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Abstract

The crowdsourcing-based WLAN indoor localization system has been widely promoted for the ef-
fective reduction of the workload from the offline phase data collection while constructing radio
maps. Aiming at the problem of the inaccurate location annotation of the crowdsourced samples, the
existing invalid access points ( APs) in collected samples, and the uneven sample distribution, as
well as the diverse terminal devices, which will result in the construction of the wrong radio map, an
effective. WLAN indoor radio map construction scheme ( WRMCS) is proposed based on
crowdsourced samples. The WRMCS consists of 4 main modules: outlier detection, key AP selec-
tion, fingerprint interpolation, and terminal device calibration. Moreover, an online localization al-
gorithm is put forward to estimate the position of the online test fingerprint. The simulation results
show that the proposed scheme can achieve higher localization accuracy than the peer schemes, and
possesses good effectiveness and robustness at the same time.
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0 Introduction

With the rapid spread of smart mobile terminals
and the large-scale deployment of the Internet, location
based service (LBS) has been widely used in various
fields of daily life. In some special cases like emergen-
cy rescue, public safety and smart city construction, it
is necessary to obtain the exact location of people or
objects in the indoor environment. Since wireless local
area networks ( WLANs) have been deployed on a
large scale in public places such as schools, hospitals,
shopping malls, etc. , it is possible to estimate the lo-
cation of users by relying solely on software develop-
ment without using any additional hardware facilities
which makes the indoor localization using WLAN sys-
tems the current mainstream and the most promising
method in the future.

At present, the most widely used Wi-Fi-based in-
door localization algorithm is a location fingerprint lo-
calization algorithm based on crowdsourced samples,
where the localization fingerprint''' sets up a mapping
from the location in the physical environment to a sin-

gle or multi-dimensional fingerprint of some kind so as
to ensure one location for each unique fingerprint. The
fingerprint in the Wi-Fi location fingerprint location al-
gorithm refers to the received signal strength (RSS) of
the access point ( AP)"*.

gy"*! can reduce or even eliminate the huge workload of

Crowdsourcing technolo-

site surveying, which will hand over the construction of
radio map to a large number of users, and integrate a
small amount of RSS data collected by each user to ob-
tain the radio map data for a large area. Such technolo-
gy allows the users participating in the update of radio
map fingerprint data while enjoying the location service.

Alihough the use of crowdsourced samples for in-
door radio map construction can reduce the cost of up-
dating the fingerprint database effectively in the offline
phase, some new challenges arise. First of all, in the
offline phase of the traditional WLAN fingerprint loca-
tion system, a series of reference points are set in the
to-be-positioned area to collect the RSS values of the
surrounding detectable APs. The position coordinates
of the reference points and the corresponding RSS are
collected and stored together in the fingerprint data-
base. The crowdsourced samples, however, may not
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be acquired at the specified reference point, which
may cause incorrect location annotation of the sample
as well as constructing the wrong radio map. Secondly,
only a few of the Wi-Fi APs detected by mobile termi-
nals can contribute to localization. If all the APs are
taken to construct the radio map, it will not only take
up too much storage space, but cause heavy computa-
tional overhead. Moreover, the samples collected at
the same location by the same mobile terminal may also
contain different detectable source APs to cause incon-
sistent dimensions so as to affect the normalization of
radio map. Thirdly, the lack of mandatory requirement
for the crowdsourcing process may result in uneven dis-
tribution of the samples collected throughout the indoor
environment. Finally, the different mobile terminals
used to collect fingerprint data may cause serious de-
vice diversity problems, no matter in online phase or
offline phase.

Aiming at the problems discussed above, a new
WLAN indoor radio map construction scheme based on
crowdsourced samples ( WRMCS) is proposed in this
paper. The density-based algorithm in unsupervised
machine learning framework is established, and a
source selection algorithm is set up based on AP ac-
ceptance rate. Moreover, the fingerprint interpolation
algorithm is introduced based on surface fitting tech-
niques and the inter-device calibration algorithms are
optimized based on receiver pattern analysis, which
can help achieve low-cost and high-precision radio map
construction.

