard
consensus and its theoretical analysis of performance.
Then, the shard forming ( allocating the validator
groups to transaction pools) and the parameters adjust-
ment (block size and block interval) is formulated as a
joint optimization problem and solved by using DRL.
Simulation results are presented to show the effective-
ness of the proposed scheme.

The rest of this paper is organized as follows. Sec-
tion 1 describes the system model, followed by the the-
oretical analysis of consensus protocols in Section 2.
Then, the problem formulation is presented in Section 3.
Simulation results are shown and discussed in Section 4.
Finally, in Section 5, the conclusions and future work
are given.

1　 System model

In this section, the structure of the sharded block-
chain for IoT networks is introduced first, followed by
its two-phase consensus.

1. 1 　 Sharded-blockchain based IoT networks
The structure of the blockchain-based IoT network

is illustrated in Fig. 1, in which smart devices collect
ambient data, which might be shared and processed

Fig. 1　 Blockchain-based IoT network via sharding
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among different applications (e. g. , smart factory,
smart home, smart grid, medical care, monitoring sys-
tems, etc. ) [14] . For instance, the traffic monitoring
data captured by road side units (RSU) and the loca-
tion information of smart vehicles might be required for
route navigation and traffic condition prediction. Here,
the sharing of data is recorded in transactions running
on a scalable blockchain via sharding, so that secure
data storage and reliable data management are imple-
mented.

To meet the needs of a large-scale IoT system,
sharding on the blockchain is required to process mas-
sive transactions in a parallel manner, where consensus
nodes (validators) are clustered into different validator
groups to deal with different transactions at the same
time[18] . Specifically, validators of size N are divided
into a directory committee ( DC) containing C nodes
and K validator groups in a random manner, and ac-
cordingly, transactions are allocated to K validator
groups. In each shard, the local blocks composed of
local transactions are produced via intra-shard consen-
sus. Then all of these local blocks need to be validated
via the final consensus in the DC. Finally, the verified
local blocks with no faults will be merged to final
blocks and will be distributed to all the blockchain
nodes. Note that all of the consensus adopt the practi-
cal Byzantine fault tolerance (PBFT) protocol, and the
nodes take turns being distributed into different shards,
producing a block of size SB(in bits) in an interval of
TI(in seconds).

1. 2　 Two-phases PBFT consensus model
The PBFT is a revolutionary protocol to meet the

Byzantine general’ s problems[19] . It can significantly
reduce the message complexity of reaching consensus
from the exponential level to the polynomial level and
still tolerate the proportion of malicious peers (1 / 3).
The classic PBFT protocol mainly consists of three
steps: pre-prepare, prepare and commit. Based on the
classic PBFT protocol, a two-phase consensus model
adapting to sharded-blockchain is shown in Fig. 2[12] .
It contains intra-shard consensus and final shard con-
sensus.

The intra-shard consensus using the PBFT proto-
col within a shard is presented as follows.

(1) The selected primary node in each shard is
responsible for collecting the transactions and genera-
ting new local blocks as well as broadcasting blocks to
the local shard via pre-prepare messages.

(2 ) Each replica node receives the block and
verifies the set of transactions in the block, then ex-
changes the hash digest with other replica nodes.

(3) The nodes who would receive the most (2 / 3)
same hash digests broadcast its commit message.

(4 ) All the validators, including the primary
node, exchange the commit messages between each
other, if the primary node receives the most (2 / 3 )
commit messages.

Fig. 2　 Two-step consensus structure of shard based blockchain

After the local commit phase, the primary and the
replica nodes reply their intra-shard consensus to the
DC for the final consensus.

The final consensus in DC also runs the PBFT
protocol.

(1) The selected primary node selected in DC
network is responsible for collecting the blocks from the
shardings, and generating and broadcasting the final
blocks.

(2) Each DC replica node receives and verifies
the set of transactions in the final blocks, then exchan-
ges the hash digest with other DC replica nodes.

(3) The node who would receive the most (2 / 3)
same hash digests broadcasts a commit message.

(4) All the validators exchange the commit mes-
sage between each other, if the primary node receives
the most (2 / 3) commit messages.

After the commit phase in DC, the DC nodes re-
ply the final consensus to all the clients in IoT net-
work. Transactions over the two-phase consensus are
stored into the blockchain immutably.

