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Abstract
An optimized commutation method based on backpropagation (BP) neural network is proposed

to resolve the low stability and high-power consumption caused by inaccurate commutation point pre-
diction in conventional commutation strategy during acceleration and deceleration. This article also
builds a complete brushless DC motor drive system based on the GD32F103 micro control unit
(MCU), with an Artix-7 XC7A35T field programmable gate array (FPGA) to meet the performance
requirements of neural network calculation for real-time motor commutation control. Experimental re-
sults show that the proposed optimization strategy can effectively improve the system stability during
system acceleration and deceleration, and reduce the current spikes generated during speed chan-
ges. The system power consumption is reduced by about 11. 7% on average.
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0　 Introduction

Sensorless brushless direct current motor (BLDC
motor) has a simple structure, small size, light weight
due to sensor free compared with normal BLDC motor,
thus is widely used among household appliances and
aeromodelling where volume and weight are strictly lim-
ited[1] . Current commutation strategies for sensorless
BLDC include the zero-crossing detection method based
on back electromotive force (back-EMF) [2], triple fre-
quency harmonic method based on back-EMF[3-4],
fuzzy control method[5-8], etc. With the development of
neural network, motor commutation strategies based on
neural network[9-12] have also been proposed. Among
these methods, the zero-crossing detection method
based on back-EMF has the most extensive application
due to its simplicity and usability.

In the conventional back-EMF based zero-crossing
detection method, as the result of the algorithm, there
will be a deviation between the predicted commutation
point and the ideal commutation point[13-15] when the
motor accelerates or decelerates, resulting in jittering
and increasing in motor power consumption. However,
most of the conventional optimization strategies only

compensate for the commutation error generated when
the motor is at a stable speed, and there is no targeted
research on the commutation error generated when the
motor is accelerating or decelerating. Also, the con-
ventional neural network prediction is generally per-
formed online through a host personal computer (PC)
or digital signal processing (DSP) module, which will
be limited by the transmission time of the signal and
the performance of the DSP, and, therefore, limits the
available speed range of the motor. When the motor
speed is too fast, the commutation point can not be cal-
culated in time, causing the motor failing in commuta-
tion and operating abnormally.

To solve the above problem, this paper proposes a
neural network based back-EMF optimization algorithm
and quantifies the influence of motor acceleration or
deceleration on the commutation point by introducing
motor acceleration into the network. At the same time,
this article builds a complete BLDC motor drive system
based on the GD32F103 micro control unit (MCU),
and uses Xilinx’ s XC7A35T field programmable gate
array (FPGA) to implement the neural network hard-
ware acceleration module. The proposed network per-
formance is tested and verified. The experimental re-
sults show that the proposed commutation strategy can

　 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021 | pp. 448-453

①

②

Supported by the National Key Research and Development Program (No. 2017YFB0406204, 2016YFC0105604), Beijing Science and Technol-
ogy Projects (No. Z181100003818002), Science and Technology Service Network Initiative (No. FJ-STS-QYZX-099, KFJ-STS-ZDTP-069) .
To whom correspondence should be addressed. E-mail: zhangxu@ semi. ac. cn
Received on Nov. 24, 2020



improve the system stability effectively, and reduce the
system power consumption by 11. 7% .

1　 Proposed method

1.1　 Conventional BLDC motor commutation strategy
When motor is working, the change of back-EMF

is calculated by electromagnetic induction theory and
shown as Fig. 1, due to the armature winding cutting
the magnetic line in the stator magnetic field. When
the motor rotates in a constant speed, the time commu-
tation occurs after detecting the zero-crossing event
(hereinafter called delay-time) should equal to the
time from the last commutation point to the zero-cross-
ing event ( hereinafter called wait-time) under ideal
conditions, thus the sensorless commutation can be re-
alized by measuring the wait-time and then estimating
the delay-time with it.