The subsequent sections are arranged as follows:
Section 1 will analyze the problems encountered in the
construction of indoor radio map and typical solutions
comprehensively. Section 2 will establish the source
selection algorithm based on AP acceptance rate and
the fingerprint interpolation algorithm based on surface
fitting technology to construct the offline radio map. An
improved nearest neighbor (NN) online localization al-
gorithm will be proposed in Section 3 associated with
the constructed offline radio map to estimate the posi-
tion of the online test fingerprint. Simulating results
will be analyzed in Section 4 and the conclusion will be
provided in the end.

1 Related work

The problems of inaccurate sample location anno-
tation, collected samples containing invalid access
points ( APs) , uneven sample distribution, and diver-
sity of terminal devices have been studied since such
factors always have serious effect on the indoor positio-
ning performance and practical application. Ref. [4]

proposed a bottom-up hierarchical clustering algorithm
to distinguish correctly labeled samples from all sam-
ples so as to avoid the wrong sample annotation. Such
hierarchical clustering algorithm, however, requires a
random selection of initial samples, which may intro-
duce samples with erroneous markings. The most fa-
mous research on the selection of key APs is the infor-
mation-based InfoGain algorithm'®! | which used the in-
formation gain to measure the average RSS to decide
the discriminability of different APs. Ref. [6] studied
the correlation between different APs to improve the In-
foGain algorithm. Considering the inherent defects in
indoor environment, an enhanced machine learning in-
door localization scheme was proposed in Ref. [7]
combined with AP selection and signal strength recon-
struction effectively, which can help enhance the ro-
bustness in noisy environments. A nonlinear auto-en-
coder was proposed in Ref. [8] to reduce the dimen-
sionality of the radio map. Machine learning-based
methods generally exhibit better performance than in-
formation-based methods, but the heavy computing
load brought in by machine learning methods during of-
fline and online processing cannot be ignored.

The terminal difference is another factor to affect
the positioning results. Ref. [9] achieved normaliza-
tion received signal strength indicator ( RSSI) distribu-
tion of various types of terminal devices using the ker-
nel density estimation to solve the problem of device di-
versity. However, the RSSI probability density distri-
bution estimation algorithm adopted the absolute re-
ceived intensity value of the RSSI, the instability of
which cannot be avoided due to the occlusion of obsta-
cles and the changes of the indoor environment. Hos-
sain et al. "' concluded that the signal strength differ-
ence (SSD) had stronger stability than the RSS value
by studying the stability of the SSD between different
APs. However, SSD only considers the proportional
term of the linear transformation equations. It is neces-
sary to combine the research results of the offset term
in the RSS difference fingerprint method to obtain more
complete results.

This paper will propose a new radio map construc-
ting method with crowdsourced samples to solve the
above 4 problems effectively by outlier detection, key
AP selection, fingerprint interpolation and terminal de-
vice calibration, so as to realize the construction of ra-
dio map with low cost and high precision.

2 Construction of offline radio maps

2.1 System model

The target environment will be divided into differ-
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ent sub-regions according to the functional layout of the
indoor environment and wall partitions, such as class-
rooms, corridors, etc. Each sub-region is then further
divided into non-overlapping grid cells of the same
size. Users participating in crowdsourcing will collect
samples at each grid center, and each sample has a lo-
cation annotation in the grid. Finally, these samples
are represented in the form of data cubes, that is, each
grid has a data cube to form a grid fingerprint, thereby
constructing an offline radio map M for each sub-re-
gion. Table 1 in the appendix gives the main symbols
of this article.

Let S and F represent the sample set of a grid and
its fingerprint, respectively. The sample set S is repre-
sented by a data cube, where each vertical slice of the
data cube represents a sample acquired by a different
device D, and each row vector in the slice represents a
sample consisting of collected RSS values from different
APs. F is a grid fingerprint vector, and each element
in the vector is an RSS value from a specific AP. All
grids are divided into 2 categories: a sufficient grid and
a deficient grid. The former one is defined as the grid
with at least one device containing enough samples;
and the latter means that there are not enough samples

