HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 20201pp. 424 ~434

doi:10.3772/j. issn. 1006-6748. 2020. 04. 010

Design of a clustered data-driven array processor for computer vision

(* School of Electronic and Engineering, Xi’ an University of Posts and Telecommunications, Xi’ an 710121, P. R. China)

Shan Rui(1ll #)®@", Deng Junyong® , Jiang Lin™ |, Zhu Yun®, Wu Haoyue* , He Feilong *

(™ Integrated Circuit Laboratory, Xi’” an University of Science and Technology, Xi’an 710054, P. R. China)

Abstract

Computer vision (CV) is widely expected to be the next big thing in emerging applications. So
many heterogeneous architectures for computer vision emerge. However, plenty of data need to be
transferred between different structures for heterogeneous architecture. The long data transfer delay
becomes the mainly problem to limit the processing speed for computer vision applications. For re-
ducing data transfer delay and fasting computer vision applications, a clustered data-driven array
processor is proposed. A three-level pipelining processing element is designed which supports two-
buffer data flow interface and 8 bits, 16 bits, 32 bits subtext parallel computation. At the same
time, for accelerating transcendental function computation, a four-way shared pipelining transcen-
dental function accelerator is designed, which is based on Y-intercept adjusted piecewise linear seg-
ment algorithm. A distributed shared memory structure based on unified addressing is also em-
ployed. To verify efficiency of architecture, some image processing algorithms are implemented on
proposed architecture. Simultaneously the proposed architecture has been implemented on Xilinx ZC
706 development board. The same circuitry has been synthesized using SMIC 130 nm CMOS tech-
nology. The circuitry is able to run at 100 MHz. Area is 26. 58 mm”.

Key words: array processor, data-driven, adjacent interconnection, distributed memory, com-

)

puter vision (CV)

0 Introduction

Computer vision (CV) is widely expected to be
the next significant technique in emerging applica-

tions' 37,

CV algorithms can be divided into 3 types
according to complexity; low-level, intermediate-level
and high-level . Low-level vision is the estimation of
depth, motion, shape, and other physical scene prop-

‘ ; 5
erties from visual measurernents[].

Since these algo-
rithms are fully predetermined and act identically on all
input data and the initial and final data structures are
fixed arrays the algorithms are ideally suited to single
instruction, multiple data (SIMD) machines'®’ . Inter-
mediate-level and high-level are the critical stage in a
computer vision system. The data structures are not
fixed in size, and no simple one-to-one or many-to-one
fixed and even distribution of data to processors ex-
ists'®). Thus, parallel implementation of these algo-
rithms is more suited to a multiple instruction, multiple

data (MIMD) architecture. From above, it can be

seen that different levels employ different methods to
accelerate for getting the best acceleration. So, many
heterogeneous architectures for CV emerge”'m] re-
cently. However, the high delay of data communication
in heterogeneous architectures becomes a main problem
to limit the computing efficiency for CV applications.

In order to reduce data communication delay and
enhance the computing efficiency of CV application, a
clustered data-driven array processor (CD-DAP) is
proposed, which can support SIMD and MIMD at the
same time. Multiple processing elements (PEs) are ar-
ranged in MESH structure, and connected by short line
adjacent interconnection. Single PE is designed with
pipelining and works as the mode of dataflow. The
main contributions are summarized as follows:

® A double-buffer interface structure based on
dataflow driven is designed, and it can realize ulira-low
data transfer delay between adjacent PEs.

e A four-way shared pipeline transcendental
function accelerator is designed. The resource utiliza-
tion and computing efficiency are enhanced.

@D Supported by the National Natural Science Foundation of China (No. 61802304, 61834005, 61772417, 61634004, 61602377) , Shaanxi Pro-
vincial Co-ordination Innovation Project of Science and Technology (No. 2016KTZDGY02-04-02), Shaanxi Provincial Key R&D Plan (No.
2017GY-060), Shaanxi International Science and Technology Cooperation Program (No. 2018 KW-006).

® To whom correspondence should be addressed. E-mail: shanrui0112@ 163. com

Received on Sep. 21, 2019

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

425

® A distributed shared memory structure based
on unified addressing is employed. Through a way of
highly efficient interconnection, the data accessing de-
lay can be reduced dramatically.

This paper is organized as follows. Section 1 in-
troduces related work and the motivation. After that,
clustered data-driven array processor will be proposed
in Section 2. Section 3 describes the mapping of com-
puter vision algorithm. In Section 4, simulation and
performance analysis will be given. The conclusion is
given in Section 5.

1 Related work and motivation

Many researchers pay attention to acceleration ar-
chitectures for computer vision. CPU + GPUs is one of
widely employed structure. For example, Ref. [3]
presented an implementation of OpenVX directed at
CPUs and GPUs platforms, and discussed these analyt-
ical techniques in detail. Ref. [11] discussed that how
to use GPUs’ hundreds of gigaflops of processing pow-
er to realize image processing and computer vision
through a way of parallel programming. Ref. [12]
presented a method which can adapt CPU-GPU task
parallelism, sliding window parallelism, scale image
parallelism, dynamic allocation of threads, and local
memory optimization. Meanwhile a face detection algo-
rithm was realized using proposed method to accelerate
computing time. CPU is mainly used to execute serial
part of CV algorithms, and GPU is mainly used to com-
pute parallel part of CV algorithms. So, CPU + GPUs
can accelerate the computing part of CV algorithms
well, but it is inevitable that plenty of data need to be
transferred between CPU memory and GPU memory.
The performance improvement is limited by the long
data transfer delay.