2　 System performance analysis

In this section, the consideration of the load bal-
ance of sharding is presented, and the corresponding
theoretical analysis is given. For the clarity of following
discussion, the notations are summarized in Table 1.

2. 1　 Overview of the load balance protocol
As described in Section 1. 1, shards are formed

by grouping the validators to different transaction
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pools. The nodes within one shard produce and verify
the local blocks, which contain the block number,
block size, signed block summary and transactions.

After the intra-consensus, the local block is submitted
to the directory committee, where the block header is
added if it passes the final consensus.

Table 1　 Notations
Symbol Definition
Nk The number of nodes within k-th shard
C The number of nodes within the directory committee
N The number of nodes in the system
K The number of shards
xk The transaction requests of k-th transaction pool

μk(ck,min)
The computing capacity of k-th shard

(The least node computation capacity within k-th shard)
ck, p The computing capacity of a primary node with k-th shard
ck,r The computing capacity of a replica node with k-th shard
Tval

k The intra-consensus validation time of the k-th shard
Tval

k, p The intra-consensus validation time of the k-th shard primary node
Tval

k,r The intra-consensus validation time of the k-th shard replica node
SBH Block header of a local block
SB Block size of a local block

　 　 It is worth noting that transactions randomly gen-
erated in real time may lead to uneven throughput de-
mands in different shards. Meanwhile, the computation
capacity of validator groups is different due to the ran-
dom grouping of consensus nodes. Therefore, the work
load of different shards will be unbalanced if a shard is
congested with a large number of transactions. Specif-
ically, if a shard with a heavy work load has poor pro-
cessing capacity ( the local primary or replicas have
poor computation capacity), the intra-consensus will
be delayed and the throughput of the entire blockchain
system will be affected. Therefore, the allocation be-
tween the validator groups and the IoT transaction pools
should be reasonable to ensure the load balance among
the shards.

2. 2　 Load balanced performance theoretical anal-
ysis

2. 2. 1　 Intra-shard consensus validation time
Here, the detailed steps and theoretical analysis

of the load balance between the shards and the transac-
tion pool is given.

The whole time is partitioned into discrete time
periods T = {1,…, t,…,T·}, and each time period t
has a constant duration T·. In time period t, it is as-
sumed that the k-th shard consists of Nk(Nk = C =
N

K + 1) consensus nodes, and generating or verifying

one signature, generating or verifying one MAC require
α and β CPU cycles, respectively. As shown in Fig. 2,

based on PBFT, the primary node and replica nodes
perform the following processing on the transactions
submitted by IoT devices.

(1) Request: the IoT devices send requests for
block validation to the primary, then the primary veri-
fies one MAC for each transaction request, each re-
quest contains one signature that requires verification
for each replica during the consensus process.

(2) Pre-Prepare: the primary node processes the
requests ( xk requests operated from the k-th transac-
tions pool in time slot) in a single pre-prepared mes-
sage and forwards the message to all replica nodes. In
this phase, the primary node generates (Nk - 1) MACs
to send the pre-prepared message, and each replica
node needs to verify one MAC.

(3) Prepare: each replica node authenticates the
pre-prepare message and generates (Nk - 1) MACs to
all the other replicas, and verifies (Nk - 2) MACs
when they receive them. Meanwhile, the primary node
needs to verify (Nk - 1) MACs received from all the
replicas.

(4) Commit: all the validators, including the pri-
mary node, exchange the messages between each oth-
er, so the primary and any replica first send and then
receive (Nk - 1) commit messages, which need to gen-
erate (Nk - 1) MACs and verify (Nk - 1) MACs, re-
spectively.

At the end of the commit phase, the primary and
all the replica nodes reply their intra-shard consensus
to the DC for the final consensus. At this time, the pri-
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mary and replica nodes create C MACs for each re-
quest.

Note that the primary node performs total xk signa-
ture checks and xk(C + 1) + 4(Nk - 1) MAC opera-
tions, and replica nodes perform a total xk signature
checks and xkC + 4(Nk - 1) operations. The compu-
ting load of primary nodes and replica nodes are xkCα
+ [xk(C + 1) + 4(Nk - 1)]β and xkCα + [xkC +
4(Nk - 1)]β, respectively.