being collected in such grid even for one device type.
The proposed offline system consists of 4 modules ;
(1) outlier detection (OD), (2) key AP selection
(KAS), (3) fingerprint interpolation (FI), and (4)
terminal device calibration (TDC), with the help of
which the proposed scheme WRMCS can solve all the 4
core problems. Each grid fingerprint is constructed by
the corresponding process on the original data cube.
The system architecture of the proposed scheme
WRMCS is shown in Fig. 1 with the specific processing
as follows. Firstly, the outliers are detected and dele-
ted from the crowdsourcing sample S. Only one subset
of all APs being detected is selected to constitute the
device-specific fingerprint f. For the deficient grid, a
fingerprint will be interpolated to make the spatial dis-
tribution of the sample uniform. After that, the finger-
prints from different devices will be calibrated and
fused into a single, device-independent grid finger-
print. Finally, an improved online location algorithm is
established to estimate the location of online test finger-
prints. Fig.2 is the data processing flow of the pro-
posed scheme. The blank grid in data grid and sub-re-
gion sections represents the defect grid. The data cube
can be processed as follows. After the outlier detection
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is completed, the sample §, collected by device D, will
be deleted, and AP, detected by device D, will also be
A de-
vice-specific fingerprint f should be built up for each

deleted after every device selects the key AP.
device. For the deficient grid, the device-specific fin-
gerprint will first be constructed by the fingerprint in-
terpolation module with the terminal device calibration
being performed. Then the grid fingerprint F' is com-
posed for each grid and a radio map M is constructed
for a sub-area. The 4 modules of the offline system are
introduced below.

2.2 Outlier detection

Crowdsourcing samples need some locational an-
notations to build the training fingerprint. Some sam-
ples, however, may not be acquired at the specified
reference point to make the annotations inaccurate,
which may cause wrong constructions of the training
fingerprint and the radio map. Specifically, the AP set
being detected usually consists of the APs appearing
once or many times in their samples when constructing
a grid fingerprint. In addition, in the subsequent con-
struction steps, the average calculation for RSS is usu-
ally performed for each AP being detected in the sam-
ple. Therefore, the sample with errors will cause at
least 2 problems: the changes of the AP set being de-
tected in the grid and the deviation of the average RSS
from the true value.

To solve such problems, the clustering method in
unsupervised machine leaming algorithms is adopted
for outlier detection. Specifically, the density-based al-

") is selected with samples being clustered ac-

Here the
sample being measured within its annotated grid is

gorithm
cording to the similarity-based local density.
the sample is an

called a normal sample; otherwise,

outlier. Theoretically, the similarity between normal
samples would be higher than that between normal
samples and outliers, and also higher than that between
outliers.

Such process will be performed on each slice in
every data cube by the proposed scheme since the out-
lier detection is specific to the device. Let S, = {s,,

sy} denote the set of samples collected by a parti-
cular device D, each of which is a vector consisting of
RSS values, and N is the total number of samples. Let
A, denote the set of APs detected in sample s,. M =
| UA, | denotes the total number of all APs being
detected in S;,. The fact that not all devices can
detect all APs makes the values of M and N be
different for different devices and bandwidths. An N
x M RSS matrix R is constructed for each device,

where the element r,, represents the RSS value

received from the mth AP by the nth sample. The

signal distance between the 2 samples is computed
by Eq (1).
/\/EmeA}{}{(rnm_ nm)2 (1>

where A,m', =A,NA,is the set of APs detected in both

samples. The smaller the signal distance d,, is, the

more similar the 2 samples will be.

Algorithm 1  Cluster-based iterative outlier detection

Require: The set of samples S,

Ensure: The normal set S}

1: Compute d,, between all sample pairs in S,

: Sort the N x N distances d,, into D

: Compute d, as the B8 percentile distance of D

: Compute B, and p, for each s, € S)

: SetS;=S5,,8, =0

: Cluster each s, e S, into S;(S;) based onp,=p;(p, <pr)
. while S; = @ do

Pop a sample s from S

O 00 9 O Lt A W

for each sample s; € S do
ifs* < B, thenB, =B,/ |s° |
if |B,I <p, then S} =S,/ {s,}, S; =S/1{s,}
end for

b—
W N = O

. end while
: Return S

—
~

Two thresholds are further defined"” as the
density threshold p; and the cutoff distance d,. If
there isd,,, <d,,
of s,. LetB, ={n'ld, <d,} denote the neighbor set
of the nth sample s,.

the sample s, is called the neighbor

The local density p, of the
sample is defined as the number of its neighbors as
= |B,|. According to the clustering algorithm of

Ref. [13
abnormal value if the number of neighbors of the

1, the sample s, will be considered as an

sample §, is less than the density threshold, namely
p. < pr; otherwise, it is considered to a normal
sample.

