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Abstract
This paper presents a novel dynamic A" path finding algorithm and 3D lidar based local obsta-

cle avoidance strategy for an autonomous vehicle. 3D point cloud data is collected and analyzed in

real time. Local obstacles are detected online and a 2D local obstacle grid map is constructed at
10 Hz/s. The A ™ path finding algorithm is employed to generate a local path in this local obstacle
grid map by considering both the target position and obstacles. The vehicle avoids obstacles under

the guidance of the generated local path. Experiment results have shown the effectiveness of the ob-

stacle avoidance navigation algorithm proposed.

Key words: autonomous navigation, local obstacle avoidance, dynamic A" path finding algo-

rithm, point cloud processing, local obstacle map

0 Introduction

Obstacle avoidance is one of the most important
tasks during vehicle’ s autonomous navigation. From
sensor’ s aspects, lidars and cameras are commonly
used for this purpose. 3D muliti-line lidar has a detec-
tion range of about 100 m with 1 ¢cm resolution, while
the range for a single line 2D lidar is 3 — 15 m'"’.
Comparatively, 3D lidar is more reliable and now adopted
by a large amount of autonomous vehicles'>'.

After obstacles are captured in 3D lidar point
cloud, it is critical to process the sensor data and de-
sign a proper local obstacle free path planning algo-
rithm. Many local path planning algorithms have been
developed. Popular local path planning algorithms are
mainly the artificial potential field (APF) method, the
dynamic window approach (DWA ), and variants of
these 2 algorithms.

The APF method was proposed by Khatib™' | where
the local path is planned by artificially defined virtual
forces. However, local equilibrium point may occur
with this algorithm, where balanced forces keep the ve-
hicle unmovable. In order to solve this problem, Gil-
bert and Johnson""’
using distance functions. To apply APF method on a

added a special state constraint

wheeled mobile robot, a new method based on fuzzy

rules has been proposed by Zhu et al. ' to solve this
problem by modifying the control pattern or parameters
in different situations. The DWA was proposed by Fox

et al. "

. DWA samples multiple sets of velocities in
real time in the velocity (v, w) space. The vehicle
trajectory at the next moment is then simulated accord-
ing to each set of velocities. Each trajectory corre-
sponding to each set of velocities is evaluated by an ob-
jective function. The trajectory corresponding to the
highest score is then selected as its local path. Seder et
al. ') avoided moving obstacles by utilizing DWA con-
sidering their trajectory prediction. Gerkey et al. "*! di-
rectly searched the space of the feasible controls rather
than that of the feasible trajectories. Application of
DWA usually requires an accurate kinematic vehicle
model.

Hart et al. ') proposed A* algorithm in 1968.
A" algorithm is a path finding method based on grid
maps and it can avoid most of the unnecessary sear-

algorithm and its variants''*'?’

ches. In general, A"
are global path finding algorithms based on static occu-
pied grid maps. Herein, a lidar based dynamic A" al-
gorithm is proposed, which could find the local obsta-
cle free path in real time.

A scenario is described as follows. An autono-
mous vehicle moves from a starting position to a target

location with a preset global path and obstacles are de-
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tected and avoided using 3D lidar. A dynamic A" path
finding method is employed and a local obstacle free
path is generated in real time to guide the vehicle to a-
void obstacles. The rest of the paper is organized as
follows. Section 1 explains the scenario details. Sec-
tion 2 focuses on the local path planning and explains
the point cloud processing, the construction of the local
occupied grid map, and the local path generation using
dynamic A ™ algorithm. Vehicle hardware setup is then
introduced and the experimental results are presented
in Section 3. Finally, Section 4 concludes this paper
and presents future perspectives.

1 Autonomous navigation scenarios

The vehicle’ s autonomous navigation is usually
composed of 2 parts; global path tracking and local ob-
stacle avoidance. To test the proposed local obstacle a-
voiding dynamic A" algorithm, the global path tracking
is not the concern of this paper. Therefore a global
path is preset between the starting point and target po-
sition. Current positions of the vehicle are obtained in
real time. And without obstacles, the vehicle is able to
track the preset global path. Note that the effect of ob-
stacle avoiding algorithm is closely connected with ve-
hicle speeds. Usually, the higher the speed, the heav-
ier the hardware’ s calculation load, which deteriorates
the algorithm effectiveness. For normal city vehicles,
when an obstacle is detected in the way, its speed can be
lower to an operational range. The vehicle speed during
obstacle avoiding is considered as 2 — 4 m/s.

