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Abstract

Kernel adaptive algorithm is an extension of adaptive algorithm in nonlinear, and widely used in
the field of non-stationary signal processing. But the distribution of classic data sets seems relatively
regular and simple in time series. The distribution of the electroencephalograph ( EEG) signal is
more randomness and non-stationarity, so online prediction of EEG signal can further verify the ro-
bustness and applicability of kernel adaptive algorithms. What’ s more, the purpose of modeling and
analyzing the time series of EEG signals is to discover and extract valuable information, and to reveal
the internal relations of EEG signals. The time series prediction of EEG plays an important role in
EEG time series analysis. In this paper, kernel RLS tracker ( KRLST) is presented to online predict
the EEG signals of motor imagery and compared with other 13 kernel adaptive algorithms. The ex-
perimental results show that KRLST algorithm has the best effect on the brain computer interface

(BCI) dataset.

Key words: brain computer interface ( BCI), kernel adaptive algorithm, online prediction of

electroencephalograph ( EEG)

0 Introduction

Time series online prediction is widely used in a

variety of fields, such as stock trend prediction'” |

al-time traffic flow prediction'?’

[3

re-
, and online monitoring

of medical devices'>’ and so on. A lot of articles have

common datasets, such as

[5]

been published on
[4]

[6

Lorenz' " | chaotic time-series prediction

71

, respiratory
motion'® and traffic flow prediction However the
distribution of the signals on those datasets seems rela-
tively regular and simple in time series.

The electroencephalograph ( EEG ) signals are
randomness and non-stationarity *’ | which can better
test the robustness and applicability of the kernel adap-
tive algorithms on processing time-varying signals and
non-stationarity signals. In addition, the purpose of
modeling and analyzing the time series of EEG sig-
nals'®’ is to discover and extract valuable information

contained in the data, and to reveal the internal rela-

tions of EEG signals. The time series prediction of
EEG plays an important role in EEG time series analy-
sis.

In Ref. [10], the bag-of-wave features were used
to learn EEG synchronization patterns for seizure pre-
diction. In Ref. [11], the machine learning approa-
ches were used for seizure prediction from EEG sig-
nals. In Ref. [12], the classical deep learning meth-
ods such as convolutional neural network (CNN) were
used for seizure prediction from EEG signals. In
Ref. [ 13], the DenseNet was used for epileptic seizure
prediction from EEG signals. In Ref. [14], a novel
method was proposed for seizure prediction from EEG
signals by common spatial pattern ( CSP) and CNN.
Seizure prediction of EEG signals can predict the im-
pending epileptic seizures according to the scalp EEG
signals, so as to improve the quality of life. But the
EEG prediction in these articles is based on classifica-
tion of inter-ictal and pre-ictal state, which is the pre-
diction of disease rather than online prediction of EEG
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signal itself. Online prediction of EEG signal itself in
time series can reconstruct the missing signal, make
the signal smoother and eliminate the abnormal points
of the EEG signal.

The basic idea of the online prediction in time se-
ries is to use the current and historical sequence for
mathematical modeling to find the dynamic dependency

. . . . . 15
relation contained in the time series' "’

. In the practi-
cal prediction application, most time series are nonlin-
ear.

On the one hand, the kernel adaptive algo-
rithm! '’

rithm , which can automatically adjust the parameters of

inherits the advantages of the adaptive algo-

the digital filter according to the input signal''’’. On
the other hand, it also extends the ability of the adap-
tive algorithm to solve the nonlinear and non-stationari-
ty signals.

In this paper, the kernel RLS tracker ( KRLST)
adaptive algorithm is presented to online predict the
EEG signal, and compared with the other 13 kernel
adaptive algorithms on the brain computer interface
(BCI) dataset about motor imagery. It is found that
the KRLST algorithm has the best online prediction
performance on BCI dataset, that is, the root mean
square error ( RMSE) of the KRLST algorithm on the
all 6 electrodes is the minimum.