Thus, the validation time of primary node and
replica nodes can be expressed as follows.

Tval
k, p =

xkCα + [xk(C + 1) + 4(Nk - 1)]β
ck,p

and

Tval
k,r =

xkCα + [xkC + 4(Nk - 1)]β
ck,r

(1)

where ck, p and ck,r represent the computing capacity of
the primary node and replica node in the k-th shard.
Then, the intra-consensus validation time of the k-th
shard ( Tval

k ) can be expressed as follows.
Tval

k = min{Tval
k, p, Tval

k,r} (2)
In addition, in each shard the nodes take turns to

be the primary node producing blocks, taking the lon-
gest validation time of k-th shard into consideration,
which can be calculated by the condition that the node
with the least computation capacity in the shard exceeds
the computing load of the primary node. Thus, the lon-
gest validation time ( Tval

k
˙ ) is presented by

Tval
k
˙ =

xkCα + [xk(C + 1) + 4(Nk - 1)]β
ck,min

(3)

Note that the intra-shard consensus of different
shards in parallel, therefore the longest intra-shard val-
idation time of the system Tval˙ can be defined as the lar-

gest Tval
k
˙ among K shards.

Tval˙ = max{Tval
1
˙ , Tval

2
˙ , …, Tval

k
˙ , …, Tval

K
˙ } (4)

2. 2. 2　 Load balanced shard allocation
Based on Eqs(3) and (4), the intra-shard vali-

dation time will not be delayed if a transaction pool
with a higher transaction load is allocated to a validator
group with higher computation capability. In order to
avoid the load imbalance, the allocation between vali-
dator groups and transaction pools should minimize the
system’s longest intra-shard validation time Tval˙ .

The allocation for K validator groups and K trans-
action pools can be represented as

ΔK( t) = {δ1( t), δ1( t),…,δi( t),…,δK( t)}
(5)

and δi( t) = j( i, j ∈ {1,2,…,K}) means that the
i-th transaction pool is allocated to j-th validators group

at time slot t.
Since the nodes in the IoT usually have limited

computation resources[20], here, the computation capa-
bility of k-th validator groups is modelled as a random
variable μk = ck,min with the node with the least compu-
tation capability. Due to various tasks in the IoT sys-
tem, it’ s hard to know the computation capability of
each node at the next time instant. Assuming the value
of computation capability can be partitioned into H dis-
crete intervals, denoted as Ψ = {Ψ0, Ψ1,…,ΨH-1},
the computation capability of shard k at time slot t can
be expressed as μk( t) .

Considering the time correlation of computation
states in nodes, the transition of computation capability
is modelled as a Markov chain. Thus, the H × H transi-
tion probability matrix is defined as [pμ] H×H, where
[pμ] h,h′ = Pr[μk( t + 1) = Ψh | μk( t) = Ψh′] and
Ψh, Ψh′ ∈ Ψ. Here, the set of computation capability
of K validator groups is donated by U( t) = {μ1( t),
μ2( t),…, μk( t),…, μK( t)} .

Similarly, the transactions generated in k-th trans-
action pool is also modelled as a random variable χk .
Assuming the value of transaction load can be parti-
tioned into L discrete intervals, denoted as X = {X0,
X1,…,XL-1}, the transaction load of transaction pool k
at time slot t can be expressed as χk( t) .

Considering the time correlation of the IoT trans-
actions pool, the transition of the number of generated
transactions within the k-th transaction pool is modelled
as a Markov chain. Thus, the L × L transition probabil-
ity matrix is defined as [pχ] L×L, where [pχ] l,l′ =
Pr[χk( t + 1) = X l | χk( t) = X l′] and X l,X l′ ∈ Χ.
Here, the set of transaction load of K transaction pools
is donated by X( t) = {χ1( t), χ2( t),…, χk( t),…,
χK( t)} . Algorithm 1 shows the detail of load balance
allocation scheme for sharded-blockchain-enabled IoT.