For satisfying the necessary real-time performance
for many computer vision applications, dedicated hard-
ware accelerators are often designed, such as in
Ref. [13], a hardware-based stereo matching architec-
ture was proposed which aims to provide high accuracy
and concurrently high performance in embedded vision
applications. The architecture integrated an image filter
and an edge-preserving filter. Dedicated hardware ac-
celerators can satisfy the requirement of real time appli-
cation well, but it cannot adapt to variety algorithms.
Once algorithm changed, the hardware must be rede-
signed. The cost is very high and the time to market is
long.

Field programmable gate arrys (FPGAs) are also

used in accelerating computer vision applications, such
as in Ref. [14], an FPGA-based emulation framework
was proposed that can provide dynamic vulnerability
analysis for hardware-accelerated computer vision ap-
plications. Ref. [15] proposed a FPGA-based acceler-
ator architecture that can tackle a range of standard CV
algorithms. The architecture consists of pipelined pro-
cessing elements that can be configured to support vari-
ous belief propagation settings for different CV tasks.
FPGAs can shorten the time to market slightly, but it
also needs to be redesigned once algorithm changes.

For adapting to the fast-changed computer vision
algorithms, multi-core array architectures are intro-
duced, such as in Ref. [16], a polymorphous array
processor was proposed that consists of several levels of
clusters of processors and seamlessly integrates data
parallelism, thread parallelism, operation parallelism,
and distributed instruction parallelism. And OpenVX is
implemented on this architecture. Ref. [17] proposed
a novel framework that is for fast prototyping and opti-
mization of OpenVX applications for heterogeneous
SoCs with many-core accelerators. Ref. [18] presented
a method for early parallel performance estimation on
embedded multiprocessors from sequential application
traces. Ref. [19] proposed a dynamically reconfigu-
rable hybrid architecture for vision processing. So
multi-core array architectures are very promising target
for CV applications.

Based on above, CD-DAP architecture is pro-
posed. On one hand, it can support data-level parallel-
ism well, and it can execute serial computation well.
At the same time, it supports flexible programming.
One the other hand, the data transfer delay can be re-
duced sharply because data do not need to be trans-
ferred between different frameworks.

2 Clustered data-driven array processor

CD-DAP architecture consists of PE array, memo-
ry banks (MBs) array, fast switching unit and router
as shown in Fig. 1. PE array, MB array, and one fast
switching unit are constructed one cluster. PE array in-
cludes 16 pipelined PEs and 4 transcendental function
accelerators. PEs in array are connected with adjacent
interconnection. One transcendental function accelera-
tor is shared by 4 adjacent PEs. Data communication
in one cluster is realized through fast switching unit and
adjacent interconnection. Data communication between
clusters is realized through routers. The proposed
structure can be easily scaled with routers.

426

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

cluster T e e
A T N N T
MB

Fast Switching Unit

cluster

B8RO0~ A5K01 75802, 7 A15K03, 7
R0 AR K27 ARG 7
RN D7 557
8507317 K527 5537

S

Fast Switching Unit

MB

Router | —{ Router

—

cluster o A g
R 7 AR 7 ARG 7557
BK20,7 BRI~ A6R2,7 AR5~
RN R

Fast Switching Unit

—

cluster A

K107 8K~ /BRI~ ~BKD3.~
00,7182 78R,
80,7 A1~ 552,753,

MB

Fast Switching Unit
©

y

Router |- — @

Fig.1 CD-DAP architecture

2.1 Pipelined PE based on two-buffer dataflow
driven interface

Three-level pipelining architecture is employed in
PE design. The first level is mainly used to read code
from configurable RAM. The second level is mainly
used to receive data from 4 input ports, register file, or
h-register. The third level is mainly used to process
buffered data from up-level and send processing results
to corresponding destination, may be to 4 output ports,
register file, or h-register. The third level can be fired
only when the needed data arrive.

Its detail architecture is shown in Fig.2. It con-
sists of 4 two-buffer units, Pc fresh unit, instruction
RAM, data receiving unit, data processing unit, gen-
erate ready unit, data fan out unit, control unit, pipe-
line code, register file and h-register.

Two-buffer unit is in charge of receiving data from
east, west, south, or north direction. In order to re-
duce data transfer delay, double buffers are used,
which are alternately working. Simultaneously the buff-
er is realized through dataflow driven. When the input
data is arriving, and at least one buffer is empty or
buffers is full but the buffered data is already being re-
ceived by next level unit, the buffer is fired to save.
The delay of data transfer between adjacent PEs can be
near zero.

Pc fresh unit is used to refresh the value of pro-
gram point, which decides the next code address. It is
controlled by current stage of pipelining. If the code
which is already in third level is processing finished,
Pc fresh can be done immediately. The detail value is

decided by current finished code. If the code is jump-
ing or branch instruction, it is refreshed by correspond-
ing jumping address, or Pc is just added by one.

Data receiving unit is in charge of saving data for
data processing unit, including left data and right da-
ta. Left data may be from 4 input ports, register file,
or h-register, and right data may be from 4 input ports,
register file, immediate or h-register. And saving can
be done only when the next pipeline is finished.

