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Abstract
A novel switching-based backstepping sliding mode control (SBSMC) scheme is devised for the

space manipulator exposed to different gravity. With a view to distinct differences in dynamics prop-
erties when the operating condition of space manipulator changes, the space manipulator can be
thought of as a system composed of two subsystems, the ground subsystem and the space subsystem.
Two different types of backstepping sliding mode (BSM) controllers are designed, one is suited for
the ground subsystem and the other is for the space one. The switching between two subsystems can
be implemented automatically when the switching mechanism is triggered, and the controllers for
their subsystems experience synchronous switching. In this way, the space manipulator always has
good behaviors in trajectory tracking. Moreover, multi-Lyapunov functions are introduced to prove
the stability of this switching approach. According to simulation results, the method constructed in
this research has better performance in control precision and adaptability compared with proportional-
derivative (PD) control.

Key words: space manipulator, microgravity, switching system, multi-Lyapunov functions,
backstepping sliding mode control (BSMC)

0　 Introduction
The space manipulator is now integral to various

significant missions carried out in the space for its pow-
erful and flexible capabilities[1] . Exploring favorable
control methods to improve the control precision of
space manipulator turns out to be quite necessary.

To ensure that a space manipulator functions well
in performing space missions, conducting simulation
tests on the ground is an indispensable process. The
first concern is how to improve the accuracy of simula-
tion in microgravity environment since the fact that
many issues such as friction, links flexibility and hinge
clearance are all related to gravity cannot be ignored.
To solve these problems, traditional ways include the
drop tower[2], parabolic flight[3], air flotation[4],
buoyancy method[5], suspension method[6], and so
on. Recent researchers have yielded a great many in-
spiring results. The possible application of planar air-
bearing microgravity simulator has been studied for the
orbital capture manoeuvre and experiments results show
that this simulator can be used to verify some control
methods and strategies[7] . A calibration system con-

structed to simulate the microgravity environment can
be able to counterbalance the impact of gravity upon
the space manipulator[8] . The combination between
neutral buoyancy and electromagnetic to balance the
gravity and simulate the microgravity has been proved
to be effective on the tested-body and its simulation
precision is higher than that of neutral buoyancy mech-
anism[9] . Microgravity simulation systems introduced
above are categorized into environment simulation,
which, however, can’ t provide long-time and reliable
microgravity environment. In view of this, the simula-
tion of motor behavior is regarded as a favorable substi-
tute for environment simulation[10] . Therefore, a fuzzy
adaptive robust control was developed for space manip-
ulator with change of gravity from ground to space,
where the fuzzy algorithm is designed to approximate
the uncertainties of system, the approximation error is
compensated by applying a robust control algo-
rithm[11] . However, the determination of fuzzy rules
and membership functions are based on experience.
Given the variation of friction characteristics in differ-
ent gravity environments, an active disturbance rejec-
tion control (ADRC) was put forward, in which parti-
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cle swarm optimization was introduced to optimize pa-
rameters of ADRC[12] . Nevertheless, if the error in AD-
RC at initial time is too large, the control system may
confront the conflict between quickness and overshoot.

In this study, a switching-based backstepping
sliding mode control (SBSMC) is developed for space
manipulator. Switching control has extensive applica-
tion background for complex robotic systems[13-15] and
the theory of multi-Lyapunov functions are often used
in proving the stability of the switching system[16] . In
addition, sliding mode control is widely applied in the
field of robotics for good robustness to system uncer-
tainties while backstepping wins reputation for its char-
acteristic to reduce design complexity of system[17-19] .
In the approach of SBSMC, two subsystems are con-
structed for the space manipulator, two different kinds
of backstepping sliding mode ( BSM) controllers are
then designed for these two subsystems. The switching
mechanism dependent on event is set to trigger the syn-
chronous switch of the target subsystem and its corre-
sponding controller. The strategy proposed in this pa-
per combines the advantages of switching control and
BSM control and shows high efficiency and strong ro-
bustness in trajectory tracking of the space manipulator
against the change of gravity environments. The stabili-
ty of the control scheme can be guaranteed by the aid
of multi-Lyapunov functions.

