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Abstract

Texture smoothing is a fundamental tool in various applications. In this work, a new image tex-

ture smoothing method is proposed by defining a novel objective function, which is optimized by L,-

norm minimization and a modified relative total variation measure. In addition, the gradient con-

straint is adopted in objective function to eliminate the staircase effect, which can preserve the struc-

ture edges of small gradients. The experimental results show that compared with the state-of-the-art

methods, especially the L, gradient minimization method and the relative total variation method, the

proposed method achieves better results in image texture smoothing and significant structure preser-

ving.
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0 Introduction

The key to texture smoothing''?’ is to remove
small textures while preserving the significant edges
and structures in the images. Texture smoothing is

used in many fields, such as image segmentation[3’4] ,

[5,6] [7,8]
: 3

edge detection object recognition and image

11 Although several proposed variation

enhancement
models are very effective for removing image noise,
they cannot distinguish image structures and textures
effectively. In Ref. [12], an L,-norm minimization al-
gorithm is proposed to restrain the number of non-zero
image gradients and produce a global sparse solution,
which can preserve the image significance structure and
remove detail textures and noises effectively. The ad-
vantage of the Lyminimization is that it can smooth tex-
ture and preserve edges better than others, such as the
weighted least square ( WLS) (3] and bilateral filter
(BLF) ™. Shen et al. ' extended the L, objective
function by adopting L, -norm instead of L,-norm in the
data fidelity term and achieved some promising results.

1. ' presented a novel approximation algo-

Cheng et a
rithm for L, gradient minimization in a fused coordinate
descent framework. Unfortunately, since these methods
highly depend on the magnitude of image gradients,

and image gradients haven’t enough structure extrac-

tion ability, the methods mentioned above cannot re-
move high contrast texture details effectively.

Xu et al. ''") defined a new relative total variation
(RTV), in which textures and main structures show
completely different properties, and presented an opti-
mization framework based on RTV regularization term
for structure-texture decomposition. Since then, many
scholars have made further research on RTV to improve
the discrimination between textures and structures.
Ref. [18] defined a modified relative total variation
(mRTV) to make it more suitable in Lj,-norm minimi-
zation by proposing a new function. mRTV is small in
texture regions and large along structure edges. Liu
et al. "' made further extension of RTV and proposed
a general relative total variation (GRTV) model by ex-
panding the norm of windowed total variation (WTV)
in RTV from 0 to [0,1].

This work presents a novel L;-norm optimization
model, which combines the data fidelity term, a new
gradient fidelity term and a regularization term based
on the Ly-norm of mRTV. Due to the non-convex and
non-linear property of the optimization model, it is a
challenge to obtain the solution directly. Subsequently,
an efficient approximate solution is also given. It can
be found that the difference between textures and main
structures becomes larger with the increase of the pa-
rameter o in the proposed model. The most important
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thing is that the results are not only sufficiently similar
to the original images but also have clear edges and
suppressed textures.

This paper includes 4 sections. Section 1 briefly
reviews the definition of mRTV measure and the L,gra-
dient minimization method. Section 2 presents the opti-
mization framework with a new gradient consistency
constraint and mRTV sparse constraint. Section 3 dis-

cusses the parameters of the proposed optimization
model and gives some comparison experiments. The
conclusion is in Section 4.

1 Related background

Here the notations used in this work are giving in
Table 1.