1 Online prediction of EEG based on ker-
nel adaptive algorithm

The EEG online prediction in this paper is based
on EEG signals at old time points to online predict
EEG signals at new time points by using kernel adap-
tive algorithm. The framework of the algorithm is
shown in Fig.1. According to the different ways of
minimizing objective function, kernel adaptive algo-
rithms can be roughly divided into two categories, i. e.

Start

| Input EEG |

|
)

| Input sequence at time ¢ |

l Update model
| Online prediction of EEG |

End of prediction

Fig.1 The framework of online prediction of EEG

the improved least mean squares ( LMS) and recursive
least squares ( RLS) algorithms.

Naive online regularized risk minimization algo-
rithm (NORMA) is a version of kernel-based LMS al-
gorithm which includes regularization'"® . Leaky kernel
affine projection algorithm ( LKAPA) adds expansion
coefficient in each iteration to avoid cost function posed
in the conventional empirical risk minimization
(ERM) ). As the KAPA-3 has a scaling factor, the
far past data is scaled down exponentially.

Kernel affine projection ( KAP) algorithm propo-
ses a new model simplification standard, which intro-
duces the coherence criterion into sparse dictiona-
ry . Kernel-based normalized LMS algorithm ( KN-
LMS) uses a new reduction criterion to replace the

[20]
sparse process

. The increase of the variables is con-
trolled by several parameters, which is a basic quanti-
tative standard of the dictionary in sparse approximation
problem. In the time series prediction problem, KN-
LMS introduces correlation criterion to a new kernel re-
flection projection algorithm. Kernel affine projection
sub-gradient method ( KAPSM) generalizes the kernel-
based normalized LMS algorithm ( KNLMS) and affine

Y. Tt has strong conver-

projection ( AP) algorithm"?
gence under mild conditions. Quantized kernel least
mean square ( QKLMS) uses quantization instead of
sparse method to curb the radial growth of adaptive fil-

tering'”'. The input space is quantized and com-
pressed by updating the nearest center coefficient and

using redundant data. Random Fourier feature kernel

LMS ( RFF-KLMS) uses inner products in finite di-
mensions to approximate the kernel function'®. Tt
solves the problem that the computation complexity in-
creases linearly with time. The computational complex-
ity is reduced while maintaining performance.
Multi-kernel normalized LMS algorithm with co-
herence sparsification ( MKNLMS-CS) is an effective
adaptive algorithm for nonlinear systems with multi-ker-
nel /.

splitting method and introduces the L1 form penalty

It adopts adaptive proximal forward-backward

item. Thus the sparsity of the block adaptive algorithm
is improved and effective for non-stationary data. Fixed
budget quantized KLMS ( QKLMS-FB) is a fixed mem-
ory budget QKLMS algorithm and uses significance

') The least significant center in

measure to prune
the dictionary which is the least influence on the whole
system is discarded. Probabilistic LMS ( PROBLMS)
introduces a probability method to improve LMS algo-
rithm which provides a adaptable step-size LMS algo-

rithm based on the different estimation values'®'. 1

n
addition , the algorithm also maintains the complexity of

standard LMS approximately.
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Sliding window kernel RLS ( SWKRLS) only se-
lects M samples to model and keeps the latest M samples
at each iteration'”’. Extended kernel RLS ( E-KRLS)
only needs to do inner product operation for input vec-
tors for reproducing kernel Hilbert spaces (RKHS)'*/.
The method is effective in nonlinear observation and
state models. Fixed budget KRLS ( FB-KRLS) is fixed
#! The algorithm

uses a combination strategy that supports merging and

memory budget KRLS algorithm

pruning, which can learn nonlinear mapping recur-
sively. Compared with sliding windows, the algorithm
is not pruning the oldest data points, but pruning the
It also add the label,

most unimportance data points.
with time tracking ability.