The proposed WRMCS scheme will iterate over
the outlier detection, with the pseudo code given as
in Algorithm 1. Firstly, all samples are divided into
the normal value set S}, and the abnormal value set S}
according to the number of sample neighbors. When
there is an outlier s * in S), s will be popped up and
the neighbor of each normal sample s; € S will be
updated. After that,
may be lower than the density threshold,

being detected as the outlier and listed in S). The

the local density of sample s,
to make s,

iteration will terminate until S = @.
During the outlier detection, the sample s, being
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detected as the outlier may make its neighbor sample
s; with a small distance be an outlier as well. In fact,
if the local density satisfies p, > p, at the first
iteration, the sample s, may be a normal value at this
time, but the abnormal value s, is already included
in the calculation of p; (the number of neighbors of
s;). After deleting the outliers, such problem can be
solved by the proposed scheme through recalculating
the local density of the samples for each iteration.

After the outlier detection, S} can still be used
to represent the normal sample set, and a new RSS
matrix R with N x M‘" can be constructed for
each device in the grid.

2.3 Key AP selection

In fact, there are many APs that can be
detected in S}, but only a few of them will contribute
to indoor localization. On the one hand, the samples
even collected at the same location may contain
different detectable sources APs due to the changes
in radio propagation or in the collector’s direction,
which may cause the inconsistent sample
dimensions. On the other hand, an AP may exist in
the undeleted outlier s; in S, which may introduce
an unexpected AP so as to compose a wrong grid
fingerprint.

To solve this problem, a source selection
algorithm based on the AP acceptance rate is
proposed to select a proper subset of APs for
effective localization to help construct
device-specific fingerprints for each device. Let N,
denote the number of non-empty elements in the mth
The acceptance rate of the mth AP
is defined as P, = N,/N'" and the acceptance rate
threshold is P;. If there is P, < P, the mth column
of the matrix R‘" will be deleted, that is, the RSS
value of the mth AP detected in each sample will be
deleted.

After selecting the key AP, a new N x M

RSS matrix R® can be constructed for each device

column in RV,

in the grid, with the element r,, in the matrix
representing the RSS value obtained from the mth AP
in the nth sample. Next, a common RSS averaging
method is used to construct the device-specific
fingerprint f for each grid. The average RSS of the
mth AP can be obtained by

S L (2)

r. .|

rm
where r . is the mth column vector of R | so as to
construct the device specific fingerprint asf = (r,,--,

rM(2)>-

2.4 Fingerprint interpolation

The fact that crowdsourcing is adopted to collect
the samples randomly may result in uneven distribution
in the entire indoor environment. Some grids may have
little or no crowdsourcing samples at all. For example,
there may be fewer crowdsourced samples at the edge
of the classroom than those at the central area of the
classroom. Aiming at such problem, the proposed
WRMCS scheme established a fingerprint interpolation
module for the deficient grid lack of samples. A finger-
print will be selected by such module from a neighbor-
ing sufficient grid in the same subarea to be inserted as
a device-specific fingerprint.

A fingerprint interpolation algorithm is proposed
based on surface fitting technology. An interpolated
fingerprint candidate set will be constructed before the
fingerprint interpolation process with the pseudo code
of the proposed algorithm given in Algorithm 2, where
G is the set of all the grids in one subarea, and Gy is
the set of interpolated fingerprint candidates.

Algorithm 2  Perform fingerprint interpolation on the deficient grid

1: Set finished = FALSE, G, = O

2. while not finished and G/G; # O do

3: Update Gy = includeOneSurroundingGrid (G, g)
4. Update the set of devices D

5. for eachd € Ddo

6: Compute Q! = countSupportFingerprint (D, d)
7.  ifQ? > y then finished = TRUE, break

8. end for

9: end while

10. for eachd e D with Qd > ydo

11: Compute A%, =N é’eGSAZ

12: for eachm e AL, do

13. Construct ¢,, ( +) according to Eqs(1) and (2)
14, Compute 7 = ¢, (+)

15: end for

16; Compose an interpolated fingerprint fz = (). Ady
17 end for

The process of constructing an interpolated finger-
print candidate set is as follows. A neighboring grid of
the deficient grid is added into G;. The function in-
cludeOneSurroundingGrid ( G, g) is set up to include
the surrounding grid g in G/ G into G, while grid g is
the neighboring grid of a deficient grid or any grid in
Gs. Let D,and D = U

the grid and that in Gy, respectively; f: denote the de-

¢ccsD, denote the device set in

vice-specific fingerprint of device d in grid g. The
function countSupportFingerprint (D, d) is established
to record the number of fingerprints of device d in dif-
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ferent grids of the interpolated fingerprint candidate set
Q. An interpolation support threshold vy is also defined
with a typical value as a small integer. If the G/Gy is
not an empty set (that is, there are other grids in the
subarea except the grid set G¢) or none of device d in
all sets D contains more than vy fingerprints, G will be
built continually by including its other surrounding
grids. Otherwise, the building process of G will termi-
nate.