Algorithm 1 Load balance allocation scheme for sharded-
blockchain-enabled Internet of Things
Initialization:
Randomly partition of the IoT network into K transaction pools
Randomly grouping of the consensus nodes into K validator
groups
Input the transaction load set of K transaction pools {χ1( t),
χ2( t),…,χK( t)}
Input the computation capability set of K validator groups
{μ1( t), μ2( t),…, μK( t)}
Input the number of consensus nodes N
Initialize the shard allocation:
　 　 ΔK( t) = {δ1( t),δ1( t),…,δi( t),…,δK( t)}
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for t = 1,2,…,O do
　 for δi( t) = j do
　 　 Allocate the i-th transaction pool to j-th validator group
　 　 Load balanced allocation by minimizing the system’ s

longest intra-shard validation time Tval˙

　 End for
　 Adjust the block sizes and block intervals by maximizing
the throughput Θ(SB, TI)

　 DQN optimization of the allocation and the parameters ad-
justment
　 Apply the training result to the sharded-blockchain enabled
IoT system
End for

2. 2. 3　 Scalability performance
The scalability of a sharded-blockchain system can

be evaluated by system throughput, which is the num-
ber of transactions packed into local blocks in a unit
time. Usually, the throughput of the traditional block-
chain is affected by two performance parameters: block
size and block interval. Noting that the sharded-block-

chain produces blocks in a parallel manner, the
throughput is K times increased, which can be ex-
pressed as[14]

Θ(SB, TI) =
K[(SB - SBH

) / λ]
TI (6)

where SB represents the local block with a maximum
size (bytes) for each block interval period TI, SBH

and
λ are the block header of the local block and the aver-
age transaction size respectively. Considering the fixed
shard number, it can be found from Eq. (6) that in-
creasing the block size or reducing the block interval
can increase the throughput.

3　 Problem formulation

In order to keep the load balance and improve the
throughput of the sharded blockchain, it’s necessary to
jointly optimize shard allocation, block size, and block
interval. To implement the DRL approach, the system
performance optimization problem is formulated as
Markov decision process (MDP).

Fig. 3　 MDP of load balanced sharded blockchain

3. 1　 MDP formulation
3. 1. 1　 State space

Due to the fact that the learning agent makes deci-
sions about the allocation between the validator groups
and the transaction pools, the system state S( t) at time
instant t( t = 1,2,3…) can be expressed as

S( t) = [U( t), X( t)] (7)
where U( t) represents the set of computation capability
of K shards and X( t) is the set of transaction load of K
transaction pools.
3. 1. 2　 Action space

In order to optimize the shard allocation and maxi-
mize the throughput, several parameters of the block-
chain system should be adjusted to adapt to the dynam-
ic environment, which includes the shard allocation

Δ( t), block size SB and block interval TI . Thus, the
action space at decision epoch t is expressed by

A( t) = [ΔK( t), SB,TI] (8)
where ΔK( t) represents the allocations between trans-
action pools and shards at time slot t. Additionally,
using limited fractional methods, block size space SB ∈
{2,4,…,S·} and block interval TI ∈ {0. 5,1,…,T·}
have a maximum block size limit S· and maximum block
interval T·.
3. 1. 3　 Reward function

The reward function is defined to maximize the
blockchain throughput while minimizing the longest
system intra-shard validation time, and a decision
should be made in each epoch to solve the following
problem.
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Objective: max
A

Q(S, A) (9)
where Q(S, A) is the action-value function calculated
by

　 Q(S, A) = EE [∑
∞

t = 0
σtR( t)(S( t), A( t))

| S0 = S, A0 = A] (10)
with the discount factor σ ∈ (0, 1] that reflects the
trade-off between the immediate and future rewards,
and the immediate reward is defined as

R( t)(S( t), A( t) = ωL
1
T·val

+ ωTΘ(SB, TI)

(11)
where the ωL,ωT ∈ (0,1] are the weights coefficient
for the trade-off between throughput rewards and the
load balance rewards in order to get a reasonable train-
ing result. And there is ωL + ωT = 1.

3. 2　 DQN-based optimization
Based on the formulation in Section 3. 1, a DRL

approach is used to optimize the reward. Specifically,
a DNN-based Q-learning approach is applied to per-
form complicated function approximation, which is
known as DQN technology[21] .

DQN is an improved version of Q-learning that
uses deep networks to approximate the action-value
function Q(S, A) instead of using a Q-table to store
Q(S, A), which is able to approximate the value func-
tion accurately while addressing a large volume data di-
mension. Algorithm 2 shows the optimization frame-
work of system performance based on DQN.

