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Abstract
Mobile distributed caching (MDC) as an emerging technology has drawn attentions for its abili-

ty to shorten the distance between users and data in the wireless network. However, the DC network

state in the existing work is always assumed to be either static or real-time updated. To be more real-

istic, a periodically updated wireless network using maximum distance separable (MDS)-coded DC

is studied, in each period of which the devices may arrive and leave. For the efficient optimization of

the system with large scale, this work proposes a blockchain-based cooperative deep reinforcement

learning ( DRL) approach, which enhances the efficiency of learning by cooperating and guarantees

the security in cooperation by the practical Byzantine fault tolerance ( PBFT)-based blockchain

mechanism. Numerical results are presented, and it illustrates that the proposed scheme can dramat-

ically reduce the total file download delay in DC network under the guarantee of security and effi-

ciency.
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0 Introduction

Recently, with the explosive growth of mobile de-
vices and the proliferation of multimedia applications,
the transmission of files is becoming important in mo-
bile wireless networks. How to avoid too many occupa-
tions of expensive storage and bandwidth during the
files transmission process has drawn significant interest
in academia and industry'"’.

To shorten the distance between users and data in
the wireless networks, caching has been proposed **'.
The key idea is to put some of the most popular content
at the network edge during the off-peak periods, which
will provide users a better experience in the peak traf-
fic. Therefore, in traditional caching scheme’ | the
macro base-stations ( MBSs) and small-base-stations
(SBSs) are usually deployed as edge caching nodes.
To further enhance the system performance, mobile de-
vices can be utilized as a caching node, storing seg-
ments of files to facilitate others nearby'®”’. This plays
a noticeable role in device-to-device (D2D) communi-
cation, which is referred to as mobile distributed
cache. In Ref.[6], by using the mobile distributed

cache, users can directly communicate with the nearby
users to get the wanted content instead of accessing
base-station ( BS). Nevertheless, the D2D connections
are not always available due to the mobility of the de-
vices.

To overcome the availability issue, a full backup
of the cache can be stored at the BS'®'. Coded caching
technology is another solution for improving the availa-
bility of D2D communication. In Refs[9-11], the sep-
arated file contents are coded with maximum distance
separable (MDS) code. As a kind of erasure correc-
ting codes, MDS lets users recover the complete file
just from a certain number of encoded segments without
getting contents from all the caching nodes. Note that
the leaving of too many caching nodes may result in the
unrecoverable problem of the data in mobile distributed
caching (MDC).

Although some works have been done on MDC, it
is usually assumed that the state of the DC network is
static or real-time detection. However, in the wireless
scenarios, especially for the mobile devices caching
with high mobility, the real-time detection and mainte-
nance consume lots of resources''?’, or worse, the
cache placement probably changes after the observa-
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tion' ', Therefore, updating the network state every
period is more rational. The system has high complexity
when the mobility and the update-interval delay are
jointly considered, which is too difficult to be solved
optimally using traditional optimization methods.

In Ref. [14],

reinforcement learning ( DRL) could effectively solve

simulation results showed that deep

the complex problems in the wireless environment.
Here, the problem is modelled as Markov decision
process (MDP) and DRL' is exploited as an effec-
tive solution, and the contributions are summarized as
follows.

(1) Considering the availability and stability as
described above, for a D2D wireless network under the
controls of SBSs, an MDS-coded caching model is opti-
mized to reduce the total file download latency based
on the periodically updated information. The joint con-
sideration of the mobility and time-varying in MDC and
the periodical updating is the key point to be solved.

(2) A cooperative deep reinforcement learning
approach is proposed. In Refs[14,16], the perform-
ance of the traditional DRL may be limited by require-
ment of a large quantity of memory and computation re-
sources as well as the sufficient interaction with envi-
ronments. And therefore, to solve the optimization with
high complexity, the proposed framework uses multiple
agent cooperatively to enhance the efficiency of learn-
ing but also separate the resource burden.