After the fingerprint interpolation candidate set is
constructed, the fingerprint interpolation is performed
as follows for each device d in D with the condition of
Q! > vy. Let AZ denote the set of APs detected by de-
A? is the set of APs to

geGg' g

vice d in grid g; AL, =N
perform fingerprint interpolation for the deficient net-
work. For each AP m in A? | a function ¢, (x,, v,)
will be constructed to minimize the sum of squared er-
ror of the following error based on the least squares
principle, as shown in Eq. (3).

minf = 2 (. (x,,5,) —er)Z (3)

geGg, meAd

where, (x,, y,) is the center coordinate of the grid g,
and er is the RSS value of the mth AP detected by de-
vice d in grid g. The surface fitting function ¢,, is

formed using a binary polynomial function;
P

bu(x,y) = X Yoy (4)

es1 d
where , w_, is a polynomial coefficient. The specific po-
sition coordinates input will achieve a deterministic
RSS results by ¢,,.

The interpolation of AL, into the deficient grid and
the construction of ¢,, for each AP in A%, will make de-
vice d insert the RSS value 7% of the mth AP into the
deficient grid as the output of ¢,,. Such output 7. being

added into each AP in A®

nt

can make up the interpolated

device-specific fingerprint for the deficient grid.

2.5 Terminal device calibration

Different types of mobile phones participating in
crowdsourced fingerprint collection have different an-
tennas and receiver gains, which may cause at least 2
problems: (1) Sample measurements from the same
source may be different even at the same place; (2)
Much storage space and computing time may be taken
to create multiple grid fingerprints for one specific de-
vice.

Therefore, a new inter-device calibration algo-
rithm is proposed based on receiver pattern analysis to
calibrate specific fingerprints for different devices and
combine the fingerprints collected by multiple devices
into a single device-independent grid fingerprint. Fig. 3

gives the comparisons of the RSS values at the same lo-
cation by using 4 different devices, which shows that
there are similar differences between different APs.
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d

Let F = {fl,---,f ,---,de} denote the set of

device-specific fingerprints, and A% is set to represent
the set of APs collected by device d; A, = Uj‘: : A

and A,, = ﬂ;vilAd represent the union and intersection
of APs detected by all device types N,, respectively;

A’ = A,,, - A’ represents the set of AP being not detec-
ted by device d. Let M® =1 A, | denote the total

number of APs from all devices. Each device’s specif-

d .o
m

ic fingerprint f* = (r?, -, 1%, -, r;m) should have

M® RSS values. However, in actual situations, the
fact that not every device can detect the RSS value of
all APs may cause some r being lost.

The missing values will be calibrated as follows.

Nq
Letr, = 1/N, 2 r’, m e A,,, denote the mean
=1

m? nt

RSS value of the mth AP detected by all devices. A

calibration factor A? can be defined for each device d as
Eq. (5).

A I

= A | Z (ri_;m>’d =1"“’Nd(5)

int ' medAy,

The inter-device fingerprint calibration is per-
formed for each AP m in set A, —A,,. Let D, denote
the device set with corresponding . missed, which lies
in the complement D,. The value of 7 ( calibration val-
ue) of alld e D,, can be obtained according to the lin-
ear Eq. (6).

M (YY) =AY deD, (6)

4 deD, deD,,

Therefore, it is always possible to calculate a
unique solution 7 to fill the missing value r’ for each
deviced € D,,.

After the missing RSS values are populated, an IV,
x M® RSS matrix R® can be constructed for each
grid with the element r* representing the original/cali-
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brated RSS value from the mth AP of device d. Final-

ly, a column-by-column averaging calculation is per-

formed to obtain an independent device grid fingerprint
1 m M3)

Fg:(r‘g,”"rg"”,rg )'

3 Online localization algorithm

Based on the constructed offline radio map, an
improved nearest neighbor (NN) online localization al-
gorithm is proposed by selecting the candidate grid
through the number of mutual sources and determining
the target grid based on the comparison of distances be-
tween transformed fingerprints.