>ag >a
(2 e,
0,99, 9,90
BEE moam
iy ths
NIV | >N OV
= North Generate (N O D
::::E | TwoBufUnit | |71 || ReadyUnit INoRr
DataFout
1.V —» —>{S OV
S_l_D | South L] - l »s0D
:]:R | TwoBufUnit " — l«—{S_O_R
D eive
W_I_Vi—»
ey West] —
&-:.E" TwoBufUnit DataProcess | 1|] Registerfile
] le—|
A el |
b
B V= East Lol -
E_1_D —* TwoBufUnit le | Hregister
E_IR f«—] né
L) L)
Y

—{ IR Ram

PcFreshUnit ControlUnit

PipelineCode [

Fig.2 Architecture of pipelined PE

Data processing unit is in charge of processing da-
ta from data receiving unit. Some operations are sup-
ported, such as add, add immediate, sub, sub imme-
diate, shift, and, or, xor, not, branch, jump, multi-
ply, nop. For satisfying requirements of computer vi-
sion application better, sub-word parallelism operation

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

427

is also supported, including four 8 bits add/sub opera-
tions in one code, two 16 bits add/sub operations in
one code.

Control unit is the key part, which controls Pc re-
freshing, data receiving and processing, ready signals
generating, and register file writing. Pipeline code is
used to buffer code from instruction RAM. And the
buffered code is used to control data processing, result
fan out, ready signals generating, and register file writ-
ing. Instruction RAM is mainly used to save applica-
tion codes, which are from H-tree network. The H-tree
network can be seen in Fig. 3. Register file includes 32
generate registers. H-register includes 2 specific regis-
ters, which are used to save the result from multiply.
Hi is used to save upper 32 bits of result, and ho is
used to save lower 32 bits of result. Some auxiliary cir-
cuits are also used to realize by-pass for avoiding data
hazard.

Generate ready unit is used to generate ready sig-
nals to east, west, south, or north direction, indica-
ting the data from east, west, south, or north direction
whether be received already. Data fan out unit is used
to send result from data processing unit to correspond-
ing destination according to code. There are 4 direction
output registers. Only the register is empty or the regis-
ter is full but the data is already received, the result
can be written.

[IR oy IO

|C1uster \X

L1]
FH FH A A

Fig.3 The architecture of H-tree

2.2 Transcendental function accelerator

Transcendental function accelerator supports sin,
cos, square, square-root, log, exponent, and arctan
computing. One transcendental function accelerator is
shared by 4 adjacent PEs, as shown in Fig. 4.

The architecture of transcendental function accel-
erator is also shown in Fig.5. It comprises one pre-
processing unit, 2 sin/cos function pipeline units, 2
other function pipeline units, and one fan out unit.

Pre-processing unit is used to distribute requests
from 4 PEs to computing pipeline. When conflicting

PE | PE |« PE | PE
00 = 01 | | 02 > 03
[N » A [N » A

v 7 « |V v 7 « |V
PE |< PE e PE |e PE
10 > 11 = 12 > 13
) v 4 ') v !
PE | PE |« PE | PE
20 = 21 | | 22 > 23
TR\ e T * K

v « |V v « |V
PE |e PE e« PE |« PE
30 > 3 32 > 33

Fig.4 The shared architecture

— P —»
R SIN/COS_FUNC_PIPELINE g
E
F
—> II; > SIN/COS_FUNC_PIPELINE > A>
N
2 0
El—» OTHER_FUNC_PIPELINE | U
—»{S T
S
I
N OTHER_FUNC_PIPELINE !
—»|G —

Fig.5 Architecture of transcendental function accelerator

between requests occurs, a random arbitration algo-
rithm is employed. Fan out unit is used to send compu-
tation result to corresponding output ports according to
the result of arbitration. So, the result of arbitration
from pre-processing unit must be pipelined as the same
as data.

Sin/cos function pipeline unit is used to execute
sin and cos computation. The processing delay can
reach one cycle, because piecewise linear algorithm is
employed. According to the result of software statistic,
the style of 16 segments has lower error and fast speed
hardware, so it is employed in this work. Iis circuit
can be seen in Fig. 6.

Al e i 1
< | ! I
o | |
fé:| ! o :
Sl ! o) I
= > I

g2 |1 |,

2 8

| 53] ,

1 G} : .g
21 e !

b3} | R

S E 5

Fig.6 Architecture of sin/cos function pipeline unit

428

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

Other function pipeline unit has three-level pipe-
line structure. Logarithmic system is employed for sim-
ple computation. The input data must be translated into
logarithm form, and then execute corresponding add,
sub, shift operations, finally translate the result into
exponent form. For example, the processing of square
is shown as Eq. (1).

2 - 210g2x2 - 22xlogf — 2(log§)<<1

(1)

So other function pipeline unit has one log conver-

X

tor, some auxiliary circuits, and one pow convertor,
which can be seen in Fig. 7. In this paper, the log and
pow convertors are realized which employs piecewise
linear algorithm. A style of 16 segments is also used,
and the convertor errors can be reached 0.011% and
0.013% for log and pow respectively.