(3) Moreover,
ciency but also the challenge due to the lack of trust

the cooperation brings the effi-

relationships.  Exactly, blockchain is introduced,
which as a foundational technology that leads to decen-
tralized control can be an appropriate solution to tackle
this trust-absence problem. Besides, by using deep
neural network loss value as checksum, the authentici-
ty and effectiveness of the shared DRL model parame-
ters can be also verified.

The paper is organized as follows. In Section 1,
the system model is presented, where SBSs managing
D2D devices employ MDS code to balance the real-
time requirement and communication cost redundancy.
In Section 2, the latency optimization considering the
mobility and the update-interval delay is proposed,
which is modelled as MDP, and therefore a DRL prob-
lem. Moreover, a novel framework of blockchain-based
cooperative DRL is proposed. Simulation results are
discussed in Section 3. Finally, conclusions are pres-

ented in Section 4.
1 System model

In this section, the system architecture, the mov-

ing of users and the distributed caching model are first
presented.

1.1 System architecture
The system architecture is shown in Fig. 1, there
is one macro base-station ( MBS) , U small cell base-
stations (SBSs) and a maximum of V,, mobile devices
served by each SBS. Letu, {1, 2,:--, U} be the set
of SBSs and use u to refer to the u-th SBS. Letwv, {1,
2,---, V} be the set of mobile devices in single SBS,
where the v-th device d in u-th SBS is denoted as d, .
The mobile device d, (user) roams in and out follow-
ing a Poisson random process, and requests file f at a
File f is from a library F, i.e., F =
s Fyl
Depending on the popularity of the content,

random time.
{85 gy =
B bits.

some files are encoded and stored in a certain number

, where each file is of same size of

of mobile devices, which can be referred to as caching
nodes. The mobile devices without cache content are

referred to normal nodes.
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To improve the system efficiency, the D2D links
are established between both of normal nodes and cac-
hing nodes under the control of the same SBS. When a
user requests a file, the SBS will assign the best cache
node to provide the download content based on a novel
cooperative DRL approach proposed in Section 2. To
implement the approach, an edge computing server
(ECS) and a full blockchain node are deployed in
each SBS. Thanks to ECSs, the SBS could make a
proper access strategy for reducing the total file down-
load latency by using DRL arithmetic. At the same
time, with the help of blockchain nodes, ECSs can
form a trustful cooperative deep learning network.

1.2 Node arrival and departure model

In general, a uniform distribution of nodes'”"™® is
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usually considered. In this work, among the V devices
per SBS on average, there are V, caching nodes on av-
erage. Mobile nodes can move across in the network
from one SBS to another one, as shown in Fig.2. For
simplicity, it can be assumed that nodes arrive accord-
ing to a Poisson process with independent identically
distributed (i.1i.d. ). The probability density function
(PDF) with random inter-arrival times 7T, can be ex-
pressed as

fr, (1) =Vae™, A =0,t=0 (1)
where VA is the expected arrival rate of user and ¢ is
measured as time unit (t. u. ). Assuming that node
stays in the SBS for an i.i. d. exponential random life-

time T, with PDF,

fr.(t) =ue™, n=0,t=0 (2)
where y is the expected departure rate of the node.
This system can be described as an M\M\o queue

model, and the probability that : nodes in each SBS
(V) can be described by’

TI'L<V) — (V)\L{g) e*(V}\/,u,) (3)

here it can be assumed thaty = A, which implies the
average number of node in the SBS is V. Similarly, the
arrival of nodes that store cache also can be described
as a Poisson random process. Hence the PDF of cac-
hing nodes with random inter-arrival times T, can be

expressed as

fr. (1) = Ve, A=0,1=0 (4)
where VA is the expected arrival rate of caching node.
Since the stay lifetime is described by Eq. (2) and u
= A, the expected number of caching nodes keeps
constant (equal to V).