Let ¥, = (r;,---, ry) denote the offline finger-
print of grid g5 F, = (r} ,+--, ") is the online test fin-
gerprint. Let A, and A, represent the set of detectable
APs of fingerprints F, and F,, respectively, and the AP
intersection of the 2 fingerprints will be A;, = A, N A,.
The candidate grid should be selected for distance cal-
culation firstly. All available grids will be sorted in de-
scending order according to the number of mutually de-
tected APs K, =1 A, |, with the top pth grids being
selected as the candidate grids.

The online fingerprint conversion is then per-
formed. F, is adopted again to represent the candidate
(%) mea,, and o=

(r7") mea,, denote the grids and test fingerprints of the

grid fingerprint. Let F ;“'

RSS values consisting only of those mutually detectable
APs in intersection A, , respectively. The averages of
F}" and F," can be obtained by

_ 1 m

r"’ZIA. | zA.rg (7)
1

nt

r

r

; (8)

The transformed fingerprint used for distance cal-

CTTA

int ' medy,

culation is defined as
F,=F) -7, = (1] =7) nes, (9)
E, =B ~% =0~k (10)
The converted fingerprints F , and F, are independ-
ent to the device receiver gain, which can solve the de-
vice diversity problem. The signal distance can be cal-
culated using the average Euclidean distance between 2
fingerprints as
D(F,, F) =
1
| A,

int

- (r;" _fz))z

(11)
The target grid will be determined by the grid with

z ((r;," _fg)

me Ay

the minimum signal distance, and the corresponding
grid center will be selected as the estimated position of

the test fingerprint.

The candidate grid selection has the following ad-
vantages; (1) only a part of the grids are selected to
perform grid fingerprint conversion so as to reduce the
online calculation time greatly; (2) candidate grids
with more mutually detectable APs are selected, to
make more APs be shared between online and offline
fingerprints, which means the radio environment in
grid g is more like the radio environment for testing fin-
gerprints, so as to increase the locating accuracy.

4 Experimental and simulation results
analysis

4.1 Experiment setup

On-site measurements are performed in the Elec-
tronic Engineering College Lab Building. A total of
1460 grids are established with the size of each grid
being 0. 5 m x 0. 5 m. The RSS measurements are
taken from the existing WLAN APs using 5 different
smartphones labeled as P1, P2, P3, P4 and PS5, re-
spectively. Ten samples are acquired in each grid by
P1, P2, P3 and P4 to produce a total of 58 400 train-
ing samples. Each experimental device can collect 650
online test fingerprints evenly distributed in the envi-
ronment , so a total of 3 250 test fingerprints can be ob-
tained.

The grid lying less than 1m away from the center
of the given grid will be considered as a normal grid;
otherwise, the grid will be considered as an outlier.
Four device-specific online test data sets are set up as
Testl, Test2, Test3, Testd, Test5S, and an independ-
ent device hybrid online test data set is established as
well.

4.2 Experimental results
4.2.1 Performance analysis of radio maps based on
survey samples

The proposed scheme is applied to a field survey
to construct an offline radio map, being referred to as
RM-SS, where each training sample is obtained within
a particular sufficient grid. In this experiment, only
the device calibration module is adopted to verify the
ability of the proposed scheme to handle device diversi-
ty issues.

Radio maps are constructed for each device based
on the samples from smartphone surveys, being labeled
as RM-P1, RM-P2, RM-P3 and RM-P4, respectively.
In addition, a device fusion algorithm is developed to
obtain the RSS averages of survey samples from all 4
devices, and a radio map called RM-DF is constructed
correspondingly. Fig.4 is the comparison of the aver-
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age localization errors (ALE) of the radio maps con-
structed using these 4 device-specific test data sets.
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Fig.4 Comparison of average positioning errors of radio maps

It can be clearly seen from Fig. 4 that RM-SS can
achieve the best localization performance. In particular,
it can decrease ALE by 30.09% , 19.32% , 39. 65%
and 43.28% , respectively, compared to the radio map
RM-DF. The resulis verify the effectiveness of the de-
vice calibration algorithm of the proposed scheme.
4.2.2 Performance analysis of the proposed RM-CS

The comparison is performed between the outlier
detection algorithm with iterative process and that with

once detection . The classification results are shown in
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Fig. 5 when the ratio of the deficient grid is set to
46.9% .