2.3 Distributed shared memory structure

A distributed shared memory structure is designed
in this paper. Its architecture is shown in Fig. 8 (a).
For long distance data communication, a network on chip

(NoC) is used. A 4 virtual channels router is de-
signed, supporting packet switching. Four 32 bits data
will be transferred once. XY routing algorithm is em-
ployed. The delay of virtual channel router can be
reached at one cycle.

<

x2
LOG_CONVERTOR

)
REG
'
POW_CONVERTOR

SEHM. Log

Pow

X2,

algo_type } LNS

Fig.7 Architecture of other function pipeline unit

=]
] B
N EES
g £
L

switching

MB

om o s

PE02 PE03

om as—
®0 e =
©0 o s =

MB02 MB03

1]
p—

row controler

PE10 PE12 PE13

B m=z~—t
4]
owac—
R é ﬁ
oz~
«—t |
LX NSRS

om o=
@0 o=

MBI2 MBI13

b Oz =t

T

PE20 PE22 PE23

o6 n.:'—~|
o aee]
Wn=u~|

g

Lo | Herh [ear

MB22

Fmc-omSzZo
"W OoO®SZ O

otmn.:'—|

=z o

E g
gfPmEQO =S Z Q)

PE32

MB32

fost
switchin

b

row controler

<4 i
PE ARRA’ 1
T T T T T ¥
fast fast fast Tast N
switching switching switching switchin, E
y 1
v || (e] [me] MB d
= ! o v of
‘<R Y (R (R X R) N
W B " B
cluster clusfer’ cluster T
4x4 4x4 x4 4x4 g
[PE ARRA [PE ARRA’ [PE ARRA’ [PE ARRA L
[) vt ¥ _f vy ¥
fast fast fast fast. E
switchin, switchin, switchin, switchin r
. e o ~a
R [{ R /L LR L \ R)
o 5 5 —
cluster
4x4 44
PE ARRAY| [PE ARRA’
v _f ¥y _f
fast
switchin

g
g

== 5

to router controler

(a) Global structure

(b) Fast switching unit

Fig.8 Architecture of distributed shared memory

For data accessing in cluster, a fast switching unit
is designed. Allowing for data accessing frequency, the
request from local MB can be responded immediately,
and the request from other MBs must be judged through
line-row 2 level controllers, and finally arrives at desti-
nation MB. The detail structure of fast switching unit is
shown in Fig.8(b).

Judge unit is used to receive request from PE,
and dispatch the request to local MB or line controller

according to request address. Line controller is mainly
used to receive requests from the same line PEs, and
dispatch 4 requests to corresponding row controller or
router controller. If more than one requests need to ac-
cess the same row controller, a random arbitration al-
gorithm is employed to judge these requests. No re-
plied requests will be postponed. Router controller is
in charge of receiving requests from 4 line’ s controllers
and choosing one to router. Row controller is in charge

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

429

of receiving requests from different lines and dispatc-
hing these requests to corresponding MB according to
request address. If more than one requests need to the
same MB, a random arbitration algorithm is employed
to judge these requests. No replied requests will be al-
so postponed.

3 Computer vision algorithm mapping

To study the efficiency of proposed architecture, 3
computer vision algorithms are realized on proposed ar-
chitecture ; Sobel edge detection, Canny edge detec-
tion, and Harris corner detection.

3.1 Sobel edge detection
Edge detection is a fundamental technique for im-
age segmentation, feature extraction and object track-

ingm]

. In edge detection, Sobel operator is a kind of
commonly used template. The process of Sobel edge
detection is shown in Fig.9(a). The Sobel filtering
matrices for the X and Y directions are shown in Eq. (2).
And the process of filtering can be seen in Eq. (3).

sobel —x = [-1, -2, -1;0,0,0;1,2,1]

sobel -y = [-1,0,1; -2,0,2; -1,0,1]

(2)
= (mb +2 xm7 +mB)
- (m0 +2 xml +m2)

filtering —y = (m2 -m0) — (2 xm5 -2 xm3)
+ (m8 — m6) (3)
Where m0 — m9 stands for 3 X3 source image da-
ta. For mapping Sobel edge detection on proposed ar-

filtering — x

chitecture, one cluster is used. The mapping details
are shown in Fig.9(b). PE0O, PEO1, and PEO2 are
used to load 3 X3 source image data, and send them to
PE10, PE11, and PEI12 to execute x and y directions
filtering. For taking full advantage of data reusability,
PEOO, PEO1, PEO2 all need read data of 3 x3 matri-
xes at the starting of each line. Next, only PE02 needs
read data from memory until this line is finished, and
PEOO and PEO1 just receive data from PEO2. They
work like a sliding window.

PE10 is mainly used to receive data from PEQO,
sends the result of m2 — m0 to PE11 firstly, computes
m0 +2 x ml + m2 next, receives the result of m6 +2 x
m7 + m8 from PE11, and executes sub operation get-
ting the final result of x direction filtering Gu.