Algorithm 2 DQN-based optimization framework for load-
balanced sharded blockchain
Initialization:
Initialize the system state of the sharded blockchain S( t)
Initialize replay memory D with the capacity Z
Initialize main Q network of Q(S, A; θ) with random weights θ
Initialize target Q network of Q—(S, A; θ—) with weights θ
= θ—

Load initial state space S( t) data and use it as the input of
the main deep Q network

Input maximum training episode M, maximum training step T·

DQN learning process:
For episode = 1,…,M do

　 for t = 1,…, T· do
　 　 Select a random probability p
　 　 if p < ε then do
　 　 　 　 Select a random action
　 　 else
　 　 　 　 A( t) = arg max

A
Q(S,A;θ)

　 　 end if
　 Decrease exploration probability ε
　 Execute action A( t) to select allocation and adjust block
size and block interval, and observe reward R( t) and pro-
ceed to next state S( t + 1)

　 Store the experience (S( t), A( t), R( t), S( t + 1)) into
the replay memory D
　 Randomly sample a mini-batch of state transition (S( i),
A( i), R( i), S( i + 1)) from the replay memory D
　 Set yi = ri + γmaxA′Q(Si+1, A′;θ—) to compute the target
Q— value from the target Q network
　 Update target Q network by performing the gradient descent
of loss function
　 L(θ) = (yi - Q(Si,Ai;θ)) 2 for every GG step
　 　 End for
End for

4　 Simulation results and discussions

In this section, the computer simulation is used to
demonstrate the effectiveness of the proposed scheme.
The simulation settings are presented. The related pa-
rameter settings are illustrated in Table 2.

4. 1　 Simulation setting
The computation capability of the validator is for-

mulated as a Markov model. Assuming that the state of
the computation capability can be very high, high, me-
dium, and low, whose transition probability matrix
[pμ] H×H is set as

pμ =

0. 45 0. 3 0. 15 0. 1
0. 3 0. 45 0. 15 0. 1
0. 15 0. 3 0. 45 0. 1
0. 15 0. 1 0. 3 0. 45

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

(12)

Table 2　 Parameters of the system simulation environment
Parameter name Description

The number of nodes, N 100
The number of shards, K 4

Maximum block size[14] , S· 8 MB

Limit block interval[13] , T· 16 s
The transaction requests of transaction

pool, xk,(Xl, Xl′ ∈ X) 100 - 300

The computing capacity of nodes[13] ,
μk, (Ψh, Ψh′ ∈ Ψ) 10 - 30 GHz

Block header[14] , SBH 80 Bytes
Computing cost for verifying signatures[13] , α 2 MHz

Computing cost for generating / verifying
MACs[13] , β

1 MHz
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Similarly, assuming the state of transaction load of
transaction pool can be very high, high, medium, and
low, the transition probability matrix [pχ] L×L is set by

pχ =

0. 45 0. 32 0. 16 0. 07
0. 32 0. 45 0. 16 0. 07
0. 16 0. 32 0. 45 0. 07
0. 16 0. 07 0. 32 0. 45

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

(13)

For comparison, three baseline schemes are con-
sidered in the simulation as follows.

(1) Proposed scheme without load balanced allo-
cation: the K transaction pools are allocated to K
shards in a random manner.

(2) Proposed scheme with fixed block size: the
blocks generated by the block producers at different in-
tervals with the same size (2 MB).

(3) Proposed scheme with fixed block interval:
the frequency of issuing blocks is fixed (every 10 s).

4. 2　 Simulation results and discussion
4. 2. 1　 Convergence trend analysis

Fig. 4 shows the convergence performance of the
long term reward under the proposed DQN-based load
balanced sharded blockchain optimization scheme,
where the y-axis denotes the long term reward and the
x-axis denotes the training episodes. From Fig. 4 it can
be observed that the convergence trend of the long term
reward with the learning rate of 0. 01 is not obvious.
With the learning rate decreasing to 0. 001, the con-
vergence speed of the network is accelerated. The re-
sult is ideal when the learning rate is reduced to
0. 0001, where the convergence is evident and the long
term reward is higher than the others.