2 Online prediction of EEG based on
KRLST algorithm

The distribution of the EEG signal is more com-
plex, non-stationary, randomness and the EEG signal
may contain noise disturbance. KRLST is a kernel RLS
algorithm that can track nonlinear time-varying data,
which derived the KRLS from Bayesian'*'. KRLST in-
cludes a forgetting factor A and a budget dependent dic-
tionary size D, to enhance the ability of tracking com-
plex EEG signals. In order to track non-stationary EEG
signals, it provides confidence intervals and add uncer-
tainty module y° per each iteration. The EEG signal
may contain noise disturbance. In order to improve the
stability and generalization ability of the algorithm in
tracking EEG signals, the concept of regularization o
is strictly introduced into KRLST.

Specific process of EEG online prediction based
on KRLST is as follows.

(1) Set the initial parameters of the model, such as
M, 2, @, M, A, and so on.

yik(x,, %))
o, +k(xy, x))

El = k<x1’ xl) -

My =

k(x,, x,)° (1)
0'3[ + k(xl s xl)
1
Ql k<x1 y Xy %)

(2) Choose the back to the prior ( B2P) forget-
ting and the B2P forgetting is as follows.
{Et =A2, + (1 -M)K,_,

[ = ﬁ/“’h]

(3) Input signal sequence and output signal. Gen-

(2)

erating input sequence at time ¢ based on the input EEG
signal x,.
= [EEG(t), EEG(t+1), -+, EEG(1 +7) ]

(3)

where, EEG(t) is electric value of EEG at time ¢, 7 is
delay time. Output label y, and estimated value y, of
EEG at time ¢ are as follows.

Zt—\ EEG(t+T+1A) (4)
EEG(t +7+1) =y,
(4) Online prediction. According to the input
signal x, at time ¢, the input signal is mapped to the fea-
ture space by kernel function, and the prediction value
is calculated through the kernel adaptive algorithm
model.
The uncertainty ¥ is as follows.
{0, = Gk ()
=k -kq,
The noiseless variance 5’?[, predictive mean 7y, ,

. . "2
and predictive variance o, are as follows.

o =y +q 2,4,
5/t = qv[,rut—l (6)

o, =0, +0

(5) Update prediction model. If t < N — 7, that
is to say, the prediction is not finished, the model is
updated according to the deviation between the predic-
ted value and the real value. First, evaluate the sam-
ple sequence, and then update the sample dictionary

and algorithm subject according to the relevant rules.

v

EEG is online prediction EEG signal estimated by
KRLST. Thet + 7 + 1 in parentheses is the index of

—

EEG. (), is the value of Q at iteration i.

means at iteration ¢.

Subseript

The KRLST algorithm update process is shown in
Algorithm 1.

Algorithm 1 The KRLST algorithm update process
Input: The EEG signals «, ;

—_
Output; The online prediction signals FEG
1. Initializew,, =,, Q, as Eq. (1)
2. Add x, as Eq. (2) to dictionary D,
3. Foreacht € [2,3,--] Do

4.  Choose B2P as Eq. (2) ;

5. Input sequence x, as Eq. (3) at time 7;
6. Update g, and uncertainty y> as Eq. (5) ;
7

nr A —
Update oy , y,, 0, as Eq. (6) and EEG as Eq. (4)
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8. Updateu,, =, as Eq. (7);
9. Ify’ < &Then

10. Remove basis ¢ fromu,, 2 ;
11.  Else
12. Update Q, as Eq. (7) ;
13. Add basis «, to dictionary D,
14. If Number of dictionary > M Then
15. Remove basis i frompu,, =,, Q,;
16. Remove basis «x, from dictionary D, ;
17. End if
18.  End if
19. End for
Return E'E'\G