. Caching node g MBS -
l:‘ Normal node_ -~ Bt

Fig.2 Node arrival and departure model

1.3 Distributed caching mode

This work considers a MDS-coded distributed cac-
hing scenario. As described above, the requested file f
is from a library F of W files and each file is the same
size of B bits. Assuming that the popularity probability
of filesp, € {1,::+, py| follows the time-invariant Zipf
distribution , the probability that the w-th file is reques-

ted can be defined as
1/’
Po =

= Y,
Y 157
j=1

where ¢ represents the skewness parameter of the dis-

l<sosW (5)

tribution, W is the number of files.

The W, most popular files are stored in caching
nodes by using a (n, k)-MDS code. In the MDS
scheme, the file which needs caching is partitioned in-
to k pieces, each of size of B/k bits, and from these
generate n > k coded packets. After coding, the pack-
ets are distributed into n caching nodes, and no two
caching nodes store the same symbol. In order to re-
construct the original file, the users only need to down-
load any % out of the n encoded chunks. At the same
time, a copy of each encoded file is stored at the BS as
the backup. Assuming that there is the coexist of both
BS-to-device ( B2D) link and D2D link, therefore,
when a node requires file content, it can retrieve con-
tent from the neighbour caching node through D2D
communication, or alternately download the missing
content from BS.

It is considered that the D2D communication is
controlled by the SBSs. The SBS records all of the de-
vices belonging to the D2D network in a list, which is
called DC library. When the user requests a file, the
SBS will choose one of the caching nodes from DC li-
brary to assist the user in reconstructing the file con-
tent. In order to reduce communication redundancy,
DC library should not be updated immediately. The SBS
periodically updates in every Az. u. /',

Furthermore, It is assumed that a user only can
downloads the coded file serially and it takes z,, t. u.
to download a coded chunk in D2D link and ¢, t. u. in
B2D link. Respectively, according to the nature of the
MDS code scheme, the user has to download at least k&
encoded chunks. Thus the total download delay can be
summarized as

T, =1ltypy +Jty., I +] =k (6)
where [ and J represent the download time through D2D
link and B2D link respectively. Note that due to the
time-varying of network state, not every download be-
havior succeeds in getting the required cache frag-
ments, the sum of [ and J could be greater than k.

2 Problem formulation and proposed ap-
proach

In this section, this work focuses on the problem
of how to choose the best caching node for users in sin-
gle SBS. Afterward, this work considers a blockchain-
based cooperative DRL approach as a solution.
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2.1 Reinforcement learning problem formulation

There is one MBS, a amount of U SBSs and a
number of mobile devices managed by SBSs. For relie-
ving the overload of the backhaul link, some of the mo-
bile devices can be utilized as a distributed caching
node. Considering the scenario of caching, this work
puts the coded-cache content on the moving mobile de-
vices. Hence it can be assumed that the arrival and de-
parture of nodes in SBSs follow an i. i. d. Poisson
birth-death process. As the users arrive and leave, the
cache state of DC-network in SBS is transformed corre-
spondingly.

Because of the nature of (n, k)-MDS code, when
the user requests the file, the SBS has to assign the
most suitable caching node continually until k£ coded
symbols are achieved. In order to optimize access poli-
cy, this work formulates the total download delay (in-
cluding at least k£ times download ) as optimization
problem, not only minimize the single coded packet
download time. Since mobile devices in different SBSs
according to Poisson birth-death process with i. i. d,
the total download delay optimization problem of the
DC network in each SBS can be formulated as the same
DRL process. In the following, the system state, ac-
tion space and reward function are described and de-
duced.
2.1.1

In this model, the system state S depends on roa-

System state

ming states of probable mobile devices, the cache
states and link states of available caching nodes.