Once an obstacle appears in the way of the global
path and is within the 3D lidar detecting range, its in-
formation would be in the point cloud data outputted by
the lidar. Lidar’s output is processed and the obstacle
grid map is precisely calculated. The relative distance
between the obstacle and the vehicle is confirmed. To
be conservative and to increase the safety margin, the
obstacle shape is properly expanded. After the obstacle
free path is generated, it would be marked on the grid
map. The first grid along this path is set as its current
target and the tracking would be executed. This
process is repeated until there are no obstacles. If
there is no obstacle in the range, the vehicle tracks
back to its global path. The flow chart of vehicle auton-
omous navigation is shown in Fig. 1.

2 Local obstacle avoidance
If an obstacle is detected along the vehicle’ s

global path by the equipped 3D lidar, the vehicle’ s

obstacle avoiding mode is activated. The local obstacle

avoidance algorithm is composed of 4 parts: point
cloud data processing, local occupied grid map con-
struction, dynamic A" based local path planning, and
vehicle states update.

The localization data of the vehicle is

recorded and saved as a preset global path

l

Global T
path The vehicle is controlled to travel
tracking along the preset global path

Where or not the
destination is reached?

the there is an obstacle in the obstacte
detection area of lidar2

A local occupied grid map is constructed in
real time based on the processed point cloud Local
¥ obstacle
A local path is planned by the A* algorithm avoidance
in real time in the local occupied grid map
v
The vehicle is guided by the planned local
path to avoid the obstacles dynamically.

End

Fig.1 Autonomous navigation flow chart

2.1 Point cloud processing

Raw lidar data size is generally large, for exam-
ple, about 300 kB/s for a VLP-16 lidar( Velodyne Li-
DAR Puck). Amount of raw sensor data is processed
before applied in the obstacle avoidance algorithm.
Point cloud processing is the following 3 steps.

First of all, in order to collect the information
around the vehicle, the original 3D point cloud is fil-
tered by a range filter and then a statistical outlier re-

13141 " Secondly, in order to further re-

moval algorithm'
lief the load on hardware, the filtered 3D point cloud is
downsampled by a voxel grid filter'”"'’. At last, the
processed 3D point cloud is converted to the 2D point
cloud prepared for the dynamic A path finding algo-
rithm.

The flow chart of point cloud processing is shown
in Fig. 2.
2.1.1

Point clouds around the vehicles are selected

Point cloud filtering

using a range filter. The point cloud outside the spatial
range is then discarded. The practical space range in
the experiments is as follows ;
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Fig.2 Point cloud processing flow chart

Point cloud data are further filtered using a statis-
tical outlier removal algorithm. Those points that do not
satisfy a specific statistical property are removed. In
actual experiment, the statistical property is the aver-
age distance in a neighborhood. Points that deviate too
much from the distance average are removed. The
number of neighbors used for the average computation
can be chosen by the users.

2.1.2 Point cloud downsampling

The downsampling algorithm is used to further re-
duce the amount of the 3D point cloud. Through down-
sampling, the density of the 3D point cloud is de-
creased while the main 3D point cloud shape is kept.

In experiments, the voxel grid filter is used as the
downsampling algorithm. Voxel grid filter algorithm
partitions the 3D point cloud into voxels, i. e. sub-
clouds, or a 3D grid as is named. All of the points
contained in each voxel are replaced with the centroid
of that subcloud. The size of each voxel can be speci-
fied by the users. Once the size of a voxel is specified,
the density of the 3D point cloud is determined.
2.1.3 Point cloud conversion

In order to design the A™ algorithm, 3D lidar data
are to be presented on a 2D XOY plane for the vehicle
obstacle avoidance. A conversion method specified as
follows.

Firstly, 3D point cloud is projected to a 2D XOY
plane by setting the height value z of the 3D point
cloud to zero. Secondly, a central angle ¢ of each point
in the point cloud is calculated as follow formulas;

first quadrant @ = arctan-'/y—
%

second/third quadrant: ¢ = 180 + arctan L
%

fouth quadrant; ¢ = 360 + arctan Y
x

(2)

The 2D XOY plane is divided into several sectorial
regions with a sectional angle p. For example, if the li-
dar detecting angle is 180 °and p =0.2 °, then 900
sectorial sections are obtained. Each point cloud point
has a central angle @ of [0 °, 360 °] in the 2D XOY
plane. Each point cloud point is assigned to its corre-
sponding sectorial section according to its central angle
¢. The distance of each point to the origin in each sec-
torial section is compared, and the point with the smal-
lest distance value is selected and other points are dis-
carded. This distance is defined as Euclidean distance

of the 2D XOY plane, according to L = /x° + y .

Fig.3 is an example explaining this process.