3 Experimental verification

3.1 Evaluation criterion

The RMSE between the predicted signal and the
real signal can reflect the deviation degree of the pre-
dicted signal and the real signal relatively effectively.
It is an important method to evaluate the online predic-
tion performance, and also the comprehensive embodi-
ment of stability and tracking sensitivity. If the algo-
rithm pursues tracking sensitivity unilaterally, the algo-
rithm is easy to over fit, and its stability and generali-
zation performance will be slightly poor. RMSE may be
higher before and lower after, and the overall RMSE is
slightly higher. If the algorithm pursues stability unilat-
erally, the tracking sensitivity may be lost and it will
take a long time to reach a smaller RMSE value. Al-
though the RMSE value will not vibrate obviously, the
overall deviation between the predicted value and the
actual signal will be slightly larger, and the overall
RMSE is also slightly higher. Only when the stability
of the algorithm is relatively good and the tracking sen-
sitivity is fast, the overall RMSE will be relatively low.
The RMSE is defined as

RMSE =J}Vﬁ[’E?G(i) CEEG()]* (8)

where, EEG is the predicted value evaluated by various
kernel adaptive algorithms. EEG is true value of EEG.
N is the number of samples, which is 896 in this pa-
per.

3.2 Dataset description

Adopting the second session of the BCI competi-
tion II Ta data set’™ | and the subjects of the dataset
are healthy. The data is collected in the cerebral cortex
of the subjects. The task of motor imagery is to control
the motion of the computer screen cursor up and down

and record the potential value of the corresponding
electrode in the cerebral cortex. The duration of each
sample is 6 s. In these 6 s, the first 1 s time is rest,
the 1.5 s time in the middle is a reminder of the motor
imagery, and the post 3.5 s time is the information
feedback. Among them, the post 3.5 s is recorded by
256 Hz with 6 electrodes as samples. There are 561
samples, and each sample contains 6 electrode sample
segments and 896 sample points per segment.

Fig. 2 contains 4 visual sub figures of each elec-
trode which is randomly extracted in 561 samples. The
subtitle is composed of electrode number and sample
number. Fig.3 is the visualization of some common on-
line prediction datasets, such as Lorenz attractor,
Mackey-Glass chaotic time series, respiratory motion
and Santa Fe laser time series. It can be seen from the
figure that the distribution of 4 commonly used datasets
contains some regularity and seems relatively simple on
the time series. But the randomness of the data distri-
bution is strong in the time series between inside the
single electrode of single sample and the different elec-
trodes of different samples in BCI dataset. It can better
test the ability of the kernel adaptive algorithm on pro-
cessing time varying signals and unstable signals.

Because of the difference of brain function, gray
matter, white matter and neurotransmitter, the EEG
signals at different electrodes will be significantly dif-
ferent, so the prediction results of EEG signals at dif-
ferent electrodes are compared respectively. The com-
petition dataset used in this paper provides a total of six
electrode signals, the results of six electrodes are com-
pared. In order to eliminate the influence of individual
differences on the results of the algorithm, the RMSE
of all 561 samples is chosen in the dataset to do the av-
erage again.

3.3 Contrast experiment

In this paper, 561 samples are randomly disorder-
ed to generate dimensions data, and then 14 kernel
adaptive algorithms are applied to online predict the
EEG signals. The parameters of different algorithms are
not exactly the same, but the variation ranges of some key
parameters with similar function are set as consistent as
possible, such as M, A, and 5 in Table 1. Selecting
the optimal key parameters of each algorithm in the ref-
erence range is similar to the parameter optimization.
Other secondary parameters refer to the default opti-
mized parameters in their citations, which is similar to
the transfer learning module that directly introduces op-
timized models and parameters from other fields in
deep learning. The key parameters of each algorithm in
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this paper have been given in Table 1, and have been
adjusted adaptively within the range of parameters ac-
cording to their algorithms. The settings of other sec-
ondary parameters can be found in the citations, so as
to facilitate other researchers to follow-up experimental
reproduction and algorithm improvement. The average
RMSE value of 561 samples of each electrode is calcu-
lated, and the predictive performance of the adaptive
algorithm on each electrode is obtained.

