
　 doi:10. 3772 / j. issn. 1006-6748. 2021. 04. 002

Research on optimization of virtual machine memory
access based on NUMA architecture①

He Mujun (何牧君)②∗, Zheng Linjiang∗, Yang Kai∗∗, Liu Runfeng∗∗, Liu Weining∗

(∗College of Computer Science, Chongqing University, Chongqing 400044, P. R. China)
(∗∗Dawning Information Industry Co. , Ltd. , Beijing 100084, P. R. China)

Abstract
With the rapid development of big data and artificial intelligence (AI), the cloud platform ar-

chitecture system is constantly developing, optimizing, and improving. As such, new applications,
like deep computing and high-performance computing, require enhanced computing power. To meet
this requirement, a non-uniform memory access (NUMA) configuration method is proposed for the
cloud computing system according to the affinity, adaptability, and availability of the NUMA archi-
tecture processor platform. The proposed method is verified based on the test environment of a do-
mestic central processing unit (CPU).

Key words: cloud computing, virtualization, non-uniform memory access (NUMA) virtual
machine, memory access optimization

0　 Introduction
The advent of the artificial intelligence (AI) big

data era has caused the scale of data centers to grow
exponentially. Moreover, deep computing and high-
performance computing have placed more stringent re-
quirements on the performance of computer systems.
Besides the transformation of the Internet Data Center
(IDC) architecture, server architecture and acceler-
ated computing components are also changing. With
the development of this architecture, the virtualization
platforms need to be designed in a way so that it is
compatible with the characteristics of the processor’ s
architecture, instruction set, clock frequency, and
cache. Currently, mainstream processors all adopt a
non-uniform memory access (NUMA) structure[1-7] .

Based on the problems mentioned above, this
work conducted extensive research to identify potential
solutions. The paper is organized as follows. First, in
view of virtualization scenarios, the motivation of virtu-
al machine memory access optimization is introduced,
then the key issues are analyzed. Subsequently, a se-
ries of virtual machine memory access optimization
methods based on NUMA architecture are proposed,
followed by discussion of its design and implementa-
tion[8-12] . Finally, the effect of the proposed optimiza-
tion method is verified and analyzed.

1　 Virtual machine memory access optimi-
zation technology of NUMA

1. 1　 NUMA architecture of modern processor
Since the 1980s, processing speeds have consid-

erably increased. As a result, in the 1980s and 1990s,
supercomputers were designed to provide high-speed
memory access rather than faster processors, enabled
computers to process large datasets at speeds that other
systems could not do. Therefore, to reduce the cache
miss rate, the processor designs a larger cache at that
time. However, the size of the operating system and its
applications also increased rapidly, making the improve-
ment of cache processing much more difficult[13-15] .

Around the same time, NUMA appears as a mem-
ory design structure for multi-core multiprocessors,
where the memory access time depends on the memory
location relative to the processor. In NUMA, a proces-
sor can access its own local memory faster than non-lo-
cal memory (local memory of another processor),
while for non-local memory, accessing the nearest
neighbor is faster than the far end[16-17] .

As shown in Fig. 1, the relationship between NU-
MA nodes of a multiprocessor can be described via geo-
metric relationships, in which the number of nodes in
the system is limited to 2C, and C is the number of
neighbor nodes owned by each other[18] .

　 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021 | pp. 347-356

①

②

Supported by the National Key Research and Development Program of China (No. 2017YFC0212100) and National High-tech R&D Program of
China (No. 2015AA015308).
To whom correspondence should be addressed. E-mail: tbabm. he@ gmail. com
Received on Oct. 20, 2020

Fig. 1　 Geometric diagram of node relationship

　 　 Taking C = 3 as an example, nodes 6, 2, 5, 7,
and 10 are neighbor nodes, and 1, 3, 9, and 11 are
remote nodes. In the current NUMA structure of the
processor, node accesses to the memory overhead fol-
low the order, local node, neighbor node, and remote
node.

The NUMA hardware architecture system is shown
in Fig. 2, which introduces the relationship between
NUMA nodes. Despite the various designs for NUMA by
different manufacturers, the principle stays the same.