In the DRL process, the state space must be set to
fixed length so that it can be applied as input to a deep
neural network ( DNN).

nodes which (including caching node) is not always

However, the number of

equal to V, i. e. , Vis just the expected value, not an
instantaneous value. As analyzed in Section 1, the
number of node in DC library can be described as
Eq. (3), it means the probability of having a extreme-
ly high number of caching devices in one SBS is very
low (as derived by Eq. (3), for V., =10, it has
m (V) = 1.8 x 107, @y (V) = 1.7 x 1077 and
To(V,) = 4.9 x 107%).

The maximum limit of V. = 3V node is taken as
the size constraint of the system state space. Conse-
quently, the system state can be given by

Hl’ H25 ............ s HVmax’
Cl’ C3’.“’C7,.“7 Qy ’ ®9
S = kﬁ’—/ m v+m = Vmax
11’]3""a]7""a ®5 9®
%/—J

(7)

where, O is used to represent unavailable state of node
('such as when node roams out from the SBS, the cor-
responding state will become @), v is the real-time
number of mobile node in a SBS, expected value E(v)
= V, mis the number of @, it will change to meet the
constraint requirement of v + m =V, .

The roaming state H; € {0, 1| means the i-th mo-
bile device whether in the SBS or not, H;, = 1 when the
i-th device stay in the SBS, H, = 0 when this device
roams out from the SBS, and the stored cache is also
lost. The cache state C, e {0, 1}

i-th mobile device hold requested content, C;, = 0 when

,i.e., C, =1 when
i-th mobile device does not hold requested content.
Cache contents arrive to the SBSs according to a Pois-

son random process in Eq. (4), i. e. , same as caching

nodes, expected value of the number of cache state C,
= 1 equals V,. Additionally, due to performance con-
straints on mobile devices, the D2D caching node can-
not provide content to multiple users at the same time.
Thus the link state at i-th caching node I, can be de-
scribed by two states, idle and busy, i.e., I, € {0,
1}, I, = 1if i-th caching node is idle when the caching
node can provide content to users and I, = 0 in other-
wise. The 2 x2 link state transition probability matrix
A; of i-th mobile device can be denoted as

A_:[l—ni uL ] (8)

' K; 1 -k,
wheren, = Pr(l, =011, =1), k, =Pr(I, =111,
=0).

Ideally, the DC library recorded by an SBS should
be an instant update, but frequent updates can in-
crease the wireless traffic load on the system. Then this
work considers a periodically updated DC network with
A t.u. of update interval.

The observed system state S,, in the BS is not al-
ways equal to real-time state S, ,

S,(1) = {S,(t) tmod A =0

S(t—7) tmod A#0

where 7 = ¢ mod A.

(9)

2.1.2 Action space

In this system, an (n, k)-MDS code is used in
distributed caching. In order to reconstruct the reques-
ted file, user needs to download any k out of the n
packets from caching nodes that are assigned by SBS.
The SBS also decides whether to choose the BS to fin-
ish missing content or not. As shown in the system
state, the number of available nodes is not constant.
For making the action space feasible as an input to the
neural network, this work introduces  valid action’ in-
to action set. Then the action space can be denoted by
ae {l1,2,---,V, MBS, @}, where a = MBS means
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user should download this packet from the BS, a = i
means download from the i-th available mobile device
by D2D link and the invalid action @ = @ means that
user will not download content from any node. At each
time-step, the SBS, which is referred to as a reinforce-
ment learning ( RL) agent, has to make a selection
from the action set. No matter whether the action is
valid or not, time actually proceeds.

2.1.3 Reward function

Since the MDS-coded scheme is adopted in this
model, this work focuses on the optimization of the to-
tal download-time of the distributed caching system.

When one node requests a file, the following three
cases can be distinguished.

Case 1 The encoded packet of requested file can
be found in requesting caching node, and the node is
idle.

Case 2 The encoded packet of requested file can
be found in requesting caching node, but the node is
busy.

Case 3 The encoded packet of the requested file
can not be found in requesting a caching node.