Fig. 4 is the line diagram of mean RMSE values
by different kernel adaptive algorithms on EEG online
prediction of each electrode. Fig.5 is histogram of mean
RMSE values by different kernel adaptive algorithms on

EEG online prediction of all electrodes. The vertical
coordinate in Fig.4 and Fig.5 is voltage value. In
Table 2, the horizontal direction represents different
kernel adaptive algorithms, and the vertical direction
represents different electrodes in the motor imagery
dataset. The value of Table 2 is the corresponding av-
erage RMSE value. As shown in Table 2, compared
with the other 13 algorithms, the KRLST algorithm has
the lowest average RMSE value of all the samples on
the 6 electrodes of the motor imagery dataset. So the
estimated value of KRLST is the closest to the real
EEG signal, and its performance is best.

Table 1 The parameters setting of different algorithms
Algorithms Parameters setting
SWKRLS ¢c=0.01,A=0.99, M =1[3,5,7,10,20,30,50,100, 200,400 ]
FBKRLS A=0.99, M =1[3,5,7,10,20,30,50,100,200,400 ]
KRLST sn, =0.01, A =0.999, M = [3,5,7,10,20,30,50,100,200,400 ]
EXKRLS B =095, M =1[3,5,7,10,20,30,50,100,200,400 ]
NORMA A = [0.001,0.01,0.1]
PROBLMS A = [0.001,0.01,0.1]
QKLMS _FB n=099,M=1[3,5,7,10,20,30,50,100,200,400 ]
RFFKLMS n=099,x=09,D=1[3,5,7,10,20,30,50,100,200,400 ]
KAP n =099, =09, P=[3,5,7,10,20,30,50,100,200,400 ]
KNLMS n =0.99, u, = [0.1,0.3,0.5,0.7,0.8,0.85,0.9,0.95]
KAPSM M =200, =[0.1,0.3,0.5,0.7,0.8,0.9,2,3,5,10]
QKLMS n =0.999, ¢ = [0.1,0.3,0.5,0.7,0.8,0.9,2,3,5,10]
MKNLMS _ CS n =0.999, rho =0.01, 6 = [0.1,0.3,0.5,0.7,0.8,0.85,0.9,0.95]
LKAPA P =[10,20,25,30,35,40,45,50,55,60 ]
16
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Fig. 4

Line diagram of mean RMSE values by different kernel adaptive algorithms on EEG online prediction of each electrode
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Fig.5 Histogram of mean RMSE values by different kernel adaptive algorithms on EEG online prediction of all electrodes

Table 2 Comparison of mean RMSE values of different kernel adaptive algorithms on EEG online prediction (unit:wV)

Algorithms Al A2 F3 F4 P3 P4
SWKRLS 1. 6058 1.2610 0.6298 1. 0696 0.7527 0.7783
FBKRLS 1.6036 1.2569 0. 6246 1. 0666 0.7482 0.7757
KRLST 1.5897 1.2429 0.6157 1. 0587 0.7396 0.7659
EXKRLS 3.8193 3.4968 1.9819 2.3146 2.3817 2.0037
NORMA 2.9507 2.6714 1.2697 1.7505 1.3686 1.4689

PROBLMS 1.8014 1.5128 0.7070 1.0611 0.7973 0.8313

QKLMS _FB 1.9698 1.6757 0.7883 1.1889 0.8832 0.9363
RFFKIMS 2.7778 2.4799 1.2269 1. 6659 1. 3495 1.4635
KAP 1.9803 1.7183 1.2179 1.4293 1.2731 1.2802
KNLMS 2.8184 2.5031 0.8251 1.3371 0.9520 1.0308
KAPSM 4.0301 3.7246 2.1936 2.5704 2.2815 2.4021
QKLMS 2.1627 1.8911 0. 8683 1.3138 0.9675 1.0527
MKNLMS _ CS 13.7392 11.3692 3.1393 6.8847 4.7397 4.2866
LKAPA 3.4341 2. 8664 1.4639 2.3794 1.6996 1.7374