In Fig. 2, the NUMA structure solves the foremen-
tioned memory access performance problem caused by
cache miss by providing separate memory for each pro-
cessor. On one hand, this prevents multiple processors

from trying to address the same memory, which may re-
duce the performance. On the other hand, it also en-
sures the maximum design of the access memory band-
width. Fig. 3 presents an example of a NUMA proces-
sor with 8 NUMA nodes in total. Among them, the ac-
cess delay of the same node is the smallest, which is
about 85 ns, followed by neighboring nodes of about
140 ns, and the remote node of about 240 ns as the lar-
gest.

In practical application, using NUMA structure
can improve the memory access performance by more
than double for the application type of data distributed
(usually running on the server) [19] .

Fig. 2　 NUMA hardware architecture

Fig. 3　 Communication delay between nodes of a NUMA processor

843 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021　

1. 2　 Virtual machine memory access optimization
technology

This paper presents design directions to improve
the memory access performance of virtual machine un-
der NUMA architecture. These directions refer to the
limitation of resources in terms of memory and proces-
sor[20-21] .

By binding the memory and processor of a virtual
machine, the cross-node memory access is avoided,
and the performance and stability of memory access are
improved. Furthermore, it provides a one-to-one bind-
ing of processor resources, which prevents the proces-
sor from switching within the node and improves the
processor’s unilateral computing power.

Due to the technical limitations of the above two
levels, the virtual machine access bus communication
by using this design exhibits a more stable, reliable,
and overall better performance than other designs[22-23] .

The research direction for further optimization is
analyzed below. For the binding of memory and proces-
sor resources, the absolute availability of resources
must be guaranteed. Therefore, a one-to-one resource
usage principle is formulated, resulting in low resource
utilization. If resources are bound, sufficient resources
must be reserved and constrained by the principle of
limited total resources, which is inevitable. When
binding memory and processor resources are limited,
the load of the virtual machine is unpredictable. There-
fore, part of the load is high, and part of the load is
low after resource binding, which will lead to the prob-
lem of unbalanced use of memory and the appearance
of processor resources in the physical machine. To
solve unbalanced resource utilization, a dedicated mo-
nitoring service module can be designed to regularly
monitor the load of NUMA nodes with the physical ma-
chine. According to the threshold setting, the resource
warning of computing node is triggered to prompt and
record, and simultaneously, the switching service of
the virtual machine memory and processor is designed
to capture the resource alarm based on the monitoring
service. In order to achieve the automatic balance of
physical machine memory and processor resources in
the computing node, the virtual machine of NUMA
nodes triggers the processor switch and memory copy
replication so as to improve the utilization of resources.

2　 Key issues

In the cloud computing environment, abundant
data intensive business occurs in the data center, such
as artificial intelligence, deep learning, and high-per-
formance computing. In order to improve the perform-

ance of such services, it is necessary to optimize the
memory access bandwidth of the virtual machine where
the service is located. This will face two main prob-
lems.

(1) Managing processor affinity. When the virtu-
al machine runs on the host, it is inevitably affected by
the host operating system. In the case of processor re-
source competition, the virtual machine process will in-
crease the delay, while decreasing the memory access
bandwidth. The direct result is that computing resource
sensitive applications react slowly or will even pretend
to be dead. To adapt to the memory architecture of the
NUMA node, it is necessary to ensure that a process
(virtual machine) on a given central processing unit
(CPU) should run as long as possible on the host with-
out being migrated to other processors.

(2) Adaptability of host and virtual machine
memory access policy. In order to ensure the availabil-
ity of resources, the remaining memory page and newly
allocated memory page may not be on the same NUMA
node during the virtual machine memory access
process, leading to access of the virtual machine cross-
node memory. However, simply assigning the NUMA
node where the virtual machine is located cannot effec-
tively solve this problem. For services in virtual ma-
chines, the access relationship between the newly allo-
cated memory and allocated memory should be adapted
to the host memory policy, otherwise, the service per-
formance will be greatly affected.

3　 Virtual machine memory access optimi-
zation scheme

　 　 Aiming at the main problems currently faced, this
paper designs a set of virtual machine optimization
schemes for multi-processor non-uniform memory ac-
cess architecture hosts, which solves the problem of
cross-node memory access through software. The main
method is to limit the relationship between memory and
the processor, so that the processor can access the
memory and allocate it to the local node. Therefore, a
technological breakthrough must be made from the allo-
cation of memory and processor to solve this problem.
After that, the performance and stability of memory ac-
cess are guaranteed, and one-to-one allocation of virtu-
al machine processors to host processors can be further
performed to improve unilateral computing power, but
the simple allocation is not unprincipled.