It can be seen intuitively from Fig.5 that the lo-
calization accuracy and the ability to detect outliers are
worsened with the outliers increasing in both condi-
tions. This is because the local density of outliers is
proportional to the numbers within a given range,
which may cause more outliers being determined as
normal samples according to the density-based algo-
rithm. In addition, the simulating results also indicate
that the iterative process can achieve a lower recall rate
to classify the normal values and outliers more accu-
rately.

The localization performance of RM-CS construc-
ted by crowdsourced samples from different situations is
simulated. The experiments will focus on 2 factors as
the ratio of outliers in a sufficient grid and the ratio of
deficient grids in all grids. For this purpose, different
numbers of outliers are added to different sufficient
grids to create multiple deficient grids in different degrees
based on actual environmental conditions, which are
mainly divided into the following cases as E1 (46.9% ),
F2a (34.4% ), E2b (34.4% ), E3 (24% ) and E4
(22.9% ). The numbers in parentheses represent the
proportion of the deficient grids.
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Fig.5 Performance comparison of outlier detection using different devices with the ratio of the deficient grid being set as 46. 9%



398

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

Fig.6(a) shows the localization performance of
the RM-CS containing different numbers of outliers with
the ratio of the deficient grid being set as 46. 9%.
Fig. 6(b) plots the localization performance of the RM-
CS with different proportions of deficient grid when the
outlier ratio in a sufficient grid is 60% . First of all, it
can be observed that as the ratio of outliers in a suffi-
cient grid and the ratio of deficient grid in all grids in-
crease, the localization performance of the RM-CS de-
creases. This is because the localization is also affected
by those outliers that have not been deleted, so that

Radio map based on crowdsourced samples: 46.9% deficient grids
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Finally, the RM-CS localization performance is
investigated with some of the proposed modules disa-
bled to produce the common cases for the conditions
with the outlier ratio as 60% and the deficient grid ra-
tio as 46. 9% . Fig.7 reveals the average localization
errors of RM-CS by 4 device-specific online testing da-
ta sets. It indicates that when some modules of the pro-
posed scheme are disabled, the ALE of the RM-CS
may be increased by up to 37.91%.

Radio map based on crowdsourced samples:
60% outliers per sufficiency and 46.9% deficiency grids
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Fig.7 Average localization error of RM-CS in 4
device-specific online test data sets

In addition, the positioning performance of RM-
CS is simulated in the equipment hybrid test data set

detecting and deleting all outliers from the sample set
becomes more difficult as the outlier ratio increases.
When observing Fig. 6(b) , it is worth noting that the
localization performance of E4 is slightly better than
other cases because it contains the least deficient grid
that needs to perform the fingerprint interpolation mod-
ule. On the other hand, in these practical scene, it
can be seen from the experimental results of the 4 de-
vice-specific test data sets that the degradation of the
localization performance is not obvious, which can ver-
ify the robustness of the proposed scheme.

Radio map based on crowdsourced samples: 60% outliers per sufficiency grids
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(b) The deficient grid ratio is 60% , including different numbers of outliers

with some modules of the proposed scheme being deac-
tivated. The average localization error of the radio map
containing 60% and 120% outliers in each of the suffi-
cient grids, respectively, are shown in Fig.8(a) and
Fig.8(b). The proposed scheme with crowdsourced
samples can achieve the similar localization perform-
ance compared to the scheme using survey samples
from 2 test data sets ( that is, using RM-CS and RM-SS
for localization). The results not only verify the validi-
ty of the proposed modules, but also verify the effec-
tiveness of the overall scheme of radio map construc-
tion.
4.2.3 Performance analysis using new equipment da-
ta sets

In fact, online test fingerprints may come from
new devices which are not applied to offline radio map
construction. A test fingerprint from another smart-
phone P5 is adopted to check the applicability of the
radio map. In the experiments, the localization per-
formance of RM-CS constructed by crowdsourcing sam-
ples collected by P5 is compared in the case of El,
E2a, E3 and E4 with some of the proposed modules
disabled.