Table 1  Explanation of notations

Notation Explanation Notation Explanation
R Modified relative total variation s Input/Output image
@ Windowed total variation VS Gradient of S
) Windowed inherent variation A Smoothing parameter
o The spatial scale of texture B Similarity parameter
o' Accentuate structures from textures 8,p Auxiliary variables
w, , Gaussian weighting function n,y Auxiliary variables

1.1 Modified RTV measure
Based on the relative total variation, Ref. [18]
proposed modified RTV measure, which is expressed

Rp) = R.(p) + R, (p) (1)
where
Ry(p) =se.(p)da(p)” (2)
@.(p) = Eéw,,,q | 9, | (3)
d.(p) = 2;,2 l w,, * ., (4)
_ |l p—gql?
Wy, = exp( - 20_2 ) (5>

here s is the normalization factor, I represents the input
image , (), is the set of pixels in the local neighborhood
centered at p point, and 9,/ denote the partial deriva-
tives of I along the x and y directions respectively, d e
{x, y} represents the direction to compute the partial
derivatives, | | indicates the absolute value of a num-
ber, w, , is a Gaussian weighting function. « is used to
enhance the discrimination between structures and tex-
tures.

Compared with RTV, the modified RTV adopts an
exponent parameter o to accentuate the image struc-
tures, and uses multiplication instead of division to
make the mRTV values bigger along edges and smaller
for textures, which makes it more suitable to Lj-norm

minimization.

1.2 L, gradient minimization
Ly-norm directly measures the sparsity of a vector,
s0 Ly-norm minimization is usually used to obtain a

sparse solution. Many algorithms adopt it for texture

details smoothing or significant edge structures extrac-
ting. However, due to the non-convexity of the L,-
norm, it is difficult to be minimized directly. In
Ref. [12], for the task of image texture smoothing, a
split method was applied to solve the L,-norm minimi-
zation problem, which achieved good results.

Assuming that I represents the input image, S is
the output image. The vector (49,S,, 6ySP)T for each
pixel p is calculated as the partial derivatives of S along
the x and y directions respectively. Then the Lj-norm
measures of the image S gradients is the number of
non-zero gradients, which can be defined by

C(S) =#{pll a5, 1+ 95,10} (6)

According to the definition in Eq. (6) , the model
of image texture smoothing method based on the gradi-
ent Ly-norm minimization can be written by

min{ ¥ (S, —1,)* + 1 - C(S) ]| (7)

The data term (S, —1,) *is to make the output im-
age similar to the input image. The second term A -
C(S) is a regular term, also known as a smooth term
to ensure the gradient sparseness of the output image.
A is a non-negative parameter controlling the signifi-

cance of C(S).
2 Proposed method

The framework of the proposed method is shown in
Fig. 1. Different from above 2 methods, for an input
image I, the output smoothed image S is calculated by
solving the following objective function.

min{ || S =T[5+ | VS=VI|;+A-1 R
(8)
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where V is the gradient operator, the second term is
the gradient fidelity term which ensures that the gradi-
ent of the output image S is similar to that of input im-

age I, A + | NI, indicates the L,-norm of the mRTV

measure of the output image S, which directly meas-
ures the sparseness of mRTV and ensures the smooth-
ness of the image S.

Data fidelity S . . " -
olve it respectivel
term P AN Calculate mRTV [ Aux1l1a25' \snables
I—8°| Iteratively T -
Gradient | Objective B p— .
fidelity term function Outp;t( .ulr)lage € Aux111a:'y v?nables
i+ ”’ y
Until #>maxf ¢
Regularterm — | Result image S ‘

Fig.1 Framework of this proposed method

Due to the non-convexity of the Lj-norm and the
non-linearity of mRTV, it is hard to solve Eq. (8) by
using traditional gradient decent method directly. In-
spired by the methods of Refs[12] and [ 18], an al-
ternating optimization strategy is adopted to solve it it-
eratively.

In particular, considering the non-negativity of R,
and R, , two non-negative auxiliary variables & and p re-
spectively corresponding to R, and R, are introduced,
then the Eq. (8) is equivalent to the following func-
tion;

min | S T3+ | VS - VI3 +p
10,p

SN, =812+ IR, —p D) + Al 84pl,

(9)

The first 2 terms are the data term and the gradi-

ent fidelity term, the third term controls the smoothness

of the output image S. B8 is the adaptive parameter for

controlling the similarity between (8,p) and (R,

N,) . The fourth term controls the sparseness of the

sum of non-negative auxiliary variables § and p.