The basic idea of this method is as follows.
(1) The processor process binding of NUMA ar-

chitecture is satisfied.
(2) Pre-allocate the virtual machine memory suit-

943　 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021

able for the host computer.

3. 1　 Satisfy the processor binding of NUMA archi-
tecture

　 　 The virtual machine runs on the host computer
and is represented as a process, which is a presenta-
tion of the virtual machine on the physical machine.
The process has its own independent memory space,
and the virtual processor of the virtual machine appears
as a thread of the process.

A virtual machine runs on the physical machine
and is inevitably controlled by the operating system
mechanism. First, when the processors of multiple vir-
tual machines compete for the same physical processor
resource, the acquisition process of time slice of the
virtual machine will be limited by resources, inevitably
causing certain delay. Second, there is a resource
scheduling mechanism in the operating system, which
will switch the virtual machine on the NUMA node with
a higher load to the NUMA node with a lower load.
When migration occurs, the access between processor
and memory will cross NUMA nodes, resulting in an
instantaneous drop in memory access bandwidth. For
computing resource sensitive scenarios, the direct re-
sult is application performance degradation and even
virtual machine crash. Therefore, additional mecha-
nisms must be considered to ensure high computing
performance of virtual machines. Since the virtual ma-
chine is a process, and the virtual processor is a thread
in the process, redesigning the level of the physical
machine operating system can solve the problem of pro-
cessor switching.

In summary, to design a virtualized processor
binding scheme with the purpose of improving the per-
formance and stability of the virtualized system, three
functions must be implemented, i. e. processor infor-
mation collection, NUMA node range binding, and in-
depth NUMA node processor one-to-one binding. The
module calling relationship between them is shown in
Fig. 4.

Fig. 4　 Call relation of processor binding module

The process of processor resource binding can be
described as four steps. The first step is to collect the
underlying hardware information of the processor and
save it to the database for regular update and synchro-
nization. In the second step, the entrance service pro-
vides restful application programming interface (API)
services, and users apply for the virtual machine
through the portal service. The third is the scheduling
service, which selects an appropriate physical machine
to issue creation requests according to the latest NUMA
node information of the physical machine and through
the measurement of load and weight. The fourth step is
the host computer computing service, which is mainly
responsible for the execution of real virtual machine
creation (including binding of processor resources).

When the NUMA node of the physical machine is
selected, the instructions for creating virtual machine
resources and binding will be sent to the physical ma-
chine. The target physical machine is bound to the
node processor of the virtual machine using kernel-
based virtual machine (KVM) virtual processor pin-
ning technology. Using this technology, binding fixed
node resources for the virtual machine processor is real-
ized, where each virtual node is only bound to a physi-
cal node processor range for scheduling, avoiding node
switching of the virtual processor and improving the
memory access performance of the virtual machine. At
the same time, one-to-one binding processor resources
can be selected to avoid context switching caused by
processor switching, reduce performance loss, and fur-
ther increase the stability of computing power. Flow
chart of NUMA node processor binding system is shown
in Fig. 5.

The final goal of the solution is to bind the NUMA
nodes and processor resources of the virtual machine.
For computing sensitive industries, such as big data
and AI, this technology is recommended to improve the
memory access and computing capacity of virtual ma-
chines.

3. 2　 Pre-allocate the virtual machine memory suit-
able for the host computer

　 　 Memory virtualization is the process of converting
virtual memory of a virtual machine into physical mem-
ory of a host, where the virtual machine still uses phys-
ical memory of the host. By adding an extended page
table (EPT) register to the virtual machine, the page
missing exception will be generated when the virtual
machine has access to the page table and the address is
empty. After the virtual layer catches the exception, it
allocates physical addresses and establishes physical
memory and virtual machine memory. During the next

053 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021　

Fig. 5　 Flow chart of NUMA node processor binding system

conversion, the direct query is converted according to
the mapping record.