Fig. 9(a) and Fig. 9(b) plot the average localiza-
tion error of a radio map containing 60% and 120%
outliers in each of the sufficient grids. It shows that
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when some modules of the proposed scheme are disa-
bled, the ALE of the radio map RM-CS constructed

with the new device will increase, and the maximum

Radio map based on crowdsourced samples: 60% outliers per sufficiency grids
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plicability of the proposed scheme.

The results verify the ap-

Radio map based on crowdsourced samples: 120% outliers per sufﬁc:ency grids
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Fig.8 Average localization error for radio maps containing 60% and 120% anomalous samples in each sufficient grid

Radio map based on crowdsourced samples: 120% outliers per sufficiency grids
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Radio map based on crowdsourced samples: 120% outliers per sufficiency grids
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Fig.9 Locating performance of RM-CS constructed using crowdsourced samples collected by P5
when deactivating some of the proposed modules

5 Conclusion

Aiming at the problems of inaccurate location an-
notation of samples, invalid access points (AP) , une-
ven distribution of samples and diversity of terminal de-
vices, a new WLAN radio map constructing scheme
(WRMCS) is proposed based on the crowdsourced
samples. This scheme can not only detect and delete
but can select
which

will be merged into a single device-independent grid

those samples with wrong annotations,
valid APs to form device-specific fingerprints,
fingerprint. The solution can also perform fingerprint
interpolation on the defect grid, which improves the
positioning performance. Simulating results show that
the proposed scheme can achieve lower average locali-
zation error than other schemes and can be applied for
a variety of terminal equipment, so as to verify the ef-
fectiveness and applicability of the scheme. Future re-
search will focus on how to combine the data collected

by sensors such as magnetometers and barometers of
mobile terminals with traditional WLAN localization
systems to improve the localization accuracy of the en-
tire system.
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Appendix .
Table 1  Symbol notations
Symbol Definition
M The indoor offline radio map
S The sample set of a grid
LIy Nu—— The set of samples collected by a particular device D, where s, is a vector of RSS values and N is the total
number of samples
Sis Sa A collection of normal and abnormal samples detected by device d
N NON® The total number of samples available to a device, the number of samples after an outlier detection for a
’ ’ device and the number of samples after selecting a critical AP
N, The number of available devices

M, M“), M(Z) , M(3)

F,F,F

f: (r17"'v rM(Z))
F o= {f e f e, fr)

int int
Fg ’ Fl

Fg7 Ft
AiyAgy At

A

A

uni ?

int

The total number of all hearable APs for one device, the number of APs after an outlier detection for a de-
vice, and the number of APs after a critical AP is selected and the total number of all detectable APs after
fingerprint interpolation for all devices

The grid fingerprint of a grid, the grid fingerprint of grid g and the online test fingerprint

Select the device-specific fingerprint that is constructed after the key AP

The set of device specific fingerprints

The grids and test fingerprints representing RSS values consisting only of mutually detectable APs in the

intersection A,

int »

respectively
The transformed fingerprints of F, and F,, respectively

The set of APs detected in samples s;, F

.» and F,, respectively

The union set and intersection set of hearable APs, respectively

The nth sample receives the RSS value from the mth AP for one device

The average RSS value of the mth AP in all samples collected by one device
The RSS value of the mth AP detected by the device d in the grid g

The interpolated RSS value of the mth AP collected by device d

The raw/calibrated RSS values from the mth AP of device d
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Table 1 continued

Ty The average RSS value from all devices that can hear the mth AP
P The calibration RSS value of the mth AP for the device d
I The RSS values of the mth AP in F, and F,, respectively
Tys Ty The average RSS value of F i,"‘ and Fi™ | respectively
d, ,d, The signal distance and cutoff distance of samples n and n’, respectively
Pr> Pu The density threshold and the local density of the nth sample, respectively
B, The neighbor set of the nth sample s,
N, The number of non-empty elements in the mth column in matrix R*"
P, P, The acceptance ratio threshold and the acceptance rate of the mth AP, respectively
G, Gy The set of all grids and an interpolated fingerprint candidate set in a subarea
D, D, The set of all devices in Gg and device sets in one grid g € G
0 The number of fingerprints of device d in different grids of the interpolated fingerprint candidate set
y The interpolation support threshold
W,y The polynomial coefficient
D,,D, The corresponding r?, -deleted and existing device set
A’ The calibration factor for device d

D(F,, F) The average Euclidean distance between F’ , and F,