Define a binary function ;

H(5,.p,) = {(1) 8, +p, # 0

The Eq. (9) can be expressed as

Isnsinz ((SP _Ip)z + (VSP - v]p)z)
+ Y (B ((R,(p) -3,)°
+(R,(p) -p,)?) +A-H(,,p,))
(11)

For the sake of simplicity, the nonlinear objective

(10)

others

function Eq. (11) is transformed into 2 separate prob-
lems and solve it iteratively.

2.1 Solving (6, p)
Fixing the output image S, then the Eq. (11) can
be represented by

rgiPIIZ ((R.(p) -8,)° + (R, (p) -p,)*

A
A LH 12
+ 3 (8,,p,)) (12)
Let
B, = (R.(p) -8,)° + (R,(p) -p,)°
A
A 13
+,B H(s,, p,) (13)
I (R(p)7 + (R, () <5
i) Wheng, +p, #0and H(§,, p,) =1
B,((5,,p,) # (0,0))
= (R, (p) -8,)> + (R, (p) -p,)° +%
> % = (R, (p)* + (R,(p))” (14)

ii) Wheng, +p, =0, thatis (§,, p,) = (0,0),
and H(§,, p,) =0
B,((8,,p,) =(0,0))

= ()P + (M) <5
(15)
So the minimum energy B, = (R, (p))* +
(Eﬁy(p))zis acquired when (8,, p,) = (0, 0).
I (R + () >
i) Wheng, +p, #0and H(§,, p,) =1
B,((5,,p,) #(0,0)) =
(R(p) =8)" + (R (p) =) + 5> 5
(16)

ii) Whend, +p, = 0and H(5,, p,) =0
B,((8,,p,) =(0,0))

= (R + (R > 5
(17)

So the minimum energy B, = %is acquired when
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(8,5 p,) = (R.(p), R,(p)).
In summary, Eq. (12) has solution;

(6,,p,) =
{(0, 0)
(R.(p), R,(p))

R.(p)?>+R,(p)? < %

others

(18)

2.2 Solving S
Fixing § and p, the S-estimation problem corre-
sponds to minimizing

msin; ((S, -1,)" +(VS, - VI)*

£B - ((R(p) =87 + (R(p) =p)))
(19)
Due to the non-linearity of R, and R, the above
objective equation is still difficult to be solved.
Eq. (19) is decomposed into a relatively simple prob-
lem and solve it iteratively.
In order to make the formula look more concise,
lety,(p) = sp,(p)°, then R, (p) = x,(p)e,(p).
Take SR, as an example, its non-linearity can be
eliminated by approximately expanding the (R, (p) -
3P)2 term in Eq. (19) as

(R,(p) -8,)° = x.(P) * Y w,,19,5,1-8,)°

7eQ(p)
= () ro,,1 35,1 +x.(p)
q7#p
Y w,,19,51-8,)°
geﬂ(p) .
= (X (p) »o,, | 8,5, +x.(p)
q#p
. Z w,,!9.5,I —8p)2
7eQ(p)
= (k,! 98,1+ bxp)2 (20)
k, =x.(p) * w,, (21)
. q#p
b, =x.(p) * Y w,,1938,1-8, (22)
qe(p)
where y and § indicate the results of the last iteration,
and k,,, b, are 2 constants. Eq. (20) has minimum
b
when| 9,5, 1 = -~
p
. q#p
Xx(p) : Z wp,ql axsq I _6P
1 9,8, 1 ==7% =- 4
! k., X.(p) * w,,

‘E‘i’ wp,qlaxSql 5 =0
el § =

= 7€ Q(p) Wp,p (23)
19,5, 5, ; R.(p)
i 9,5, I
w
Noticed that — L4 —*1 5 always nega-
7e0(p) Wpp
tive, which is impossible in reality unless | 9.5 .1 =0.