Aiming to the above cases, the reward function is
crafted. The download time of the base station ¢,  is
used to compare the D2D download delay. This work
denotes the download time of retrieving one coded
chunk in the BS-link as ¢, t. u., in D2D-link as ¢,
t. u. , where ¢, is much larger than¢,,. For purposes of
analysis, this work sets that ¢, /7, as an integer N. In
order to reduce total download time, the total time-
steps in one episode should be minimized. Hence, this
work sets the reward of each time step to

0 a = MBS
(S, a) = {—t&d a=0 (10)

H, 1, —ty, otherwise
where H, = 1 if node is staying in the SBS, C, =1 if
the chosen node carries a piece of the requested con-

tent, I, =1 if the chosen caching node is idle, when it
meets the above requirements, the coded packet is suc-
cessfully downloaded by D2D link and saves t,, — 4.
Otherwise, H,C I, = 0, it means this action is ‘invalid
action’ , should penalty — t,,,. In the latter case, the
user downloads file content from the MBS alternately.
The total download delay will increase by #,.. The dis-
count factor is set as y = 1, thus the cumulative re-
wards coincide with the total time saved. The episode
will end when £ coded packets are collected, no matter
the packets are collected by the D2D link or by the
B2D link.

2.2 Deep AC algorithm

In the previous work "

, deep Q-learning
network ( DQN) algorithm is utilized for solving the
wireless network problem. Since, in this work, action
= 3V), this work
uses deep actor-critic ( AC) algorithmm] , a kind of
state of the art DRL algorithm, which is good at dealing
RL problem with the complicated policy.

space is very huge (upper limit V,

max

In traditional actor-critic arithmetic, it involves
two important functions, policy function w(S, a) (a
set of action probability outputs) and value function
V_(S) (estimate the value of policy in a certion
state). As an extended algorithm from actor-critic,
deep AC algorithm using two neural networks, actor
network with parameter 6_ and critic network with pa-
rameter 6, instead of these two functions.

In actor network, the parameter §_ is updated in
the direction suggested by the critic network, which is
called policy gradient method. The key idea is to esti-
mate the gradient of the expected discounted cumula-
tive reward E[ V_(S) ] with respect to (wrt) parameter
0. by observing the trajectories following that policy
w(S, a). The process can be described as

VE[V.(S)] =E[V_(S) - Vyogm(al S)]

(11)
where w(al S) = P(al S, 6,) = w(S, a).

In order to encourage learning agent to do more
exploration, the entropy of the policy H(w (S, a)) is
introduced. H(w(S, a)) works as the underlying
meanings of entropy: following the policy m, if the out-
put actions are with relatively similar probabilities, the
entropy will be high. Thus, the updated processing of
the policy parameters can be expressed by

0,0, +&V, Va(S, a)logn(a | S)

+w V, H(w(a | S)) (12)
where £ is the step size, @ is discounts factor of entro-
py, it should be set to a large value at the beginning of
the training so as to encourage the exploration, whereas
it should decrease over time to focus on the exploiting
for the purpose of improving the rewards. Var(S, a) in
Eq. (12) is provided by following critic network.

In critic network, temporal difference (TD) error
method'”’ based on gradient descent is adopted to im-

prove the accuracy:
-1

vV‘n’(S’ a) = Z (rt<St9 a’) - V-n-(St9 a))2
t=0
(13)
where r,(S,, a) is defined in Eq. (10).
Thus the parameter 8y, for network can be derived

as
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r-1

HVHBV _¢Z()(rz(szi a) +wa(Sz+15 a)
- V.(S,, a))* (14)

where ¢ is learning rate for training the critic neural
network, 7y is discount factor of reward.

2.3 Blockchain-based cooperative DRL approach
This model considers a cooperative reinforcement

learning approach maintained by blockchain to derive

the optimal policy for the above-formulated problem.