Fig. 1　 Relationship between back-EMF and working phase

However, when the motor speed changes, the
fluctuation of the motor will cause a large gap between
wait-time and delay-time, introducing commutation er-
rors as shown in Fig. 2[9] . The generated commutation
error will result in fluctuations, low system stability
and high power consumption. Also, the current spikes
generated during commutation may also be dangerous to

Fig. 2　 Back-EMF waveform when BLDC motor accelerates

the control system. In worst-case scenario, serious
commutation errors may even cause operational errors
such as stalling and reversing, which greatly affects the
normal operation of the motor.

1. 2　 Proposed method
To achieve an accurate prediction of the commuta-

tion point when the motor speed changes, this paper
proposes an optimization strategy based on the neural
network on the basis of the conventional back-EMF
commutation method. The input of the network in-
cludes the current acceleration of the motor to make an
accurate prediction on the commutation point when the
motor speed changes. The structure of the network is
shown in Fig. 3, in which the input is the wait-time,
the average acceleration of the motor during the wait-
time, and the output is the delay-time. When determi-
ning the number of hidden layers and the number of
nodes, in consideration of a large network may lead to
a large calculation delay, which will limit the maxi-
mum motor speed (that is, the network calculation de-
lay cannot exceed the delay time, otherwise the optimal
commutation point will be missed), the final network
structure includes two hidden layers, each with 5 nodes
(shown in Fig. 3). This article implements network
training through the backpropagation (BP) method.

Fig. 3　 Structure of proposed BP neural network

2　 Implementation and experimental results

2. 1　 Hardware test system
The diagram of the hardware test system is shown

in Fig. 4. The motor used in the experiment is the
X2212 brushless DC motor of SUNNYSKY, which is
mainly used in rotorcraft, and its parameters are shown
in Table 1. Since the speed of the rotorcraft often
changes rapidly and drastically when working, it is
suitable to verify the proposed algorithm in this paper.
This article also builds a BLDC motor drive control sys-
tem based on the GD32F103K8U6 MCU ( GigaDe-
vice), which realizes the drive of the motor and serves
as a data transmission platform between FPGA and PC.
Since the algorithm is optimized on the basis of the
conventional back-EMF method, the MCU needs to out-
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put a fixed sequence to make the motor reach a certain
initial speed when starting, and use the neural network
to predict the commutation point after that. The experi-
mental system is shown in Fig. 5.

Fig. 4　 Brushless DC motor hardware test system

Table 1　 Parameters of the motor used in the experiment
Parameter Value

KV KV980
Pole number 12N14P

Phase resistance / mΩ 133
Size / mm φ27. 5 × 32. 5

Shaft diameter / mm 3. 175
Weight / g 58. 5

Rated voltage / S 2 - 4
No-load current / A / 10 V 0. 3
Max continuous power / W 300

Max continuous current / A / 30 s 15

Fig. 5　 Neural network prediction experiment platform

In the experiment, the incremental encoder is used
(shown in Fig. 4) to generate the ideal commutation
signal as the training data of the network during the
pre-experiment, and FPGA is used to decode output
signal and transmit it to the host PC through the MCU,
where the data is preprocessed and network training is
completed. The encoder uses the incremental encoder
E6B2-CWZ6C from Omron, with a resolution of 2500P/ R.
The training data acquisition platform during actual tes-
ting is shown in Fig. 6.

Fig. 6　 Neural network training data acquisition platform

When training the network, wait-time t1 and de-
lay-time t2 can be acquired directly by receiving data,
but the average acceleration needs to be calculated sep-
arately. The simplified diagram of motor operation
process is shown in Fig. 7.