Therefore, the Eq. (23) achieves a minimum value
under the following conditions

0 5, =0
3,8, = ’

Similarly, the above derivation can be also ap-

(24)

plied to eliminate the non-linearity of R (p).
As a result, the Eq. (19) can be transformed into
the following quadratic minimization problem

min 3. (5, ~1,)" + (V5, = V1)’

+B+ ((3,8, -m,)" + (3,8, ~7,)%))

(25)
Here 1,y only depends on auxiliary variables §,p
(155720 =
{(0,0) (8,, p,) = (0,0)
(3.5,,9,5,) (§,,p,) = (R(p), R, (p))
(26)

Therefore, it can be learned that the solution of
Eq. (25) converges to the solution of Eq. (19). Eq. (25)
is quadratic, and thus it can be solved easily.

By diagonalizing the partial derivative operators
and the accelerating fast Fourier transform (FFT) , the
solution of Eq. (25) in each iteration is

_ 1 (F() +L+B-M

S_F(1+(1+B)-N) (27)
where

L=N-F( (28)

M=F(3,)" +F(n) +F(9,)" - F(y) (29)

N =F(3,)" - F(3,) +F(9,)" - F(a,) (30)
here F is the FFT operator, F* denotes the conjugate
of F. The multiplication and division are all compo-
nent-wise operators.

Algorithm 1 sketches the procedure of the pro-
posed method. Fig.?2 exhibits the results of different it-
erations. Here, it only needs 3 iterations to get a tex-
ture smoothing results. It is shown that the approximate
solution given in the above deduction has a very fast
convergence speed and the objective function construc-
ted in this study is effective to texture smoothing and
edge preserving.

Algorithml : The proposed image texture smoothing method

1 Input: image /, gradient weight o, smoothing weight A,
detail scale o, parameters B, ..

2 Initialization: S° < 1,8« f,, i <0

3 repeat

4 Calculate R,(p) for each pixel p in S

5 Solve for §, and p, in Eq. (18)

6  Withg, andp,, solve for 5, and y, in Eq. (26)

i

Minimization for §¢*"

according to 1y, and vy,
8 B—2B,0+0%0.92,1++
9 untilg > B,

10 Output; image S
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3 Experiment and analysis

3.1 Discussion of parameters

There are 3 significant parameters: o, and A in
the proposed method. « is a parameter which enhances
the discrimination between structure and texture, o de-
termines the spatial scale of the texture features, and A
is the parameter controlling the smoothness of the im-
age.
3.1.1

Fig.3 shows the results with different o values
(foroc =3, A = 0.8). With the increase of a, the
discrimination between texture and edge structures be-

Discussion of parameter o

comes larger. In the close-up images, it can be seen
that some low-contrast image structures can be better
preserved. But the performance of the method on tex-
ture smoothing becomes worse with bigger a. There-
fore, the parameter o in the experiments is set to [ 6,
7] as a compromise.
3.1.2 Discussion of parameter o

The parameter o in Eq. (5) controls the spatial
weights , also determines the window size for computing
the windowed variations. With the decrease of o (for «
=6, A =0.8), the difference of N, between weak
edges and textures gets smaller, which destroys the
weak edge structures. Fig.4 shows that the region of
skirt hem and feet becomes more blurred as o decrea-
ses. But o cannot be set too big, which may result in
that the texture near the edges cannot be completely re-
moved.

(@) Topait () S © S @5’

Fig.2 Smoothing results with different iteration

(c)a=6

(a) Input () o=4 (@ o.=10
T©Clsouwp  HCloseup  (g)Closoup  (h) Closoup
of (a) of (b) of (c) of (d)

Fig.3 Effect of parameter o

() Input ) o =3 @o=1

(©o=2
Fig.4 Effect of parameter o

3.1.3 Discussion of parameter A

With the increase of A, the fidelity becomes wea-
ker, and the structure sparsity increases, which pro-
motes the smoothness of the result images. Fig.5 ex-
hibits that the output image becomes smoother as A in-
creases (fora =6, o =3). That is, more weak edges
and textures are smoothed, and only a few main struc-
tures are preserved. But in practice, if A is too large,
the image will be over-smoothing.