4 Conclusion

The data distribution in some common online pre-
diction datasets, such as Lorenz, Chaotic time-series,
Respiratory motion, and so on, seems relatively regular
and simpler. However, the data distribution of EEG is
more random, which can better test the ability to
process time-varying signals and unstable signals of the
kernel adaptive algorithm. What’ s more, the time se-
ries prediction of EEG is necessary and important to
discover and extract valuable information, and to reveal
the internal relations of EEG signals. KRLST algorithm
is presented to online predict the EEG, and compared
with the other 13 kinds of kernel adaptive algorithms.

The experimental results show that KRLST algorithm
has the best effect of online prediction on the BCI data-
set, and its average RMSE value is the smallest.

References

[ 1] Thakkar A, Chaudhari K. A comprehensive survey on
portfolio optimization, stock price and trend prediction
using particle swarm optimization[ J]. Archives of Com-
putational Methods in Engineering, 2020, 28.2133-2164

[ 2] Sun P, Aljeri N, Boukerche A. Machine learning-based
models for real-time traffic flow prediction in vehicular
networks[ J|. IEEE Network, 2020, 99:1-8

[ 3] Kurmoo Y, Hook A L, Harvey D, et al. Real time moni-
toring of biofilm formation on coated medical devices for

the reduction and interception of bacterial infections[J ].



364

HIGH TECHNOLOGY LETTERSIVol. 27 No.4|Dec. 2021

[ 4]

[5]

[ 6]

[ 7]

[ 8]

Biomaterials ENCE , 2020, 8(5) :1464-1477

Vadasz P. Analytical prediction of the transition to chaos
in Lorenz system [ J]. Applied Mathematics Letters,
2010, 23(5) :503-507

Tian Z. Echo state network based on improved fruit fly
optimization algorithm for chaotic time series prediction
[J]. Journal of Ambient Intelligence and Humanized
Computing , 2020, doi:10. 1007/512652-020-019204
Yu S, Wang J, Liu J, et al. Rapid prediction of respira-
tory motion based on bidirectional gated recurrent unit
network[ J |. IEEE Access, 2020, 8.49424-49435
Zheng H F, Lin F, Feng X X, et al. A hybrid deep
learning model with attention-based CONV-LSTM net-
works for short-term traffic flow prediction [ J]. IEEE
Transactions on Intelligent Transportation Systems, 2020,
99:1-11

Duan L J, Lian Z Y, Chen J C, et al. Classification of
epilepsy period based on combination feature extraction
methods and spiking swarm intelligent optimization algo-
rithm [ J ]. Concurrency and Computation: Practice and

Experience, 2020, doi:10. 1002/ cpe. 5550

[ 9] Rui Z, Minkun N, Zheng Z, et al. EEG signal processing

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

and its application in education[ J]. Modern Information
Technology, 2019, 3(6) . 45-47 (In Chinese )

Cui S, Duan L J, Qiao Y H, et al. Leaming EEG syn-
chronization patterns for epileptic seizure prediction using
bag-of-wave features[ J]. Journal of Ambient Intelligence
and Humanized Computing, 2018, doi:10.1007/s12652-
018-1000-3

Savadkoohi M, Oladduni T. A machine learning approach
to epileptic seizure prediction using Electroencephalogram
(EEG) signal[ J]. Biocybernetics and Biomedical Engi-
neering , 2020, 40(3) :1328-1341

Usman S M, Khalid S, Aslam M H. Epileptic seizures
prediction using deep learning techniques[ J]. [EEE Ac-
cess, 2020, 8:39998-40007

Jana R, Bhattacharyya S, Das S. Epileptic seizure pre-
diction from EEG signals using DenseNet[ C ] // Proceed-
ings of the 2019 IEEE Symposium Series on Computation-
al Intelligence, Xiamen, China, 2020 604-609