This paper is organized as follows. Section 1 de-
scribes mathematical models for the space manipulator,
and Section 2 offers the architecture of the proposed
scheme. The stability of SBSMC for the space manipu-
lator is proved in Section 3. Section 4 demonstrates the
experiment results and Section 5 draws a conclusion.

1　 System description

The following are assumptions made on the space
manipulator system[11](as shown in Fig. 1).

Fig. 1　 free-floating space manipulator with n-DOF

Assumption 1 The system is a rigid body sys-
tem.

Assumption 2 The system is composed of one
base and n links. The pose of the base isn’ t active-
controlled. Each joint of the link has one rotational de-
gree of freedom (DOF) and is active-controlled.

1. 1　 Ground subsystem
During the tests on the ground, gravity has great

influence on the behaviors of space manipulator and the
Lagrange function is equal to the difference between ki-
netic energy and potential energy. Taking the effect of
friction into consideration, the dynamic equation of the
ground subsystem with fixed base derived from La-
grange equation is presented as

M(q) q̈ + C(q,q̇) q̇ + G(q) + T f = τ (1)
where q∈Rn, q̇, q̈ are the joint position, velocity and
acceleration, respectively; M(q) ∈ Rn×n is the inertia
matrix; C(q,q̇) ∈Rn×n is the matrix composed of cen-
trifugal force and coriolis force; G(q) ∈ Rn is the
gravity matrix; τ ∈ Rn is the driving torque exerted on
the joints; T f ∈ Rn×1 denotes the friction torque vec-
tor[12], in the gravity field, it is described as

T( i)
f = ∑

n

k = i
[G(k)·l(ki)g + F∗(k)

t ·l(ki)t ] (2)

where T( i)
f is the friction torque of the ith rotary joint;

G(k) is the gravity load of the kth joint; l(ki)g is the verti-
cal dimension from the ith rotational axis to the gravity
line of the kth joint’s mass center; F∗(k)

t is the tangen-
tial generalized inertia force of the kth joint and l(ki)t is
the vertical dimension from the ith rotational axis to the
tangential generalized inertia force line of the kth joint’s
mass center.

1. 2　 Space subsystem
During the operation in the space, the motion of

system increases 6-DOF as a result of a free-floating
base. The Lagrange function is equal to the kinetic en-
ergy. Taking account of the influence of friction, the
dynamic equation of the space subsystem derived from
Lagrange equation is expressed as

M(q) q̈ + C(q,q̇) q̇ + T f = τ (3)
where M(q) ∈R(n+6) ×(n+6) is the inertia matrix, C(q,
q̇) ∈ R(n+6) ×(n+6) is the matrix composed of centrifugal
force and coriolis force. Denote the generalized dis-
placement vector as q = [qT

b qT
m] T∈Rn + 6, where qb

∈ R6 represents the pose vector of the base while qm =
[q1 q2 … qn] T ∈ Rn reflects the generalized dis-
placement vector of joints. Take τ = [0T

6×1 τT
n×1] T ∈

R(n + 6) ×1 as the driving torque, where 06×1 signifies the
driving torque of the base and τn×1 means the driving
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torque of joint. T f = [0T
6 × 1 TT

fn × 1] T∈Rn + 6 describes
the friction torque, here, it is expressed by

T( i)
f =∑

n

k = i
F∗(k)

t ·l(ki)t (4)

where T( i)
f is the friction torque of the ith rotary joint;

F∗(k)
t is the tangential generalized inertia force of the

kth joint and l(ki)t is the vertical dimension from the ith
rotational axis to the tangential generalized inertia force
line of the kth joint’s mass center.

The following is one of characteristics of kinetic
equation for the space manipulator[20] .