Fig. 7　 Simplified diagram of motor operation process in training

Here it can be assumed that the acceleration dur-
ing t1 and t2 can be seen as approximately constant.
There are two reasons for this assumption. On the one
hand, t1 and t2 are very short for multi pole pair mo-
tors. For BLDC motor, the number of commutations
per minute should be equal to the speed per minute
multiplied by the number of motor pole pairs and then
multiplied by the number of commutation phases per
pair. Taking the motor used in this paper as instance,
when motor speed is 7000 rpm, the interval between
each phase is about 204 μs. On the other hand, it can
be seen from Fig. 1 that at the beginning of t1(the pre-
vious commutation point) and at the end of t2(the later
commutation point), the back-EMF force on motor is
only affected by the motor speed. As assumed above,
the motor speed is approximately constant in these pha-
ses, thus the two commutation points have the same
back-EMF force. Additionally, the back-EMF force at
the commutation point is also the same, so in t1 and t2,
the work of back-EMF on the motor is the same. Ac-
cording to the definition of work and acceleration for-
mula in physics, the assumption that the average accel-
eration of t1 and t2 are the same can be obtained.

Based on the above conditions, a set of formulas
can be derived (Eq. (1)) and the acceleration could
be calculated (shown in Eq. (2) after simplification).

v0 t1 + 1
2 a1 t21 = s
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v1 t2 + 1
2 a2 t22 = s (1)

v1 = v0 + a1 t1
a1 t1 = a2 t2

a1 = s ×
t1 - t2
t21 t2

(2)

2. 2　 FPGA-based neural network hardware accel-
erator design

Because the performance as well as the device re-
sources of the MCU is not enough to realize the real-
time calculation of the neural network, and in order to
shorten the calculation delay to increase the available
speed range of the system, FPGA is used to realize the
hardware acceleration system of the neural network to
meet the time requirements of the system.

The flow chart of the acceleration system is shown
in Fig. 8, which is composed of 4 sub-modules, inclu-
ding universal asynchronous receiver / transmitter (UART)
module, pre-treatment module, neural network calcu-
lation module, and output module. To minimize the
system transmission delay, the UART transmission rate
in the system is set to 3 375 000 baud, so the 32-bit in-
put information can be transmitted in 20 μs. The fixed-
point design is adopted in the hardware accelerator,
and the parameter format in the network is Q13. 18.

At the same time, because the delay-time is not
known when using the proposed algorithm to predict , the

Fig. 8　 FPGA-based prediction acceleration system

above acceleration calculation method can no longer be
used, thus a new estimation method is proposed by
using the last phase change point and the phase change
point before it. The operation diagram of the motor is
shown in Fig. 9. The calculation formula and the result
are shown in Eq. (3) and Eq. (4).

v0 tl1 + 1
2 al1 t2l1 = s

v1 tl2 + 1
2 al2 t2l2 = s

v1 = v0 + al1 tl1
v2 = v1 + al2 tl2
al1 tl1 = al2 tl2

v2 t1 + 1
2 a1 t21 = s

ì
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(3)

Fig. 9　 Simplified diagram of motor operation process in predicting

　 　 a1 = 2s
t21
(1 - t1 ×

3tl1 - tl2
2tl1 tl2

) (4)

After getting delay-time, subtract it with the cal-
culation and transmission delay provides the time that
still needs to be delayed in the system. Then the sys-
tem delays and outputs the commutation signal to the
MCU to realize the commutation operation of the motor.
The four modules of the FPGA hardware accelerator are
at the same level, and with the sequential activation
ensures that only one module is working, and the other
three modules are in standby state to reduce power con-
sumption of the system.

2. 3　 Experimental result
In experiments, the control method with sensor

( incremental encoder ), the conventional back-EMF
control method, and the proposed commutation method
based on the back-EMF neural network are tested and
compared. Here the conventional back-EMF control
method records wait-time t1 by MCU, and calculates
delay-time t2 correspondingly. In this paper, t2 equals
1 / 3 t1, due to extra delays including calculation,
transmission and other errors caused by non-ideal fac-
tors in practical application. This scale factor is de-
rived from pre-experiment, where motor performance
can be verified when the factor equals 2,1,1 / 2,1 / 3,
1 / 4. The traditional back-EMF control method acts as
the ablation study in the experiment. The proposed al-
gorithm in this paper is based on the back-EMF control
method, through which the measured parameters are
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sent to the network for training, and the control results
are obtained to control the motor.