14,21] -
, a single

In DQN used in the previous work!'
agent is represented by a single neural network interac-
ting with a single environment, which makes the sam-
ples gathered highly correlated during a run of an a-
gent. In order to overcome this issue, a technique
named experience replay can be used. Its key idea is
to store the samples in memory and retrieve them in
random order from a batch. However, it still brings
with some problems, such as much more storage space
and quite low efficiency' . Asynchronous gradient de-
scent method' ™! is an advanced deep learning frame-
work proposed by Google DeepMind to take replace of
experience replay. By using multiple agents in parallel
on a single multi-core central processing unit ( CPU)
machine, the asynchronous methods for DRL not only
break the correlation in training dataset but also
achieve high efficiency.

In this model, the caching nodes in each SBS
adapt to a Poisson birth-death process with i. 1. d. , and
this means that all of SBSs can be considered in a simi-
lar environment. Thus this work proposes a cooperative
learning framework, extended by asynchronous meth-
ods principle, where each SBS can be set as a parallel
agent having its own neural network in local network,
but be the cooperator for other SBSs. As shown in
Fig. 3, the process of cooperation learning approach for
SBSs in each training episode is as follows.

(1) Copy the newest parameter 6., from coopera-
tion network to local network.

(2) Perform actions in separate environments ac-
cording to local network policy, compute the gradients
Af,,., after each episode has been done.

(3) Copy the newest parameter ', to local net-
work.

(4) Update the cooperation network parameter as

6"C00p = 0’Coop + A0 (15)

Furthermore, the trust issue of cooperative DRL is
also considered. If one of SBSs in cooperative RL is at-
tacked or out of ill intentions subjectively, it may upload
the wrong parameters to cooperation network, eventually
make trouble for all of the users in the DC system. Hence

Cooperative network

Policy 7 (S)

i i I ;
! 7.46

C 1 Coop ) Coop 3
Local network Local network Local network

!

[Environment ﬂ Einvironmem 2] [Environment% In [Environment N]

Fig.3 The procedure of one time cooperative learning

Cooperator N
Local network

blockchain, as a novel decentralized ledger technolo-
gy, is introduced for helping build trust and confidence
between different SBSs. Specifically, a permissioned
BC based on practical Byzantine fault tolerance
(PBFT) ') consensus mechanism is established. Ac-
cording to principle of blockchain, the SBSs in cooper-
ative not only in turn upload the parameters of network
model but also its Hash, which can ensure the integri-
ty.

For this framework , the verification of DRL model
is also considered. During DRL training process
Eq. (12) and Eq. (14), temporal difference ( TD)
error VVa(s, a) Eq. (13) is not only used in back
propagation to update the network model weights but
also can be seen as a metric to evaluate how well the
network model is. Utilize this characteristic, TD error is
also introduced as validation loss in cooperative RL, if
the fraud node in cooperative DRL shares wrong param-
eters to other cooperators, the loss error value must be
very high, which can be easy to distinguish from regu-
lar parameters.

As shown in Fig. 4, the detailed process can be
described as follows.

Request ECS in the SBS trains new neural net-
work parameters, and sends them along with corre-
in DNN to BC node in same
SBS, in which BC node is referred to as primary.

Pre-Prepare Primary relays the DNN weights to

sponding loss value [,

other cooperative BC nodes via pre-prepare messages.
Other BC nodes are referred to as replicas, replicates
record the DNN weights, and apply them to calculate
o locally. If

than one standard error &, confirm this update, and

the validation loss value / — 1,41 less

target

send prepare messages.
Prepare Replicas send prepare messages to all
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BC nodes (including replicas and the primary node).
Once getting= 2f + 1 prepare messages, the SBSs up-
date local network and get ready to commit.

Commit SBSs send commit messages to each
other. Once getting 2f + 1 commit messages, the SBS

Request

Pre-prepare

starts to update these gradient in cooperative RL net-
work.

Reply Every BC node replies its result to the
ECS server.

Cooperative DRL server in SBS \
Cooperative BC node in SBS .