Split angle (p) of the lidar detecting area

Lidar detecting angle (360°)

Fig.3 Point cloud 2D processing

In Fig. 3, the 2D XOY plane is divided into 360/p
sectorial regions. The circular dots and triangle dots re-
present the points of the point cloud in 2D XOY plane.
They are assigned to the corresponding sectorial region
according to their central angle ¢. The triangle dots are
the closest points to the origin in each sectorial region.
Therefore, they are retained while the circular dots are
discarded.

In actual experiments, 0.2 ° is selected as the
value of p since 0.2 ° is the angle resolution of the
VLP-16 lidar used. The 2D XOY plane is divided into
1 800 sectorial regions. So there are maximum 1 800
points in each processed point cloud. As a result, the
significant information is captured and the amount of
the points of the cloud is reduced through the series of
processing.



386

HIGH TECHNOLOGY LETTERSIVol. 26 No.4|Dec. 2020

2.2 Local obstacle map construction

The next step is to create a local obstacle map
based on the obtained 2D point cloud. The local obsta-
cle map is essentially an occupied grid map, and is
mathematically represented by a 2D binary matrix.

Fig. 4 illustrates a local obstacle map, where the
occupied grid map with a matrix size of 5 x5 is shown
as an example. A 5 m X5 m area is represented by this
matrix and its grid resolution is 1 m. The parameters
here are adjustable according to different road scenari-
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Fig.4 Illustration of local obstacle map construction

are the bound-

In Fig. 4, X X
aries of the occupied grid map. Note that X ; and Y,

min

max s Xumins Vinax @04 ¥
are on the negative half of the coordinate axis, and
thus have negative values. The row values and column
values of the grid map are represented by the index
numbers on the left and the top of the grid map, re-
spectively. The black dots represent the points of the
obtained 2D point cloud. Whenever there is an obsta-
cle detected, the number in the corresponding grid is
set to ‘1’ , as seen in the Fig. 4 (denoted by the black
dots ). The value of the grid without obstacles ( without

black dots ) issetto * 0’ . And the corresponding 2 D

binary matrix is as follows. This matrix is not practically
produced, just for explanation.

1 0 0 1 1
1 0 0 0 1
1 00 01 (3)
1 0 0 0 1
1 100 0

From this 2D binary matrix, the real position (x
and y coordinates) of a point in the grid map can be
retrieved, and so is the real distance range of the ob-
stacle. M, and M, represent the size of the grid map.

The value of M, and M is 5 in this example. x,, and y,,

res

represent the side length of the grid, i. e. the resolu-
tion of the grid map. The resolution is calculated by

X max X min
X = =as
res M
* (4)
_ Ymax B Ymin
Yres = M

Note that the size and the resolution of the grid
map are adjustable according to the actual scene. The
higher the resolution is, the larger the size of grid map
matrix is. The origin of the grid map in the 2D XOY
coordinate can also be adjusted.

2.3 Dynamic A“ path finding algorithm based lo-
cal obstacle avoidance
Dynamic A" algorithm is used as the online local
path planning algorithm for obstacle avoidance. The
implementation of the obstacle avoidance process is
mainly divided into the following 3 steps.
2.3.1

Once an obstacle is detected and the obstacle map

Obstacle area expansion

is built as stated, the obstacle area is expanded consid-
ering the safety and kinematics of the vehicle. The ex-
pansion width and length is set by the safe distance be-
tween the vehicle and the obstacle considering the ve-
hicle size. The expansion shape is chosen to smooth
the planned local path. The expansion method shown
in Fig.5 is then selected.

Fig.5 Obstacle area expansion
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As shown in Fig. 5, the obstacle area expansion is
realized by assigning ‘1 s’ around the existing ‘1 s’
in the occupied grid. In Fig.5, the small square box in
the right figure represents the original obstacle area,
and the interior two pentagon boxes represent the result
of the expansion of the original obstacle area. The out-
ermost box represents the overlapped obstacle expan-
sion area. The obstacle’s expanded size and shape can
be adjusted according to the user needs. For example,
if the length of the vehicle is equivalent to the length of
the 3 grids and the width is equivalent to the width of
the 2 grids, then the grids of the outermost circle of the
pentagon box boxed expansion area in Fig.5 are re-
moved. The experiment can be carried out with the
shape and size of the adjusted obstacle expansion area.
2.3.2 Setting of the starting point and end point of

the A™ path planning algorithm

The starting point of dynamic A* path planning
algorithm is set at the location of the vehicle. And the
end point is set in the traveling direction of the vehi-
cle. In actual experiment, lidar is rigidly amounted at
the top of the vehicle, so lidar location is actually the
vehicle position. Lidar is at the origin of the local
plane XOY coordinate system, so the position of the ve-
hicle in the local coordinate system is also the origin.
The grid in which the lidar is located is set as the start-
ing point of the A path planning algorithm, namely
the center grid of the occupied grid map. A grid loca-
ted at a certain distance in front of the starting point is
set as the end point of the A ™ path planning algorithm.