Zhang Y, Guo Y, Yang P, et al. Epilepsy seizure predic-
tion on EEG using common spatial pattern and convolu-
tional neural network [ J]. IEEE Journal of Biomedical
and Health Informatics, 2020, 24(2) 465474

George E P, Gwilym M J, Gregory C R, et al. Time se-
ries analysis; forecasting and control[ J]. Journal of the
Operational Research Society, 2015, 22(2) :199-201

Liu W, Principe J C, Haykin S. Kernel adaptive filte-
ring: a comprehensive introduction[ J]. [EEE Computa-
tional Intelligence Magazine, 2010, 5(3) :52-55
Garcia-Vega S, Zeng X J, Keane J. Stock returns predic-
tion using kernel adaptive filtering within a stock market
interdependence approach[ J]. Expert Systems with Appli-
cations, 2020, 160113668

Kivinen J, Smola A J, Williamson R C, et al. Online
learning with kernels[ J]. IEEE Transactions on Signal
Processing , 2004, 52(8) ; 2165-2176

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Liu W F, Jose C P, Haykin S. Kernel affine projection
algorithms[ J]. EURASIP Journal on Advances in Signal
Processing , 2008, doi:10. 1155/2088/784292

Richard C, Bermudez J C, Honeine P, et al. Online pre-
diction of time series data with kernels[ J]. IEEE Trans-
actions on Signal Processing, 2009, 57(3) . 1058-1067
Slavakis K, Theodoridis S, Yamada I, et al. Online ker-
nel-based classification using adaptive projection algo-
rithms [ J]. IEEE Transactions on Signal Processing,
2008, 56(7) . 2781-2796

Chen B, Zhao S, Zhu P, et al. Quantized kernel least
mean square algorithm[ J]. IEEE Transactions on Neural
Networks , 2012, 23(1) . 22-32

Singh A, Ahuja N, Moulin P, et al. Online learning with
kernels; overcoming the growing sum problem[ C] // Pro-
ceedings of the 2012 IEEE International Workshop on
Machine Learning for Signal Processing,
Spain, 2012 1-6

Yukawa M. Multikernel adaptive filtering [ J]. [EEE
Transactions on Signal Processing, 2012, 60(9) ; 4672-
4682

Zhao S, Chen B, Zhu P, et al. Fixed budget quantized
kernel least-mean-square algorithm [ J]. Signal Process-
ing, 2013, 93(9) . 2759-2770

Fernandezbes J, Elvira V, Van Vaerenbergh S, et al. A
probabilistic least-mean-squares filter[ C] // Proceedings
of the 2015 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Brisbane, Australia,
2015 2199-2203

Van Vaerenbergh S, Via J, Santamana I, et al. A slid-

Santander,

ing-window kernel RLS algorithm and its application to
nonlinear channel identification[ C ] Vi Proceedings of the
2006 IEEE International Conference on Acoustics,
Speech, and Signal Processing,
2006 789-792

Liu W, Park [ M, Wang Y, et al. Extended kernel recur-
sive least squares algorithm[ J]. IEEE Transactions on
Signal Processing, 2009, 57(10) . 3801-3814

Van Vaerenbergh S, Santamaria I, Liu W, et al. Fixed-

Toulouse, France,

budget kernel recursive least-squares [ C] // Proceedings
of the 2010 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Dallas, USA, 2010.
1882-1885

Van Vaerenbergh S, Lazarogredilla M, Santamaria I, et
al. Kernel recursive least-squares tracker for time-varying
regression[ J ]. IEEE Transactions on Neural Networks,
2012, 23(8): 1313-1326

Birbaumer N. Data sets la for the BCI competition 1I
[ EB/OL ]. http://www. bbci. de/competition//ii/#
datasets; BBCI, 2021

Lian Zhaoyang, born in 1989. He is a Ph. D can-

didate in Faculty of Information Technology, Beijing

University of Technology. His research interests include

the design of algorithms for EEG signal processing.