The processor and memory of a virtual machine
are usually obtained from the same NUMA node. In or-
der to ensure the availability of resources, the operat-
ing system will independently judge and select a virtual
machine process to find alternative memory resources of
other nodes to write data when resource competition oc-
curs. It is inevitable that a certain amount of residual
memory is retained in the old node, resulting in cross
node memory access. Therefore, simply binding virtual
machine nodes cannot effectively solve this problem,
which requires synchronous allocation of node memory.
This chapter mainly describes the memory orientation
and priority allocation scheme of a virtual machine to
avoid cross node memory access completely, or as far
as possible, and improve the memory access perform-
ance and stability of the virtual machine. The memory
allocation principle of a virtual machine is consistent
with the kernel binding. The module call relationship
of memory allocation is shown in Fig. 6.

Fig. 6　 Module call of node memory allocation system

The process of memory resource allocation can be
described in four steps. The first is for the information

collection system to collect the underlying hardware in-
formation of the processor and save it in the database,
which is then updated and synchronized regularly. In
the second, the entrance service provides restful API
services, so that users can apply for the virtual ma-
chine. The third is the scheduling service, where a
suitable physical machine is selected to issue the crea-
tion request according to the latest physical machine
NUMA node and the measurement of load and weight.
The fourth step is the host computing service, which is
mainly responsible for the implementation of real virtual
machine creation (including memory resource alloca-
tion). The memory allocation logic of computing serv-
ices for virtual machines is shown in Fig. 7.

Fig. 7　 Flow chart of node memory allocation system

Based on the mechanism of the virtual machine as
a process itself, the virtual memory allocation can be
achieved by calling the process memory limit function
of the self-control group. The principle of restriction is
that the total memory on the physical node is greater

153　 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021

than or equal to the total memory bound to the node.
The memory of the virtual machine is strictly bound to
the physical nodes corresponding to the virtual machine
node. If a virtual machine restricts it to use only the
memory of a NUMA node, it will not use the memory of
other nodes when its node memory is exhausted and
will start to use swap instead. If the machine is not set
with swap, it will crash directly. Therefore, a compro-
mised memory allocation strategy is adopted and the
memory of nodes in the virtual machine is configured
by using the principle of priority allocation. In single
node memory competition, the memory of the corre-
sponding physical nodes of other nodes in the virtual
machine can be allocated, and there are two restric-
tions on the allocation of memory. The first one strictly
limits the overall memory of the virtual machine that
can only be obtained within the scope of some corre-
sponding physical nodes. The second allows the neces-
sary cross node allocation of the memory of NUMA
nodes in the virtual machine but can only apply for re-
sources within the range of nodes allowed by the overall
memory of the virtual machine. This minimizes the oc-
currence of cross node memory access and ensures the
high availability of resources.

Although super allocation fails using this strategy,
it can ensure the high resource availability of the mem-
ory resources of the node to the virtual machine that al-

locates the memory and avoids memory competition
among the virtual machines. When the physical NUMA
node is short of memory, the memory resources cannot
be obtained in the NUMA node normally nor can be
switched after the allocation of memory resources. In
view of swap and the virtual machine memory priority
allocation strategy, the virtual machine memory will not
starve to death, but will cause system failure of the vir-
tual machine and a temporary decrease in memory ac-
cess performance. However, in reality, this problem
generally does not occur, but rather a few virtual ma-
chines are full of memory resources. There are realisti-
cally no services that consume a lot of resources on the
host, thus meaning the virtual machine’s memory re-
sources will be sufficient.

The ultimate goal of the solution is to allocate or
prioritize the memory resources of virtual machines.
For industries that are sensitive to computing capabili-
ties, such as big data, AI, etc. , this technology is
recommended to improve the memory access capabili-
ties of virtual machines.

4　 Experimental verification

The test environment and tools used in this work
are listed in Table 1.

Table 1　 Test environment and tools

Physical
machine model

Number of
processors

Number of
NUMA node

Memory
/ GB

System
version

Tool for testing
memory access

Memory
access

test item

Tool for testing
computing
performance

Domestic CPU 32 4 128 centos 7. 5 stream copy LMbench

4. 1　 Memory access performance verification
At present, there is no fixed binding between the

memory and processor of normal virtual machines in the
industry. The virtual machine memory and processor
on the computing node are affected by the process
scheduling of the operating system. In the case of vir-
tual machine over-provisioning, it is easy to generate
drift switching of NUMA nodes, causing the memory
and processor of the virtual machine to be different NU-
MA nodes. As a result, the memory access perform-
ance will experience instant jitter and, thus, will be
greatly reduced.