Fig. 4　 Long term reward under different learning rates

In addition, it can observed that the long term re-
ward is lower at the beginning of the learning process.
However, with the increase of episodes, the long term

reward increases and reaches a stable state after around
2000 episodes, which means that the agent has learned
the optimal strategy to maximize long-term reward. The
convergence verifies the effectiveness of the proposed
scheme.
4. 2. 2　 Load balance performance analysis

Fig. 5 describes the load balance performance with
the proposed DRL-based performance optimization
scheme. The longest intra-shard validation time of the
proposed scheme decreases and reaches stable after
2000 episodes, which means the shard allocation be-
came reasonable. Compared with the traditional ran-
dom scheme, the proposed scheme can be verified to
receive a more reasonable allocation according to the
simulation result.

Fig. 5　 Comparison of longest intra-shard validation time

Fig. 6 shows the relationship between system per-
formance and the number of validators. One observa-
tion is that the validation time increases with the vali-
dators number increasing. With more validators joining
the consensus process, the computing load of each
transaction increases, which naturally leads to a de-
crease in system performance. In addition, focusing on
the comparison with the traditional scheme, the pro-
posed scheme obtains less validation time with the vari-
ation of validator number. The reasons are described as
before.

Fig. 7 shows the longest intra-shard validation time
of the proposed scheme under different shard number
K. It can be found that latency of intra-shard consen-
sus decreases with the increase of shard number. The
reason is that with the increasing number of shards, the
consensus nodes within a shard decreases, which re-
duces the computation cost for the intra-shard consen-
sus validation. In addition, the transaction load of each
transaction pools decreases with the increase of shard
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number. Therefore, the load balanced shard allocation
can be got faster with more shard number.

Fig. 6　 Longest intra-shard validation time vs the number
of validators

Fig. 7　 Longest intra-shard validation time under different
shard numbers

4. 2. 3　 Throughput performance analysis
Fig. 8 shows the throughput performance of the

proposed scheme under different baselines. It can be
observed that the throughput is lower at the beginning
of the learning process. However, with the increasing
number of episodes, the throughput increases and rea-
ches a stable state after around 2000 episodes, which
verifies the convergence performance of the proposed
scheme. In addition, it can be also found that the pro-
posed scheme can receive higher throughput than that
of the other baselines, which shows the advantage of
the proposed framework.

Fig. 9 shows the throughput performance of the
proposed scheme under different shard number K. It is
obvious that the convergence of throughput slows down

as the number of shards increases. The reason is that
with the increasing number of shards, the action space
of MDP becomes larger. For instance, when the shard
number is 4, which means that 4 transaction pools
should be allocated to 4 validator groups, thus it has
totally 24(4 × 3 × 2 × 1) allocation methods. Then,
the action space for the shard allocation is 24. When
the shard number is 5, the action space of the shard al-
location becomes 120. Therefore, the DQN agent needs
more training episode to explore a more reasonable ac-
tion.

Fig. 8　 Throughput performance under different baseline

Fig. 9　 Throughput performance under different shard numbers

Fig. 10 shows the relationship between system per-
formance and the average transaction size. It can be
observed that with the average transaction size increas-
ing, the throughput of the system decreases. The rea-
son is that the number of transactions contained in one
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block decreases when the average transaction size increa-
ses. Focusing on the comparison of different schemes,
the proposed scheme maintains the highest throughput
with the different average transaction size, followed by
the proposed scheme with fixed interval and block size.
The reason is that the proposed scheme without any
limiting factors is able to adjust a reasonable block-
chain parameters to improve throughput.

Fig. 10　 Throughput vs. transaction size

5　 Conclusions

In this paper, a DRL-based load-balanced shar-
ded-blockchain for the IoT network is proposed, where
the allocation between the validator clusters and the
transaction pools is load balanced and the scalability is
improved. With sharded blockchain, the large scale
data sharing of the IoT network is stored immutably and
managed reliably. In the proposed framework, a theo-
retical analysis of the performance of sharded block-
chain system is provided first. Then the load balanced
allocation is optimized by the constraint of the shard’s
longest validation time and by maximizing the load bal-
anced parameter using the DQN approach. In addition,
the throughput is maximized by adjusting the block size
and block interval with DQN. Simulation results dem-
onstrate the proposed framework can achieve reasonable
load balanced allocation and higher throughput than the
baselines with various system parameters. Future work
is in progress to consider the optimization of shard
number with other DRL approaches based on the pro-
posed framework.
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