Property 1 M(q), which is bounded, is a pos-
itive definite symmetric matrix, i. e. ,

λm‖η‖2 ≤ ηTM(q)η ≤ λM‖η‖2,
∀η ∈ Rn+6

where positive constants λm and λM are the minimum
and maximum eigenvalues of M(q), respectively.

2　 Design of SBSMC

Since the space manipulator involves two subsys-
tems, namely, ground subsystem and space subsys-
tem, two kinds of BSM controllers are required for
these two subsystems. Originally, the debugging of
space manipulator is carried out on the ground, thus
the ground subsystem and its corresponding controller
takes effect. As soon as the measuring instrument of
gravity acceleration[21](which is installed in the space-
craft to exercise real-time monitoring of the gravity ac-
celeration) detects that the gravity acceleration ≤10 - 4

g (g refers to acceleration of free fall), the control sys-
tem switches from the ground subsystem to the space
subsystem quickly, at the same time, the ground con-
troller is replaced by the space one.

An adaptive law is adopted to estimate the disturb-
ance ωi of ith ( i = 1,2) subsystem, and

ω1 = G(q) + T f (5)
ω2 = ΔM(q) q̈ + ΔC(q,q̇) q̇ + T f (6)

where ΔM(q) and ΔC(q,q̇) are modeling error matri-
ces of the space subsystem, what’ s more, ΔM(q,q̇)
= M(q,q̇) - M0(q,q̇) and ΔC(q,q̇) = C(q,q̇) -
C0(q,q̇), in which M0(q) and C0(q,q̇) represent
nominal values of the dynamic model for space subsys-
tem.

Therefore, Eqs(1) and (3) can be written as
Mi(q) q̈ + Ci(q, q̇) q̇ = τi - ωi (7)
Assuming that the inverse of q exists and from

Property 1, Eq. (8) can be obtained.
q̈ = Mi(q) -1[τi - ωi - Ci(q,q̇) q̇] (8)
For the space manipulator subsystems described in

Eq. (7), the main steps of BSM controllers are presen-

ted as follows.
Step 1 Define Lyapunov function Vi1

Vi1 = 1
2 εT

1ε1 (9)

where ε1 is the position error and is defined by
ε1 = q - qd (10)

where qd is the desired joint position, and
ε̇1 = q̇ - q̇d (11)
ε̈1 = q̈ - q̈d (12)
The virtual control α1 is taken as
α1 = cε1 (13)

where c∈Rn×n is a positive definite symmetric constant
matrix.

Construct the following equation
ε2 = ε̇1 + α1 = q̇ - q̇d + cε1 (14)
Using Eqs(13) and (14), the derivative of Vi1

becomes
V̇i1 = εT

1 ε̇1 = εT
1ε2 - εT

1 cε1 (15)
It can be derived from Eq. (15) that V̇i1 ≤ 0 so

long as ε2 = 0.
Step 2 Another Lyapunov function Vi2 is defined

as

Vi2 = Vi1 + 1
2 sTs (16)

where s is the sliding variable, which is set as
s = λ1ε1 + ε2 (17)

where λ1 ∈ Rn×n is a positive definite symmetric con-
stant matrix.

The derivative of Eq. (14) holds the following
equation

ε̇2 = ε̈1 + α̇1 = q̈ - q̈d + cε̇1 (18)
Based on Eqs(14), (15) and (18), the deriva-

tive of Vi2 is given by
V̇i2 = V̇i1 + sT ṡ

= εT
1ε2 - εT

1 cε1 + sT[ q̈ - q̈d + λ1(ε2 - cε1) + cε̇1]
(19)

Substituting Eq. (8) into Eq. (19), yields
V̇i2 = V̇i1 + sT ṡ

= εT
1ε2 - εT

1 cε1 + sT[Mi(q) -1(τi - 􀭺ωi

　 - Ci(q,q̇) q̇) - q̈d + λ1(ε2 - cε1) + cε̇1]
(20)

Step 3 For each space manipulator subsystem,
Lyapunov function is chosen as

Vi = Vi2 + 1
2χ􀭾ω

T
i 􀭾ωi (21)

where χ > 0 and 􀭾ωi represents the estimation error.
Assume that the estimated value of ωi is ω̂i and the dis-
turbance is slow time-varying, i. e. , ω̇i = 0, then 􀭾ωi

and its derivative are expressed as
􀭾ωi = ωi - ω̂i (22)

ω
·~

i = - ω
·^

i (23)
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According to Eqs(20), (22) and (23), the de-
rivative of Vi can be obtained as follows.