The virtual machine that binds the memory and
processor resources uses the same NUMA node to cal-
culate the memory and processor of the virtual machine
on the NUMA node, which can effectively ensure the
memory access performance of the virtual machine and

prevent cross-NUMA node memory access.
This scheme tests the memory access conditions of

cross-NUMA nodes, bound nodes, and memory. For
applications with frequent service load jitter, this
scheme provides the maximum performance optimiza-
tion of data and tests the scheduling service bound by
the memory and processor, so as to determine the ef-
fectiveness of resource protection of the scheduling
service.

The binding method of the virtual machine NUMA
node corresponding to the physical machine NUMA
node is called node range binding, which corresponds
to other two types of binding. The binding method of
the virtual machine NUMA node memory corresponding
to the physical machine NUMA node memory is called
memory strict binding. Moreover, the priority binding
mode of the virtual machine NUMA node memory cor-

253 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021　

responding to the physical machine NUMA node memo-
ry is called memory priority binding. These bindings
are described in more detail as follows.
4. 1. 1　 NUMA node range binding and memory strict

binding
On the physical machine, the performance of mem-

ory bandwidth access rate of the virtual machine is im-
proved by combining virtual machine node range bind-
ing and memory strict binding. The purpose is to test
and attain the maximum memory bandwidth access
rate, compare it with the maximum memory bandwidth
of a non-memory and fixed processor bound virtual ma-
chine, then determine the performance optimization
baseline data of memory bandwidth access rate. In this
test, four test scenarios are set. In brief, Scenario 1
occurs after NUMA optimization, and Scenarios 2 - 4
simulate the real scenarios that customers may encoun-
ter for comparative testing.

Scenario 1 The memory accessed by the vCPU
of virtual machine 1 is bound to nodeset = 2, by divid-
ing NUMA nodes.

Scenario 2 The memory accessed by the vCPU
of virtual machine 2 drifts from nodeset = 2 to the mem-
ory corresponding to nodeset = 1.

Scenario 3 The memory accessed by the vCPU
of virtual machine 2 drifts from nodeset = 2 to the mem-
ory corresponding to nodeset = 3.

Scenario 4 The memory accessed by the vCPU
of virtual machine 2 drifts from nodeset = 2 to the mem-
ory corresponding to nodeset = 4.

The strategy of virtual machine node range binding
and memory strict binding ensures that the memory ac-
cess location of a business virtual machine is local
memory and that the occurrence of cross NUMA node
memory access is eliminated to improve the memory ac-
cess performance of the virtual machine. The key test
indicators are affected by the following basic princi-
ples.

(1) The virtual machine that binds the processor
and memory resources on the same NUMA node has no
cross-NUMA node memory access, so the performance
should be higher. In this case, it is called local node
memory access.

(2) The virtual machine that binds the processor
and memory resources to the neighboring NUMA node
does not have memory access across NUMA nodes, so
the performance should be normal. In this case, memo-
ry access is performed by neighbor node memory access.

(3) The virtual machine that binds the processor
and memory resources to another neighboring NUMA
node does not have memory access across NUMA
nodes, so the performance should be normal, which is

also called neighbor node memory access.
(4) The virtual machine that binds the processor

and memory resources to the remote NUMA node does
not have memory access across NUMA nodes, and the
performance should be poor. In this case, it is called
remote node accesses memory.

According to the test scenario, the results are de-
scribed as follows. Memory access promotion rate can
be calculated by Eq. (1).

RatePromotion =
Speedbinding - Speednon-binding

Speednon-binding
(1)

where, RatePromotion is memory access promotion rate,
Speedbinding is node range binding memory access rate,
Speednon-binding is non-node fixed binding memory access
rate.

Fig. 8 shows the comparison between Scenario 1
and Scenario 2. After testing, the local node memory
access performance of Scenario 1 is better than that of
the neighbor node access in Scenario 2, in terms of
Copy, Scale, Add, and Triad. In the present study,
the memory access bandwidth of Copy increased the
most by nearly 40% , followed by Add and Triad with
an increase of about 30% , then Scale with the least in-
crease of nearly 20% .

Fig. 8　 Memory access comparison between Scenario 1
and Scenario 2

Fig. 9 shows the comparison between Scenario 1 and
Scenario 3. The test tool can be used to demonstrate
that the local node access performance of Scenario 1 is

Fig. 9　 Memory access comparison between Scenario 1
and Scenario 3

353　 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021

better than that of the neighbor nodes in Scenario 3,
such as Copy, Scale, Add and Triad. The improvement
amplitude is basically consistent with the bandwidth
comparison of another neighbor node in the above fig-
ure, which shows that the memory access of neighbor
nodes is consistent.