Cluster01
LD R1,M0 LDRIMI LD R1M2
LDR2,M3 LD R2,M4 LD R2,M5
LD R3,M6 LD R3,M6 LDR3M8
MOV RS,R1 1#— MOV RS,R1 1 MoV RS,R1 PE03
. MOV RS,R2 MOV RS,R2 MOV RS,R2
Read image MOV RS,R3 MOV RS,R3 MOV RS.R3
MOV R9RN DAY RBRN: MOV R6RN
+ MOV R3RN prisdtod MOV RIRN
XY MOVRGRN [51 R3RS1 MOV R2RN
%5 SUB RE,R6,R9 MOV RIORW SUB RW,R2R6 PE13
ﬂltermg ADD R4RI.R6 ADD R6RIORE ADD R4,R6,R2
SLLRSR3] (e SRR SLLRSRI,I
+ ADDRTRARS Movewse ADD RWR4RS
SUBRS ;}E R7 ADD RSRSRE
Computing
gradient
+ ABS RS, RN ABS RS, RN PE22 PE23
Threshold ¥ ¥
segmentation
i MOV RE, RN [—#>| ADDRE, RN, RW (> smok‘;"“:v"‘sl‘{’w — M;)_:'N!;i,:zw

(a) The process

(b) The mapping details

Fig.9 Sobel edge detection

PE11 is mainly used to receive data from PEO1,
computes 2 X m5 —2 x m3 firstly, receives the result of
m2 — m0 from PE10, receives the result of m8 — m6
and m8 +2 x m7 + m6 from PE12, sends the result of
mb6 + 2 x m7 + m8 to PE10, executes add operation
getting the final result of y direction filtering Gy.

PE12 is mainly used to receive data from PEQ2,
computes m8 — m6 and m8 + 2 x m7 + m6, and sends
the results to PE11. PE20 and PE21 are used to exe-
cute absolute operation. PE31 is used to execute |Gx|

+ 1Gyl. PE32 is used to compare the threshold value.

PE33 is used to write back results.

3.2 Canny edge detection

211 s a kind of classic image

Canny edge detection
edge detection algorithm, and it has wide application.
The process of Canny edge detection is shown in
Fig. 10(a). Gussian filtering is implemented on cluster
01. Each of PEOO and PE32 is used to process 6 lines
image data, each of PEO1 — PE31 is used to process 4

lines image data. PE33 is used to send result to next
cluster.

430

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

Gradient computation and threshold segmentation
are implemented on cluster 02. PE33 is used to receive
filtering results from upper cluster. PE32, PE23,
PE22, PE21, PE11, PE12 are used to compute gradi-

ent. PE10 is used to compare the threshold value and
write back the results. The details can be shown in
Fig. 10(b).

Cluster 01 Cluster 02
Process Process Process Process
1-6 7-10 11-14 15-18 PE 00 PEO1 PE 02 PE 03
. lines lines lines lines
Read image
MOVR 28
Process Process Process Process e | rim [] "g’gx ‘; 2‘ ﬁf
e 19-22 23-26 27-30 31-34 B B o el PE 13
ussian, lines lines lines lines SRR 685 MOVRW, ;R2
ﬁltermg STRJO.RG
‘ MOV% TRS
. Process Process Process Process “S”SX 15 zl ;‘F [gﬁvﬁﬁ ZRI:EI] 583 ; ;ﬁ
Computing 35-38 39-42 43-46 47-50 PE20 OV RN SLLR 421 swom i
gradient lines lines lines lines LA e S
A L]
Process Process Process Send MOV R IRW woyeyan
. em::g:ilgn 51-54 55-58 59-64 resultto PE30 PE3] oumn et [+ MOV RN i
B lines lines Tines cluster 2 MOVRN 23 MOVENIRH
R) —~ R
(a) The process (b) The mapping details

Fig.10 Canny edge detection 3.3 Harris corner detection

Harris corner detection'® is widely used in the

area of feature extraction of computer vision algorithm.
It is simple and has strong stability. The process of
Harris corner detection is shown in Fig. 11 (a).

Cluster 0

Three clusters are employed to map it. Cluster O is

used to implement Sobel filtering. There PE0O, PEO1,

PEQ2 are used to compute the results of x direction filte-

ring Gx. PE30, PE31, PE32 are used to compute the

Cluster 1
LDRI, MO LDRI, M6 LDRI, M3
LD RI,MO LD R1,M6 ":g gﬂz LDR2, M1 LDR2, M7 LDR2, M4
5 > R2M8 [P LDR3, M2 LDR3, M8 LDR3, M5
LDRZM2 s[’ﬁ? R3, R”]’ R2 SUB R3,R1,R2 PE 03 MOV RS, RI MOV RS, R1 MOV RS, R1 PEO3
SUB RE,R1,R2 |ADD m{m'_k SLLR3R3,1 MOV RS, R3 MOV RS, R3 MOV RS, R2
ADD RS.R3 RW MOV RS, R2 MOV RS, R2 MOVRS. R3
SQURLRN SAVRLRN SAV RIRN
PE 10 PE 11 o PE13 (DR R AN PODRIRLE PE13
Read image ADD RSR2R3 ADD RSR2.RY
d sobel ’ X =
and sobe ;
SQU R1,RN Judge MOV RE, DIRERN ppRERN W] Data write
; PE20 PE 21 || writeor .RS R .
filtering STRI ot back
L] [y
LD R1,M0 LD R1,M2 LDRIMI
| DR2M8 | | LDRZM7| | Send data PE30 PE31 PE32 Send data
LD R2,M6 SUB R3R1R2[™ Ssl]I}_ gél;lsl:z to cluster 1 to cluster 2
Gussian SUBRERLRZ] JADDRERSRW] |AppRsR3RwW A
filtering \Cl'{\r { R
_/
Cluster 2 Cluster 3
C . T LDRI1,Ix? LDRIIx*
omputin; SIxy LDR2ly* LD
p g IMOV RS,R1 MOV RS,R1 MOV RSRI PEO3 PEOO PEO 1 PE02 PE03
MOV RS,R2 MOV RS,R2
corner value 3 3
SAYRIEY SAVRIRN
SQURE,Ixy|»| “S001aRs || uLrzr1RN|— ST RW PE10 PE11 PE12 PE13
MOV RER2 SUB RLRZRW
MUL R3,R2K
ADD R3R3,RW
T oA
NoRaAe. i Yvey oV RS
Judge corner PE20 HOE oV oty PE20 PE21 PE22 PE23
MOVRSR3 l{ 15%3 LDR3AS
MOVRERS MOV RSR4 MOV RS,R3
[y
ORI VR SAVRA TV
AR VRN SAVRS RN
PE30 SGVRAN [l SVRRN |l SAVRSR PE30 PE31 PE32 PE33
SLT RERS,R4 SLT RER9,R4
SLTRER7R4 SLTRERIR4 SLTRE, RS, R4
RERS R SLTRER2R4 ige
/ sl
R) (®)
(a) The process (b) The mapping details