V̇i = V̇i2 + 1
χ 􀭾ωT

i ω
·~

i

= εT
1ε2 - εT

1 cε1 + sT[λ1(ε2 - cε1)
　 + M -1

i (q)(τi - Ci(q,q̇) q̇ - ωi) - q̈d

　 + cε̇1] - 1
χ 􀭾ωT

i ω̇i - sTM -1
i (q)􀭾ωi (24)

In virtue of sTM - 1
i (q) 􀭾ωi = ( sTM - 1

i ( q) 􀭾ωi) T =
􀭾ωT

i (M - 1
i (q)) Ts, Eq. (24) will be transformed into

V̇i = V̇i2 + 1
χ 􀭾ωT

i ω
·~

i

= εT
1ε2 - εT

1 cε1 + sT[λ1(ε2 - cε)
　 + M -1

i (q)(τi - Ci(q,q̇) q̇ - ω̂i)

　 - q̈d + cε̇1] - 1
χ 􀭾ωT

i (ω
·^

i + χ(M -1
i (q)) Ts)

(25)
The adaptive law of disturbance is depicted by

ω
·^

i = - χ(M - 1
i (q)) Ts (26)

Hence, Eq. (25) can be described as

V̇i = V̇i2 + 1
χ 􀭾ωT

i ω
·~

i

= εT
1ε2 - εT

1 cε1 + sT[λ1(ε2 - cε1)
　 +M-1

i (q)(τi - Ci(q,q̇) q̇ - ω̂i) - q̈d + cε̇1]
(27)

The following is the control law formulated for
each subsystem:

τi = τieq + τis (28)
where, τieq is the equivalent control law while τis stands
for the sliding mode control rule, they are computed by

τieq = Mi(q)[ - λ1(ε2 - cε1) + q̈d - cε̇1 - hs]
+ Ci(q,q̇) q̇ + ω̂i (29)

τis = - ρMi(q)htanh(s) (30)
where, ρ is a positive constant, h ∈ Rn×n is a positive
definite diagonal coefficient matrix and tanh(·) is a
hyperbolic tangent function, which satisfies

tanh( s) = [ - 1,0)　 s < 0
[0,1] s ≥0{ (31)

The control scheme projected in this article for
space manipulator is shown in Fig. 2. Fig. 3 reveals the
structure of BSM controller designed for the space ma-
nipulator subsystem.

Fig. 2　 Architecture diagram of SBSMC for space manipulator

Fig. 3　 Architecture diagram of BSM controller for space manipulator subsystem

3　 Stability analysis
According to the theory of multi-Lyapunov func-

tion, the first thing is to make sure the stability of ith
subsystem.

By substituting Eqs(29) and (30) into Eq. (27),

yields
V̇i = εT

1ε2 - ε1cε1 - sThs - ρsThtanh(s)

= εT
1ε2 - ε1cε1 - sThs -∑

n

j = 1
∑

n

i = 1
ρhijsi tanh( si)

(32)
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Let

Φ =
c + λT

1hλ1 hλ1 - 1
2 I

hλ1 - 1
2 I h

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(33)

accordingly,

‖Φ‖ = h(c + λ1) - 1
4 (34)