Fig. 10 compares Scenario 1 and Scenario 4. Using
the test tool, it is revealed that the local node access
performance of Scenario 1 is better than that of the re-
mote node access of Scenario 4, in terms of Copy,
Scale, Add and Triad. The memory access bandwidth
of Add and Triad increased the most by more than
120% , followed by Copy and Scale with increases of
nearly 100% .

Fig. 10　 Memory access comparison between Scenario 1
and Scenario 4

The test data results further reveal that after opti-
mized processing of NUMA node range binding and
memory strict binding, the memory access performance
of the neighbor NUMA node improved by more than
30% (for the remote NUMA node, it increased by
more than 100%). The scheme is shown to be effec-
tive in realistic scenarios, thus a high-performance vir-
tual machine is necessary.
4. 1. 2　 NUMA node range binding and memory priori-

ty-binding
On the physical machine, the performance of the

virtual machine memory bandwidth access rate is im-
proved by using the strategy of virtual machine NUMA
node range binding and memory priority binding. The
purpose of the test is to determine the maximum value
of memory bandwidth access rate, compare it with NU-
MA node range binding and memory strict binding test
results, then identify the difference between memory
priority binding performance optimization baseline data
and memory strict binding performance optimization
baseline data.

In this test, the same four scenarios as those in
subsection 4. 1. 1 were set, except memory priority
binding was used here instead of memory strict bind-
ing.

The virtual machine NUMA node range binding
and memory priority binding strategy ensure that the lo-
cation of the business virtual machine access memory is
local memory, avoiding cross NUMA node access mem-
ory and improving the memory access performance of
the virtual machine.

According to the test scenario, the results are as
follows. Fig. 11 shows that, through testing, the per-
formance of local node access in Scenario 1 is better
than that of neighbor nodes in Scenario 2. Among the
functions, the memory access bandwidth of Copy in-
creased the most by nearly 40% , followed by Add and
Triad with increases of about 30% , then Scale with the
least increase of nearly 20% .

Fig. 11　 Comparison of NUMA node range binding and
non-NUMA node fixed binding to nodeset 1

Fig. 12 compares Scenario 1 and Scenario 3 by
using the test tool, which indicates that the local node
access performance of Scenario 1 is better than that of
the neighbor node access of Scenario 3, in terms of
Copy, Scale, Add, and Triad. The improvement am-
plitude is basically consistent with the bandwidth com-
parison of another neighbor node in the above figure,
which shows that the memory access of neighbor nodes
is consistent.

Fig. 12　 Comparison of NUMA node range binding and
non-NUMA node fixed binding to nodeset 3

Fig. 13 shows the comparison between Scenario 1
and Scenario 4, where the local node access perform-
ance of Scenario 1 is better than that of the remote
node access of Scenario 4, in terms of Copy, Scale,

453 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021　

Add, and Triad. Specifically, the memory access
bandwidth of Add and Triad increased the most by
more than 120% , followed by Copy and Scale with in-
creases of nearly 100% .

Fig. 13　 Comparison of NUMA node range binding and
non-NUMA node fixed binding to nodeset 4

The test results indicate that after optimization
processing of NUMA node range binding and memory
priority binding, the memory access performance of the
neighbor NUMA node can be improved by more than
30% (for the remote NUMA node, it can be improved
by more than 100%). The scheme is real and effective
with no obvious difference in memory access perform-
ance between memory priority binding and memory
fixed binding.

Understanding memory and computing perform-
ance in multi-core platforms is a prerequisite to perform
optimizations. The state-of-the-art methods usually fo-
cus on the optimization method of specific scene. The
method presented in this paper can be improved by
more than 20% compared with the method in specific
field in general operation[3] .

4. 2　 Computing performance verification
For a virtual machine with one-to-one processor

binding, the processor of the virtual machine will not
switch, which can effectively ensure the computing
performance of the virtual machine and prevent proces-
sor switching.

This test is aimed at processor exclusive binding
and employs LMbench, a multi-platform open source
benchmark used to evaluate the comprehensive per-
formance of the system, as the test tool. For the appli-
cation with frequent service load jitter, the maximum
performance optimization data after the application of
this scheme is provided.