Other cooperator 1

Other cooperator 2

I

Other cooperator N

Fig.4 The detailed procedures inside the cooperate learning block chain

Ideally, all of cooperative networks in SBS should
be the same. Otherwise, the ECS should choose the
majority result. The consensus process guarantees that
the majority of cooperative networks are correct as long
as more than two-thirds of cooperators ( including pri-
mary ) are honest, which is the fundamental BFT
bound proved in Ref. [26].

Finally, the pseudo-code of the BC-based cooper-
ative learning method is shown in Algorithm 1.

Algorithm 1 Blockchain-based cooperative deep reinforce-
ment learning in single cooperator

repeat
Reset gradients: df,,.,«0 and d6,,.,<0.
Download the newest cooperative network parameters
from blockchain and 6',,,., = 6, and 6’ =6

Receive target loss [

oLocal vCoop

target

Get state s,

tslan = t
repeat
Perform a, according to policy w',(s,, a,)

Receive reward r, and new state s,

L+—1+1

T+T+1
until ¢ -2, = =i,
R = {0 for terminal s,

V(s,, 0 ,10) for non-terminal s,

forie {t-1,-, 1, do

R«—r, +yR

Calculate Ly, = (R = V(s;, 6 0m) )’

if 11,y =1, | <6 then

send prepare messages
end if

if Receive = 2f+ 1 prepare messages then
send commit messages
end if
if Receive <2f+1 commit messages then
retrieve network parameters 6';,.; = 01, and
Py

else

oLocd = Oytseal

Accumulate gradients wrt 6’ :
Ao — Ao + VO pealogm,  (siy a) (R = V(s,,
0 L)) + BV g, H(w(s;, 0'1000))

Accumulate gradients wrt §’

vLocal *

i a(R = V(SiaeryLucal))z

vLocal ’
a6 vLocal

davLoual « da

end if
end for
Download the newest cooperative network parameters

from blockchain ¢",,.,, = 0, and 0" =0

iLocal 1Coop

Update local network parameters ¢ ., and 6", using
A0y and dO,, :

0" ocar— 0" ocal — @O

0 Locat 0" stocal ~ BB, ca

Upload the newest cooperative network parameters 6,
and 0, oop

wtil 7 > T,

with local network parameter 6", and 8",

3 Simulation result and discussions

In this section, the results of dramatical reduction
of the total file download delay in MDS-coded DC net-
work by the proposed scheme under the guarantee of
security and efficiency are exhibited. Furthermore, the
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effect of the update interval is discussed.

3.1 Simulation settings

In this simulation, this work uses Python 3. 6. 8
with TensorFlow 1.0.4"*" and Docker 19.03 with EOS
0.4 RC™ | an open-source blockchain platform on a
workstation equipped with Intel Xeon E5-2690 v4
CPUs (3.5 GHz, 56 cores), three NVIDIA Tesla
P100 GPUs and 128 GB RAM. By using Docker con-
tainer technology, it can be run virtual multiple serv-
ices on a single workstation to establish the block-
chain. The scenario illustrated in Fig. 1 is used for the
simulations.

The parameters values used for simulation are
summarized in Table 1. In this simulation, this work
assumes that the file that user requests are always
available in MBS, which means that when users can
not download the content through D2D communication
the needs of users request can be satisfied by using the
cellular link.

Table 1 The parameters values used for simulation

Parameter Value
Number of SBSs, U 1,8, 7
Average number of users, V 48
Maximum number of users, V. 144
User arrival rate, A 1
User departure rate, u 1
b/ L LV 10
Total training episodes in single SBS 1000
AC network update frequency 10
AC network learning rate 0.001
Discount factor of reward, y 1
Discount factor of entropy, 8 0.001

The idle state transition probability matrix A in
i-th caching nodes is set as

A=(55 o)

(16)
3.2 Simulation results

Fig. 5 shows the performance of total file download
time in MDS-coded DC for different schemes under the
conditions thatn = 6, k£ = 2, update interval A =1
t. u. , the number of cooperator U = 7, and one of the
cooperators in both two cooperative DRL is set as a ma-
licious node. The malicious node will upload error pa-
rameters to cooperative network. The BC-based cooper-
ative DRL against cooperative DRL without block-
chain, DQN, random strategy, and that only using cel-
lular link strategy is compared.