Denote ε = [ε1 ε2] T, one can get

εTΦε = [ε1 ε2]
c + λT

1hλ1 hλ1 - 1
2 I

hλ1 - 1
2 I h

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

ε1

ε2

é

ë
ê
ê

ù

û
ú
ú

= εT
1 cε1 - εT

1ε2 + (λ1ε1 + ε2)Th(λ1ε1 + ε2)
= εT

1 cε1 - εT
1ε2 + sThs (35)

Then, Eq. (32) can be rewritten as

V̇i = - εTΦε - ∑
n

j = 1
∑

n

i = 1
ρhijsi tanh( si) (36)

For the first term on the right side of Eq. (36), it
is clear from Eq. (33) that the positive definiteness of
Φ can be guaranteed by choosing appropriate parame-
ters h, c and λ1 . For the second term, it can be learnt
from Eq. (31) that si tanh( si) ≥ 0. What’ s more, ρ
is a positive constant and h is a positive definite ma-
trix. Then V̇≤0 in Eq. (36) can be guaranteed, that
is, the ith subsystem is stable asymptotically.

The next step is to discuss the stability of the
switching system. Assume that there are ai, bi and ci
(all of them are constants) in each subsystem.

By using Eqs(9), (16) in Eq. (21), it is easy
to know that

ai‖ε‖2 ≤ Vi ≤ bi‖ε‖2 (37)
then

‖ε‖2 ≤
Vi

ai
(38)

Based on Eq. (36), the following inequality can
be derived

V̇i ≤- ci‖ε‖2 (39)
According to Eq. (38) and Eq. (39), the follow-

ing inequality holds

V̇i ≤-
ci
ai
Vi (40)

that is

V̇i ≤- μiVi, μi =
ci
ai

(41)

Let σ( t) = i,∀t∈[ t0, t0 + τ], where σ( t) re-
marks the switching signal and τ is a positive constant,
then

Vi(x( t0 + τ)) ≤ e -μiτVi(x( t0)) (42)
It is assumed that (x( t0), σ( t0)) = (x0,1) is

the initial state of system, t1 and t2 denote the switc-

hing time, σ( t +1 ) = 2,σ( t +2 ) = 1, t1 - t0 ≥ τ, t2 -
t1 ≥ τ.

According to Eqs(37), (42) and the above as-
sumption, the following inequality can be obtained:

V2( t1) ≤
b2

a1
V1( t1) ≤

b2

a1
e -μ1τV1( t0) (43)

Further

V1( t2) ≤
b1

a2
V2( t2) ≤

b1

a2
e -μ2τV2( t1)

≤
b1b2

a1a2
e -(μ1+μ2)τV1( t0) (44)

It can be deduced from Eq. (44) that V1( t2) ≤
V1( t0) so long as τ is large enough. On the basis of
stability theory of multi-Lyapunov functions, the non-
linear switching scheme applied in this paper is stable
globally and asymptotically.

4　 Simulations

For the purpose of checking the capabilities of SB-
SMC for space manipulator under gravity-varying condi-
tions, a set of simulations are conducted with Matlab.
For more intuitive comparison, simulation results of PD
control for space manipulator are also exhibited. The
parameters of space manipulator are shown in Table 1.
The parameters of PD controller are set to be

Kp = diag{250, 250}, Kv = diag{25, 25}
(45)

and the desired trajectory for space manipulator is giv-
en as

xd = 0. 28cos πt
5 + 0. 85

yd = 0. 28sin πt
5

ì

î

í

ïï

ïï
(46)

Table 1　 Parameters of 2-DOF space manipulator
Member ai / m bi / m mi / kg Ii / kg·m2

Base 0. 5 40 6. 667
Link1 0. 5 0. 5 4 0. 333
Link2 0. 5 0. 5 3 0. 250

4. 1　 PD control for space manipulator
Fig. 4 and Fig. 5 show the tracking performance of

the space manipulator with gravity-compensated PD
controller in both cases. The PD controller is formed as

τ = Kpe + Kv ė + Τf + G (47)
Based on Fig. 4, it is obvious that by employing

PD controller with gravity compensation, the space ma-
nipulator performs a good behavior of trajectory track-
ing both in end-effector and two joints. However, this
kind of PD controller is not appropriate for the manipu-
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lator in the space, as it is shown in Fig. 5, which re-
flects the limitation of using the same PD controller in

the microgravity environment.