Fig.11 Harris corner detection

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

431

results of y direction filtering Gy. PE12 is used to com-
pute the result of Gx*. PE22 is used to compute the re-
sult of Gy*. PE23 is used to judge writing back or not.
PE33 is used to send resulis to cluste 1. The details
can be shown in Fig. 11(b).
Cluster 1 is in charge of Gussian filtering. The pro-
cessing of Gussian filtering can be shown in Eq. (4).
Gussian = (m0 +2 x ml + m2)
+ (mb6 +2 xml + m8)
+2x (m3 +2 xmd + m5) (4)
In cluster 1, PEOO, PEO1, PEO2 are used to read
3 x3 image data, and send them to PE10 — PE12 re-
spectively. PE10 — PE12 receive data from upper PEs.
Simultaneously, PE10 computes m0 + 2 x ml + m2.
PE11 computes m6 +2 x m7 + m8. PE12 computes 2 x
(m3 +2 xm4 +m5). PE21 is used to compute (m0 +
2xml +m2) +(m6 +2 xm7 +m8), and send the
result to right PE. The final filtering result can be got-

(b) Sobel

(e) Fast corner detection

(f) Gaussian pyramid

ten from PE23. PE33 is used to send the results to
cluster 2. The details can be shown in Fig. 11(b).
Cluster 2 is in charge of corner value computation
and corner judging. PEOO — PE13 are used to compute
corner value. When they finish, PE21 - PE33 will
start to work and judge whether a corner or not. The

details can be shown in Fig. 11(b).

4 Simulation and performance analysis

Some computing vision algorithms are realized on
proposed structure. The results can be seen in Fig. 12.
Image in Fig. 12 (a) is original image. Images in
Figs12 (b) — (g) are the result of Sobel edge detec-
tion, Canny edge detection, Harris corner detection,
Fast corner detection, Gassion pyramid, and Histogram

respectively.

(d) Harris

histogram

3000

0 100 200

(g) Histogram

Fig.12 The running results of computer vision algorithms

Computing time of Sobel, Canny, Harris, Fast,
Gaussian pyramid, and Histogram realized on CD-DAP
and the results of peek signal to noise ratio (PSNR)
and root-mean-square error (RMSE) are shown in Ta-
ble 1.

Meanwhile, computing time of Sobel, Canny, Har-
ris realized on CD-DAP compared with which realized
on FPGA and GPU can be seen in Table 2. From this
table, it can be seen that totally processing time of a

512 x 512 image needs 0. 283 ms for Sobel, 0.682 ms

for Canny, 4.985 ms for Harris on CD-DAP, which is
faster than FPGA and GPU.

CD-DAP based on one cluster including 16 PEs,
one transcendental function accelerator, one fast switch
unit and one router has been implemented on Xilinx ZC
706 develop board. The source occupation can be seen
in Table 3. The synthesis result of 4 clusters and the
result compared with other implementation architectures
can be shown in Table 4. The circuit can be run at

100 MHz.

432

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

Table 1 Performance statics of some algorithms

Algorithm name Image size # PEs PSNR RMSE Delay
Sobel 512 x512 16 6.19 125 0.283
Canny 512 x512 32 5.997 127.8 0. 682
Harris 512 x512 64 5.726 132 4.985

Fast 64 x 64 16 5.963 128 2.9
Gaussian pyramid 64 x 64 16 11.917 64.67 1.03
Histogram 64 x 64 16 7.290 110.2 98.2

Table 2 Computing time of Sobel, Canny, Harris (unit; ms)

Structure Image size Sobel Canny Harris
FPGA##] 512 x512 1.31 0.46 18.57(640 x480)
Gput! 512 x512 2.1 3.31 1.7(560 x555)
CD-DAP 512 x512 0.283 0.682 4.985

Table 3 Synthesized results for one cluster of CD-DAP

36k Power
Module FF LUT BRAM (W)
16 x PE 3904 26 400 16 -
Transcendental
function 927 5322 0 -
accelerator
Bastowllch ;510 gam 0 -
unit
Router 140 746 0 -
Total 6281 38 900 16 0.844

The same circuit has been synthesized using SMIC
130 nm COMS technology. The circuit can be run at

Refs[19,30,31], the proposed architecture has higher
frequency. Area in Ref. [19,30] are larger than the
proposed architecture. The architecture in Refs [19,
30,31] has 32 kB, 171 kB, 16 kB data memory re-
spectively, however CD-DAP based on 4 clusters has
256 kB data memory. 4096, 3072, 80 PEs are inte-
grated in Ref. [19,30,31] respectively. The proposed
architecture has 64 PEs, and can be scaled easily,
meanwhile compared with Ref. [19,30,31], the PE is
more complicated and functional. 8 bit, 16 bit, 32 bit
data width can be supported simultaneously in this
work , however only 10 bit data width is supported in
Ref. [19], 8 bit data width is supported in Ref. [31]
and 11 bit data width is supported in Ref. [30].