35 ' ! ' " " BC-baesed cooperative DRL
—+— Cooperative DRL w.0. BC
——DQN
301 Random strategy
i Only consider MBS
3 25} ;
[}
< 20
%Wﬁ% ‘*«@ W
5 15 k LK
30| e dm‘
5t

0 ! L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Episode

Fig.5 Performance of different schemes in (6,2)-MDS

It can be observed that with the increase of the
number of episodes for BC-based cooperative DRL, the
total file download delay T, is decreased until it con-
verges to a relatively stable value, i.e. 8 t.u. , which
is much lower than the file download delay without
D2D communication T)_, i. e. , only using cellular link
strategy, the ratio T,./T,, =~ 2.5. It can be also ob-
served that compared with the cooperative DRL scheme
without blockchain, the blockchain-based scheme has
successfully protected the security of cooperative net-
work parameters from attack. Fig.5 also shows that the
performance of the DQN scheme has much worse per-
formance than cooperative DRL ( based on actor-critic
algorithm) , which indicates the AC algorithm is suit-
able for dealing RL problem with the complicated poli-
cy. Additionally, the curve tracking for random strate-
gy has poor performance and significant fluctuation,
which indicates that the random strategy is very diffi-
cult to cope with the high complexity of this system.

Fig. 6 shows the convergence performance under
different cooperator number. When the number of co-
operator U = 1, the scheme becomes common deep AC
network. And it can be seen that with the increase of
the cooperator number, the convergence speed and
performance of DNN are dramatically improved. This is
attributed to not only parallel training but also multiple
cooperators in the framework, which makes the experi-
ence available for training becomes more diverse.

Fig. 7 shows the effect of update interval in coded
DC system. In this simulation, it can be assumed that
each caching node only carries one encoded segment,
i.e.,n = v, it can be seen that compared with the
scenario only using the cellular link and DC without
MDS-coded, different (v,, k) MDS-coded DC net-
works can all save much time for downloading file con-

tent. With the increase of ratio k/v,, the delay ratio
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between the average file downloaded without D2D com-
munication and that of the scenario using MDS coded
DC is decreased. This is because when the ratio £/, is
high, users should receive more coded-chunks to com-
plete the download. It also can be seen from Fig. 7 that
the performance of DC improves with increasing v, , be-
cause more caching-nodes may supply more choices. It
is noteworthy that the performance seems to improve
significantly with the decrease of update interval. This
is because small update interval will make the observed
states approximate to real-time.

W
— 1 Cooperators

—*— 3 Cooperators

16} % \ ~ 7 Cooperators

Total download delay /t.u.

0 100 200 300 400 500 600 700 800 900 1000
Episode

Fig.6 Convergence performance under different cooperator

numbers in single cooperator

—O— vc=3, k=1
45} g—v,=3, k=2
v, =6, k=2
4+ —— vc=6, k=4
N —p=.=9,%=3
%— v,=9, k=6
—&— v, =3, k=3 (uncoded),
= MBS link

A/t
Fig.7 Effect of update interval

4 Conclusion

In this paper, a new wireless scenario of a period-
ically update coded DC network is studied, where D2D
arrives and leaves at any time and the mobility and
time-varying of mobile device are considered. For this
system with high complexity, to obtain a proper access
strategy for reducing the total file download latency,

the access choice can be formulated as a DRL prob-
lem. Furthermore, a cooperative learning framework is
crafted to enhance the efficiency of learning, and a
PBFT-based blockchain is used to protect cooperative
learning security. The performance of several schemes
is illustrated, which demonstrates that compared with
other schemes, the proposed approach can effectively
reduce the total download delay in MDS DC, even in
face of the faulty node.
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