The online debugging function of the PC software
is used to modify the input throttle of the motor accu-
rately in the test, and the adjustment range is 1150 -
1600 (corresponding to the speed range of 2000 - 7500
rpm). The performance of the motor under acceleration
and deceleration is tested. Under acceleration, the
waveform of the total current and total voltage of the

motor system is shown in Fig. 10. It can be seen that
compared with the conventional back-EMF control
method, the motor runs more smoothly under the sen-
sor-based method and the proposed method, and the
current and voltage fluctuations are minimized when the
speed changes. The stability of the conventional back-
EMF control strategy is poor, with severe fluctuations
and even negative currents which might damage the
drive system.

Fig. 10　 Total current (upper curve) and voltage (lower curve) during acceleration

　 　 In order to quantitatively compare the control per-
formance of each control strategy, this paper also cal-
culates the motor operating power under different con-
trol strategies and the result is shown in Table 2. The
control method with sensor has the smallest commuta-
tion power. The power consumption of conventional
commutation method is the highest due to its low stabil-
ity. The proposed method has a low power consump-
tion, which reduced by 6. 9% compared with the con-
ventional control strategy.

Table 2　 Performance of each commutation strategy
during acceleration

Communication method Power / W
With sensor 25. 3996

Conventional back-EMF 27. 7241
Proposed method 25. 8235

　 　 Similarly, when the motor is decelerating, the
waveform of the total current and total voltage of the
motor is shown in Fig. 11. It can be seen that the con-
ventional commutation method is very unstable when
the motor speed changes drastically, and the motor
current has severe fluctuations. The instantaneous max-
imum reverse current can exceed 10 A, which gener-
ates higher requirements for the safety of the system.

Table 3 shows the motor performance parameters
under each commutation strategy when the motor is de-
celerating. The sensor-based control method and the
control strategy proposed in this paper have low power
consumption, while the conventional commutation
strategy results in a large power consumption due to the
current fluctuation during the commutation process.
The proposed method in this paper can reduce the pow-
er consumption by 11. 7% compared with the conven-
tional back-EMF control method.

Fig. 11　 Total current (upper curve) and voltage (lower curve) during deceleration
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Table 3　 Performance of each commutation strategy
during deceleration

Communication method Power / W
With sensor 9. 2124

Conventional back-EMF 10. 6680
Proposed method 9. 4134

At the same time, with the neural network accel-
eration system built in this article, the maximum sup-
port motor speed can reach 7500 rpm, which improves
the motor application range. By comparing the speed
range of the motor under each control strategy and the
working platform shown in Table 4, it can be seen that
the BLDC motor drive system and neural network hard-
ware acceleration system implemented in this paper
have a wide range of motor speed without online host
PC or floating-point DSP (FDSP) unit.

Table 4　 Realization result comparison

Method
used

Speed
range / rpm

System composition
(motor drive system +
commutation method)

FNN[3] 500 - 16 000 FPGA + TMS320C6701(FDSP)

RBF[10] 2000 -10 000 Motor integration +
TMS320F28335(FDSP)

ANN-MRAC[16] 650 - 2000 TMS320LF2407A(FDSP)
BPNN[17] 500 - 3500 FPGA + ARM
Proposed
method 2000 - 7500 GD32F103K8U6 + FPGA

3　 Conclusions

In this paper, to solve the poor motor stability and
high power consumption in the conventional back-EMF
based on commutation strategy, a neural network based
commutation strategy of the sensorless BLDC motor is
proposed. Trained by the data acquired by incremental
encoder, the proposed method is verified by the motor
drive system built with the FPGA-based neural network
hardware acceleration module.

The experimental results show that the proposed
strategy can effectively improve the system stability. The
current and voltage fluctuations caused by commutation
error are minimized, thus power consumption during ac-
celeration and deceleration is reduced by about 11. 7% .
Meanwhile, the system supports a maximum motor
speed about 7500 rpm, which supports a wide speed
range due to the FPGA acceleration module.
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