(©)1=04

C @hpat (5)A=02 @A=08

Fig.5 Effect of parameter A

3.2 Comparison with other methods

As shown in Section 2, the problem of texture
smoothing and edge preserving is solved in a new L,-
norm minimization model, the validity of the new ob-
jective function and the effectiveness of corresponding
approximate solution are demonstrated in Fig. 6 and
Fig.7 by comparing the results with other 3 methods, in-
cluding L, smoothing* | RTV""") and mRTV'"®',

The test environment is an Acer MS2360 laptop,
and the software environment is MatlabR2015b. For
the sake of the objectivity and fairness of the experi-
mental results, the parameters of each method are ad-
justed to the best. The parameters of each method in
Fig. 6 are L, smoothing A = 0.08; RTVo =3, A =
0.015; mRTV: o =3, A =0.003; the method o =7,
o =3, A =1.3. The parameters of each method in
Fig.7 are: L, smoothing A = 0.08; RTVg =2, A =
0.015; mRTV: ¢ =2, A =0.002; the proposed
method @ =3.2, 0 =3, A =0.2.

Since the L, smoothing method is heavily depend-
ent on the magnitude of image gradients, it fails to pre-
serve weak edges with small gradients, thus the edges on
the middle pumpkin are blurred seriously in Fig.6(g).
After applying RTV and mRTV to distinguish textures
and edges of image, the results of the RTV and mRTV
are significantly improved. And the proposed method
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achieves better results than mRTV by preserving sharp-
er edges on the middle pumpkin in Fig.6(j).

(a) Input image

(f) Close-up of (a)

(g) Close-up of (b)

Fig.6 Smoothing results and comparison on Crossstitch

(h) Close-up of (c)

(e) The proposed

(i) Close-up of (d) (j) Close-up of (e)

V (f) Close-ups of (a) ‘

(g) Close-ups of (b)

(h) Close-ups of (c)

@) le -ups of (d)

(j) Close-ups of (e)

Fig.7 Smoothing results and comparison on Fish

Compared with Figs7(b), (c) and (d), the
proposed method can better preserve the edges with
small size or weak gradients and in the image in
Fig.7(e),
on fruits.

such as the teeth of fish and the structures

For the sake of fairness, the edge peak signal-to-
noise ratio (EPSNR) and edge structural similarity in-
dex (ESSIM )™’ are used to quantitatively illustrate
the smoothing effect of the proposed method. EPSNR/
ESSIM is to calculate the PSNR/SSIM value of the in-
put image and the output image after Canny edge de-
tection. The larger the EPSNR/ESSIM value, the bet-
ter the ability of the method to maintain the structure.
the EPSNR , ESSIM
values of the proposed method in Figs6 and 7 are high-

As can be seen from Table 2,

er than those of other methods.

Table 2 The EPSNR/ESSIM values with different filters
Crossstitch (Fig.6) Fishmosaic (Fig.7)

Filters
EPSNR ESSIM EPSNR ESSIM
L, 28.9471 0.9807 28. 8280 0.9904
RTV 29.1139 0. 9806 29.4176 0.9907
mRTV 28.9712 0.9802 29.4991 0.9909
Proposed  29.1761 0.9808 29.9334 0.9913

4 Conclusion

A new objective function is constructed for texture
smoothing and edge preserving. The success comes
from 2 aspects. First, a novel optimization model is
proposed to capture the structures of input images.
Second, an efficient approximate solution is given by

transforming the original non-linear and non-convex op-
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timization problem to a set of subproblems that can be
solved iteratively. In the future work, a variety of ap-
plications will be explored for totally applying the pro-
posed method, such as detail enhancement, inverse
halftone, and edge detection.
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