100 MHz. Area is 26. 58 mm’. Compared with
Table 4 Performance and resource usage
Ref. [19] Ref.[30] Ref. [31] Ref. [15] Ref. [29] The proposed
Develop 1 Xeon CPU +4 Xilinx Xilinx -
board i i) Virtex-5 Virtex-6 Ailine 26706
Clock - - - 150 MHz 150 MHz 100 MHz
LUT - - - - 134 520 232 250
FPGA (4 clusters)
120 184
T¥ i i) i 148323 (4 clusters)
36K-BRAM - - - - 139 -
Power - - - - 5.056 W -
Technology 180 nm 130 nm 130 nm - - 130 nm
Clock 50 MHz 80 MHz 20 MHz - - 100 MHz
> 82.32 113 7.75 - - 26.58
ASIC Area(mm"”)
of PE 4096 3072 80 - - 64
Data memory 32 kB 171 kB 16 kB - - 256 kB
Data width 10 bit 11 bit 8 bit - - 8 bit, 16 bit, 32 bit

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

433

5 Conclusions

A clustered data-driven array processor for com-
puter vision is proposed. To reduce data transfer de-
lay, a double buffer dataflow driven interface is de-
signed. For improving data parallel computation, 8
bits, 16 bits, 32 bits subtext parallel computation has
been supported. For accelerating computer vision ap-
plications further, a four-way shared pipelining tran-
scendental function accelerator based on Y-intercept
adjusted piecewise linear segment algorithm is de-
signed. Simultaneously, a distributed shared memory
structure based on unified addressing is also employed.
Through employing fast switching unit realizing data
transfer in cluster and NoC using for data communica-
tion between clusters, data accessing delay is reduced
dramatically.

Sobel, Canny, Horris, Fast, Gaussian pyramid,
and Histogram algorithms are implemented on proposed
architecture. The computing time is statistic. Simulta-
neously, CD-DAP based on 4 clusters has been imple-
mented on Xilinx ZC 706 develop board. The same cir-
cuitry has been synthesized using SMIC 130 nm COMS
technology. The circuitry can be run at 100 MHz. Area
is 26.58 mm’.

References

[1] Ratha N K, Jain A K. Computer vision algorithms on
reconfigurable logic arrays [J]. IEEE Transactions on
Parallel and Distributed Systems, 1999, 10(1) :29-43

[2] Backes L, Rico A, Franke B. Experiences in speeding up
computer vision applications on mobile computing plat-
forms[C] //International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simula-
tion, Samos, Greece, 2015:1-8

[3] Elliott G A, Yang K, Anderson J H. Supporting real-time
computer vision workloads using OpenVX on multicore +
GPU platforms [C] // International Conference on Real
Time and Networks Systems, San Antonio, USA, 2015.
77-86

[4] Kokkinos I .
neural network for low-, mid-, and high-level vision
using diverse datasets and limited memory [C] // 2017
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) , Honolulu, USA, 2017 1063-1069

[5] Chakrabarti A, Xiong Y, Gortler S J, et al. Low-level vi-

sion by consensus in a spatial hierarchy of regions[C] //

UberNet; training a universal convolutional

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Boston, USA, 2015. 4009-
4017

[6] Wallace A M, Michaelson G J, Mcandrew P, et al. Dy-
namic control and prototyping of parallel algorithms for
intermediate- and high-level vision [J]. Computer,

1992, 25(2) :43-53

[7] Maggipinto M, Terzi M, Masiero C, et al. A computer vi-
sion-inspired deep learning architecture for virtual metrol-
ogy modeling with 2-dimensional data[J]. IEEE Trans-
actions on Semiconductor Manufacturing , 2018, 31(3) ;
376-384

[8] Wang D, Foran D J, Qi X, et al. HetroCV: auto-tuning
framework and runtime for image processing and comput-
er vision applications on heterogeneous platform [C] //
International Conference on Parallel Processing Work-
shops, Beijing, China, 2015.119-128

[9] Puglia L, Vigliar M, Raiconi G. Real-time low-power FP-
GA architecture for stereo vision[J|. IEEE Transactions
on Circuits and Systems II. Express Briefs, 2017, 64
(11) . 1307-1311

[10] Kotselidis C, Clarkson J, Rodchenko A, et al. Heteroge-
neous managed runtime systems: a computer vision case
study[C] // The 13th ACM Sigplan/sigops International
Conference on Virtual Execution Environments, Xi’ an,
China, 2017.74-82

[11] Fung J, Mann S. Using graphics devices in reverse:
GPU-based image processing and computer vision[C] //
IEEE International Conference on Multimedia and Expo,
Hannover, Germany, 2008.:9-12