(a) Trajectory tracking of end-effector (b) Trajectory tracking of two joints
Fig. 4　 Simulation results in gravity environment

(a) Trajectory tracking of end-effector (b) Trajectory tracking of two joints

Fig. 5　 Simulation results in microgravity environment

　 　 Fig. 6 and Fig. 7 depict the results of trajectory
tracking for the space manipulator by applying the PD
controller without gravity compensation under two con-

ditions. The PD controller is described as
τ = Kpe + Kv ė + Τf (48)

(a) Trajectory tracking of end-effector (b) Trajectory tracking of two joints

Fig. 6　 Simulation results in gravity environment
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(a) Trajectory tracking of end-effector (b) Trajectory tracking of two joints

Fig. 7　 Simulation results in microgravity environment

　 　 As it can be noticed in Fig. 7 that PD controller
without gravity compensation is perfectly adequate for
the trajectory tracking of space manipulator in the
space. Nevertheless, the results provided in Fig. 6 in-
dicate that this controller cannot meet the control re-
quirements for space manipulator on the ground.

4. 2　 SBSMC for space manipulator
At the beginning of this simulation, the ground

subsystem and its BSM controller are activated. As-
suming that the measuring system of gravitational accel-
eration detects the acceleration ≤10 - 4 g at 10, then
the control system switches to the space subsystem au-
tomatically, meanwhile, the space controller substi-
tutes for the ground one. The simulation results are
presented in Fig. 8.

As it can be noted in Fig. 8(a) and Fig. 8(b),
the SBSMC approach guarantees the continuity of traj-
ectory following in end-effector and two joints of the
space manipulator despite changes in the control envi-
ronments, which verifies that SBSMC is more effective
and more robust than PD control in subsection 4. 1 for

space manipulator confronted with gravity variation. It
can be noticed that the joint angles vary largely at 10 in
Fig. 8(b), this is because, when the system is in the
free-floating state, the movement of the entire system
increases 6-DOF, which makes the posture of the joint
angles of the space manipulator different from that on
the ground. The torques exerted on two joints are also
presented in Fig. 8(c) to show the stability and conti-
nuity of controlling on the space manipulator in two
phases. Furthermore, it can be observed from the
curves of torques that the disturbance resulting from the
switching between two subsystems disappears quickly
as a result of the switch of their corresponding control-
lers. The reason why the torques vary largely at 10 is
that there is no gravity term in the control law for the
manipulator system in the space compared with the sit-
uation that the space manipulator is on the ground.
Fig. 8(d) shows that in both periods, the tracking er-
ror maintains close to zero and the switching has no
considerable effects on the tracking error of the space
manipulator, except from transient vibration occuring at
10.

(a) Trajectory tracking of end-effector
(b) Trajectory tracking of two joints
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(c) Control torque of two joints (d) Tracking error of two joints

Fig. 8　 Simulation results of SBSMC

5　 Conclusion

The main contribution of this paper is that a SB-
SMC methodology is developed for space manipulator to
handle the trajectory tracking issue derived from the
transformation of gravity environments. This research
combines the merits of switching control, backstepping
control and sliding mode control. Different kinds of
BSM controllers are designed for two subsystems while
switching mechanism is formulated to accomplish the
switching between two subsystems as well as their cor-
responding controllers. Compared with the control
strategy that the same PD controller is applied to the
space manipulator at two stages, the control strategy
described in this paper provides great flexibility for the
space manipulator under varying gravity conditions and
achieves better tracking performance. It is worth con-
sidering, however, that the behaviors of space manipu-
lator are constrained by many factors, such as links
flexibility and hinge clearance, which will be the direc-
tions of future work.
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