On the physical machine, the virtual machine
NUMA node processor exclusive binding strategy im-
proves the performance of the virtual machine. The
purpose is to test and attain the maximum value of the
sustainable computing power, compare it with the max-

imum value of the non-processor exclusive binding vir-
tual machine, then achieve the baseline data of compu-
ting performance optimization. In this test, two test
scenarios are set. Scenario 1 occurs after NUMA node
exclusive binding optimization, Scenario 2 occurs after
NUMA node processor range binding optimization, and
Scenario 3 simulates the real scenario that customers
may encounter for comparative testing.

Scenario 1 The vCPU of virtual machine 1 is
bound to the specific processor with nodeset = 1.

Scenario 2 The vCPU range mode of virtual ma-
chine 2 is bound to nodeset = 1.

Scenario 3 The vCPU range of virtual machine 3
is not bound by a nodeset.

The exclusive binding strategy of the virtual ma-
chine NUMA node processor ensures that the location
of business virtual machine processor will not switch
and will improve the computing performance of the vir-
tual machine. The key indicators of the test are affect-
ed by the following principles.

(1) NUMA node processors exclusively bind the
virtual machine with no processor switching, and thus,
the performance should be higher.

(2) For the virtual machine bound by the NUMA
node processor range, there is processor switching,
and the performance is normal.

(3) For the virtual machine without fixed binding
of the NUMA node processor, there is processor switc-
hing, and performance is normal.

Test results The overhead of context switching is
about 2. 7 - 5. 48 μs.

Test summary By optimizing the exclusive bind-
ing of NUMA nodes, the performance loss of about 2. 7
- 5. 48 μs per processor switch can be avoided. This
is recommended for computing performance sensitive
industries, such as big data and AI.

5　 Conclusion

The main purpose of this work is to introduce the
memory and processor optimization of a virtual ma-
chine, which is divided into three parts.

The first part analyses the working principle of
NUMA, the memory access performance, and stability
of a virtual machine. In Sections 1 and 2, the current
processor architecture, the relationship between the
memory and processor, the existing form of virtual ma-
chines on physical machines, and the problems of vir-
tual machines based on a physical machine architecture
are introduced. Finally, the solutions to these existing
issues are identified.

The second part designs a plan for the first part of

553　 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021

the problem and provides a detailed elaboration and
analysis. The plan mainly includes the resource bind-
ing and scheduling strategy of the memory and proces-
sor. Section 2 describes the main problems, and in
Section 3, the problems are solved in two aspects,
process NUMA binding and memory pre-allocation.

The third part verifies the creation of a virtual ma-
chine after optimization, including the impact of the
binding strategy on the performance and effectiveness
of the scheduling service on resource scheduling and
protection. The verification includes two aspects, pro-
cessor memory access performance and computing per-
formance, which confirms the effectiveness of the solu-
tions mentioned in the second part.

References
[1] Dokulil J, Benkner S. NUMA-aware CPU core allocation

in cooperating dynamic applications[C]∥Proceedings of
the IEEE International Parallel and Distributed Processing
Symposium Workshops, New Orleans, USA, 2020:950-
957

[2] Memarzia P, Ray S, Bhavsar V C. Toward efficient in-
memory data analytics on NUMA systems [J]. arXiv:
190801860, 2019

[3] Khaleghzadeh H, Manumachu R R, Lastovetsky A. A hi-
erarchical data-partitioning algorithm for performance opti-
mization of data-parallel applications on heterogeneous
multi-accelerator NUMA nodes[J]. IEEE Access, 2019,
8(78): 61-76

[4] Baruah T, Sun Y, Dinçer A T, et al. Griffin: hardware-
software support for efficient page migration in multi-GPU
systems[C]∥Proceedings of the IEEE International Sym-
posium on High Performance Computer Architecture, San
Diego, USA, 2020: 596-609

[5] Sun Y, Baruah T, Mojumder S A, et al. MGPUSim: en-
abling multi-GPU performance modeling and optimization
[C]∥Proceedings of the 46th International Symposium
on Computer Architecture, Phoenix, USA, 2019: 197-
209

[6] Yan Z, Lustig D, Nellans D, et al. Nimble page manage-
ment for tiered memory systems[C]∥Proceedings of the
24th International Conference on Architectural Support for
Programming Languages and Operating Systems, Provi-
dence, USA, 2019: 331-345