[12] Lee Y, Jang C, Kim H. Accelerating a computer vision
algorithm on a mobile SoC using CPU-GPU co-process-
ing: a case study on face detection[C] // International
Conference on Mobile Software Engineering and Systems,
Austin, USA, 2016:70-76

[13] Ttofis C, Theocharides T. High-quality real-time hard-
ware stereo matching based on guided image filtering[C]
// Design, Automation and Test in Europe Conference
and Exhibition, Dresden, Germany, 2014.1-6

[14] Chadjiminas I, Kyrkou C, Theocharides T, et al. In-field
vulnerability analysis of hardware-accelerated computer
vision applications [C] // International Conference on
Field Programmable Logic and Applications, London,
UK, 2015.14

[15] Choi J, Rutenbar R A. Configurable and scalable belief
propagation accelerator for computer vision[C] // Interna-
tional Conference on Field Programmable Logic and Ap-
plications, Lausanne, Switzerland, 2016.14

[16] Guo Z, Han J, Li T. Implementing OpenVX on a poly-
morphous array processor[C] //IEEE International Con-
ference on Communication Technology, Hangzhou, Chi-
na, 2015.598-601

[17] Tagliavini G, Haugou G, Marongiu A, et al. ADRENA-
LINE : an OpenVX environment to optimize embedded vi-
sion applications on many-core accelerators[C] // IEEE
International Symposium on Embedded Multicore/Many-
Core Systems-On-Chip, Turin, Italy, 2015.289-296

[18] Schwambach V, Cleyetmerle S, Issard A, et al. Estima-
ting the potential speedup of computer vision applications
on embedded multiprocessors [J]. Computer Science,
2016, 2007(1) :1-14

[19] Shi C, Yang J, Han Y, et al. 7.3 A 1000 fps vision
chip based on a dynamically reconfigurable hybrid archi-
tecture comprising a PE array and self-organizing map

neural network[C] //Solid-State Circuits Conference Di-

434

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

gest of Technical Papers, San Francisco, USA, 2014 .
128-129

[20] Wang J, Wang H, Wu S, et al. Design and implementa-
tion of real-time Sobel edge detection on FPGA for mobile
device applications[C] // ACM International Workshop,
Hangzhou, China, 2015:9-14

[21] Ogawa K, Tto Y, Nakano K. Efficient canny edge detec-
tion using a GPU[C] // 1st International Conference on
Networking and Computing, Higashi-Hiroshima, Japan,
2011.:279-280

[22] Hsiao PY, Lu C L, Fu L C. Multilayered image process-
ing for multiscale Harris corner detection in digital reali-
zation[J|. IEEE Transactions on Industrial Electronics
2010, 57(5) :1799-1805

[23] Amara A B, Pissaloux E, Atri M. Sobel edge detection
system design and integration on an FPGA based HD vid-
eo streaming architecture[C] // Design and Test Sympo-
sium, Hammamet, Tunisia, 2017 ;160-164

[24] Sangeetha D, Deepa P. An efficient hardware implemen-
tation of Canny edge detection algorithm[C] // Interna-
tional Conference on Vlsi Design and 2016 International
Conference on Embedded Systems, Kolkata, India,
2016 :457462

[25] Aydogdu M F, Demirci M F, Kasnakoglu C. Pipelining
Harris corner detection with a tiny FPGA for a mobile ro-
bot[C] //IEEE International Conference on Robotics and
Biomimetics, Shenzhen, China, 2013.2177-2184

[26] Dore A. Performance analysis of Sobel edge filter on het-
erogeneous system using opencl[J |. International Jour-
nal of Research in Engineering and Technology, 2014,
15(3) . 53-57

[27] Huang Y, Bai Y, Li R, et al. Research of Canny edge
detection algorithm on embedded CPU and GPU hetero-
geneous systems| C] // International Conference on Natu-
ral Computation, Fuzzy Systems and Knowledge Discov-
ery, Changsha, China, 2016.647-651

[28] Luo S, Zhang J. Accelerating Harris algorithm with GPU
for corner detection[C] //17th International Conference
on Image and Graphics, Qingdao, China, 2013:149-153

[29] Nieto A, Vilarifio D, Brea V M. PRECISION: a recon-
figurable SIMD/MIMD coprocessor for computer vision
systems-on-chip[J]. IEEE Transactions on Computers,
2016, 65(8) :2548-2561

[30] Millet L, Chevobbe S, Andriamisaina C, et al. A 5500-
frames/s 85-GOPS/W 3-D stacked BSI vision chip based
on parallel in-focal-plane acquisition and processing[J .
IEEE Journal of Solid-State Circuits, 2019, 54 (4) .
1096-1105

[31] Schmitz J A, Gharzai M K, Balkir S, et al. A 1000
frames/'s vision chip using scalable pixel neighborhood-
level parallel processing[J]. IEEE Journal of Solid-State
Circuits, 2017, 52(2) : 556-568

Shan Rui, born in 1986. She received her Ph. D
degree from Xidian University in 2018. She also re-
ceived her M. S. degree from Xi’ an University of Posts
and Telecommunications in 2011. Her is an associate
professor at Xi’ an University of Posts & Telecommuni-
cations. Her research focuses on integrated circuit de-
sign.