As long as the sampling time is short enough, the
end point of the A™ path planning algorithm is in front
of the starting point along the travelling direction, and
the vehicle will not deviate away from the global path
in a fast way. This facilitates vehicle tracking back to
the global path when the vehicle has avoided obstacles.
2.3.3 Real-time local path planning

The local path generated by the A™ algorithm is
based on the local obstacle map in real time and the
planning is updated at each sampling point. After the
path is planned online, the vehicle tracks the planned
obstacle free path and avoids the obstacles accordingly.

3 Experiment

Experiments are performed outdoors. First of all,
an obstacle is placed on its global path of the vehicle
tracking. The vehicle is then tested whether it is possi-
ble to autonomously avoid obstacles based on the dy-
namic A" obstacle avoidance method proposed herein.
Finally, the vehicle is tested whether it is able to track
back to the global path when the obstacle has been

avoided.

3.1 Experimental platform with hardwares and
software
The robot operation system (ROS) is available as

"7} and is used as the upper con-

open source software
trol software system of the vehicle. The experiment
platform ( front-wheel drive four-wheeled mobile vehi-
cle) and hardware setups are shown in Fig. 6. The size
of the vehicle used in the experiment is 70 cm x42 cm
x 155 cm. There is a 130 cm height bracket to support
the lidar on the vehicle. Velodyne’ s VLP-16 is used
as the 3D lidar sensor in the experiment. The localiza-
tion information of the vehicle is acquired by the com-
bination of RTK-GPS (real-time kinematic global posi-
tioning system) sensor and IMU (inertial measurement
unit) sensors.

Industrial
computer

Fig.6 Experiment platform and an obstacle

3.2 Local obstacle avoidance experiment

Before the experiment, a sweeper is placed on the
global path of the vehicle tracking in advance to repre-
sent an obstacle, as shown in Fig.6. The vehicle
tracks the planned global path when the experiment be-
gins. Until the obstacle is detected in the obstacle de-
tection area in front of the lidar, the vehicle enters the
obstacle avoidance initial state.

The left part of Fig.7 shows the raw 3D point
cloud in the initial obstacle avoidance state, and the
point cloud in the box is the detected obstacle. The
right part of Fig. 7 is a portion of the local obstacle map
generated based on the processed 2D point cloud data
in real time, which includes a local path for guiding
the vehicle to avoid the obstacle. The practical local
obstacle map is a lidar-centric occupied grid map,
whose size is 65 m x 65 m and resolution is 35 cm. In
the right part of Fig.7, the number ‘1’ denotes the
obstacle, ‘2’ is the starting point of the A™ path find-
ing algorithm, ‘3’ is the found local path grid, ‘4’ is
the end point of the A* path finding algorithm.

Fig. 8 shows the raw 3D point cloud information in
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ed by RTK-GPS. The planned global path and the ob-

the state where the vehicle is avoiding the obstacle and

s actual running path are shown in

’

tained vehicle

Fig.9.

the corresponding local obstacle map containing the lo-

cal path. The meaning of the contents shown in Fig. 8

As shown in Fig.9, the global path point is repre-

is the same as that of Fig. 7.

, the vehicle actual running

’

X

‘

sented by symbol

The vehicle performs local path planning for the

path is represented by dots. Based on the comparison

obstacle avoidance under the guidance of a local path

of the 2 paths, it can be found that the vehicle can au-

generated in real time. Once there is no obstacle in the

and track back to the global

tonomously avoid obstacles

lidar detecting range, the vehicle tracks back to its

path.

global path. The vehicle actual running path is ob-

tained by recording the localization information collect-
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Fig.8 Raw point cloud and local obstacle map of the obstacle avoidance state

the vehicle is constructed in real time using 3D lidar.

4 Conclusions

The vehicle uses the A ™ algorithm to perform local path

planning in real time in the constructed local obstacle
map to avoid obstacles. Experiments show that the ve-

A dynamic A" path finding algorithm based local

hicle can autonomously avoid obstacles using the

obstacle avoidance method is proposed by this paper.

obstacle avoidance method, and the feasibility of this

A 2D local obstacle map of the 3D environment around
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Fig.9 Planned global path and actual running path

obstacle avoidance method is verified. Some limitation
remains and some work still have to be done in order to
be able to use this method in most of the actual scenar-

i0s. In future work, the constraints of the actual road

need to be considered to prevent the vehicle from driv-
ing out of the safe driving area during the obstacle
avoidance process.
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