[7] Jaleel A, Ebrahimi E, Duncan S. Ducati: high-perform-
ance address translation by extending TLB reach of GPU-
accelerated systems[J]. ACM Transactions on Architec-
ture and Code Optimization, 2019, 16(1): 1-24

[8] Rab M, Marotta R, Ianni M, et al. NUMA-aware non-
blocking calendar queue[C]∥Proceedings of IEEE / ACM
24th International Symposium on Distributed Simulation
and Real Time Applications, Prague, Czech, 2020: 1-9

[9] Strati F, Giannoula C, Siakavaras D, et al. An adaptive
concurrent priority queue for NUMA architectures[C]∥
Proceedings of the 16th ACM International Conference on
Computing Frontiers, Alghero, Italy, 2019: 135-144

[10] Kim S, Zheng H, Venkatasubramanian R, et al. Adap-
tive CPU NUMA scheduling [P]. US Patent: 2016 /
0085571, 2019

[11] Jiménez-Peris R, Ballesteros F J, Kranas P, et al. NU-
MA-aware deployments for LeanXcale database appliance
[C] ∥ Proceedings of the International Conference on
Cloud Computing and Services Science, Heraklion,
Greece, 2019: 666-671

[12] Wu R, Zhang X, Kong X, et al. Evaluation of NUMA-
aware scheduling in warehouse-scale clusters[C]∥Pro-
ceedings of 2019 IEEE 12th International Conference on
Cloud Computing, Milan, Italy, 2019: 475-477

[13] Wade J, Buenfil J, Collopy P. A systems engineering ap-
proach for artificial intelligence: inspired by the VLSI
revolution of Mead & Conway[J]. INSIGHT, 2020, 23
(1): 41-7

[14] Langewiesche W. What really brought down the Boeing
737 Max[EB / OL]. https: / / www. nytimes. com / interac-
tive / 2020 / 02 / 27 / opinion / 2019-year-in-illustration. html:
The New York Times, 2019

[15] Siebel T M. Digital Transformation: Survive and Thrive in
An Era of Mass Extinction [M]. New York: Rosetta
Books, 2019

[16] Rouse M. Definition: multi-core processor[J]. TechTar-
get Retrieved March, 2013, 6: 131-144

[17] Schauer B. Multicore processors—a necessity[J]. Pro-
Quest Discovery Guides, 2008, 9: 1-14

[18] Manumachu R, Lastovetsky A L. Design of self-adaptable
data parallel applications on multicore clusters automati-
cally optimized for performance and energy through load
distribution[J]. Concurrency and Computation: Practice
and Experience, 2019, 31(4): 109-122

[19] Majo Z, Gross T R. Memory system performance in a
NUMA multicore multiprocessor[C]∥Proceedings of the
4th Annual International Conference on Systems and Stor-
age, Haifa, Israel, 2011: 1-10

[20] Ganguly D, Zhang Z, Yang J, et al. Interplay between
hardware prefetcher and page eviction policy in CPU-GPU
unified virtual memory[C]∥Proceedings of the 46th In-
ternational Symposium on Computer Architecture, Phoe-
nix, USA, 2019: 224-235

[21] Li C, Ausavarungnirun R, Rossbach C J, et al. A frame-
work for memory oversubscription management in graphics
processing units [C] ∥Proceedings of the 24th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, Providence,
USA, 2019: 49-63

[22] Kruse D M, Reuther L, Broas K M. Efficient program-
matic memory access over network file access protocols
[P]. US Patent:201410359114, 2019

[23] Wang Z, Nowatzki T. Stream-based memory access spe-
cialization for general purpose processors[C]∥Proceed-
ings of the 2019 ACM / IEEE 46th Annual International
Symposium on Computer Architecture, Phoenix, USA,
2019: 736-49

He Mujun, born in 1982. He is a Ph. D candi-
date in College of Computer Science, Chongqing Uni-
versity. He received his M. S. degree from Institute of
Process & Engineering of Chinese Academy of Science
in 2008. He also received his B. S. degree from Zhe-
jiang University in 2004. His research interests include
cloud computing and cyber physical system.

653 HIGH TECHNOLOGY LETTERS | Vol. 27 No. 4 | Dec. 2021　

