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Abstract

Fabric retrieval is very challenging since problems like viewpoint variations, illumination chan-
ges, blots, and poor image qualities are usually encountered in fabric images. In this work, a novel
deep feature nonlinear fusion network ( DFNFN) is proposed to nonlinearly fuse features learned
from RGB and texture images for improving fabric retrieval. Texture images are obtained by using lo-
cal binary pattern texture (LBP-Texture) features to describe RGB fabric images. The DFNFN first-
ly applies two feature learning branches to deal with RGB images and the corresponding LBP-Texture
images simultaneously. Each branch contains the same convolutional neural network (CNN) archi-
tecture but independently learning parameters. Then, a nonlinear fusion module (NFM) is designed
to concatenate the features produced by the two branches and nonlinearly fuse the concatenated fea-
tures via a convolutional layer followed with a rectified linear unit (ReLU). The NFM is flexible
since it can be embedded in different depths of the DFNFN to find the best fusion position. Conse-
quently, DFNFN can optimally fuse features learned from RGB and LBP-Texture images to boost the
retrieval accuracy. Extensive experiments on the Fabric 1.0 dataset show that the proposed method

is superior to many state-of-the-art methods.
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0 Introduction

Taking a query fabric image as an input, fabric
retrieval aims to search from a gallery fabric image
dataset and return a list of most similar fabric images.
Hence, fabric retrieval plays an important role in im-
proving the production efficiency in textile industries.
However, fabric retrieval is very challenging because
fabric images usually contain illumination changes,
blots, complex textures, and poor image qualities.

As an image retrieval problem, the fabric image
representation is essential for fabric retrieval. General-
ly, feature representation methods can be mainly divid-
ed into 2 types: hand-crafted features and deep-learned
features. For hand-crafted features, many well-known
hand-crafted features (e. g. , histogram of orientation
gradient ( HOG)'" | local binary pattern ( LBP) '
and speed-up robust feature (SURF) ) are designed
based on the knowledge and experience of researchers.
For deep-learned features, there are also a wide range

of famous deep networks, such as AlexNet'*! | VGG-
Net!*! i GoogleNet[ﬁ] s ResNet!”’ s DenseNet'®’ .

Mainstream academic researchers”®  generally
believe that hand-crafied features (e. g., HOG!" |
LBP' | and SURF™') allow for a better understanding
of shallowing image representation methods. In this
light, hand-crafted features are possible to be replaced
by deep-learned features using shallow neural net-
works. However, deep-learned features are automati-
cally obtained by using deep networks trained from
RGB images. Human cannot intuitively understand the
mean of deep-learned features and lack efficient guid-
ance to improve deep-learned features except deepe-
ning a network ’ s depth. Therefore, there is a great re-
quirement for finding a method to combine hand-crafted
and deep-learned features efficiently.

Intuitively, texture features are significant for fab-
ric images, thus, fusing texture features with deep fea-
tures learned from RGB images are expected to improve
the fabric retrieval performance. However, texture fea-
tures are considered as low-level features, while deep-
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learned features resulting from RGB images are high-
level features. If they are directly concatenated, there
is a huge risk of losing the balance of hand-crafted and
deep-learned features which is harmful to boost the fab-
ric retrieval performance. For that, a novel deep fea-
ture nonlinear fusion network ( DFNFN) is proposed to
optimally fuse texture features and deep-learned fea-
tures. More specifically, DFNFN simultaneously proces-
ses a RGB image and the corresponding texture image
through two feature learning branches. Each branch
contains the same convolutional neural network ( CNN)
architecture but independently learning parameters. It is
worth noting that texture images are obtained by using
local binary pattern texture ( LBP-Texture) ! features to
describe RGB fabric images. In addition, a nonlinear
fusion module (NFM) is designed to concatenate fea-
tures generated by the two feature learning branches and
the concatenated features are further nonlinearly fused
through a convolution layer followed by a rectified linear
unit (ReLU). NFM is so flexible that can be embedded
in the DFNFN at different depths to find the best fusion
position. Therefore, DFNFN can optimally fuse features
learned from RGB images and texture images to improve
the fabric retrieval accuracy. Extensive experiments
show that the proposed DFNFN method is superior to
multiple state-of-the-art methods on the Fabric 1. 0"’
dataset.

The rest of this paper is organized as follows. Sec-
tion 1 introduces the related work. Section 2 describes
the proposed fabric retrieval method in detail. Section 3
presents experiment and analysis results to show the su-
periority of the proposed method. Section 4 is the con-
clusion of this work.

1 Related work

1.1 Hand-crafted feature

As a fabric retrieval task, the most important
thing is to design a suitable feature descriptor for repre-
senting fabric images. Many hand-crafted feature de-
scriptors (e. g. , HOG'", LBP"', and SURF™)
have been proposed to represent images. For example,
the combination of LBP'? histograms and support vec-
tor machine (SVM) classifiers is commonly used to

(1]

fabric recognition'' and fabric classification'”. Jing

et al. "™ proposed a multi-scale texture feature extrac-
tion method to merge LBP-Texture features'>' of differ-

ent scales for fabric retrieval. Besides LBP-Texture

141 combined fractal-based

features'?' , Suciati et al.

b
texture features and HSV color features to exploit the
salience information of fabric images. Yao et al.'"

fused GIST!'®) and SURF' features for fabric retrieval.

1.2 Deep-learned feature

With the rapid development of deep learning algo-
rithms, more and more attention has been paid to deep-
learned feature based fabric retrieval works. For exam-
ple, based on VGGNet"! | Liu et al. """’ simultaneous-
ly learned attribute features and landmark features for
fabric retrieval. Xiang et al. ''™® used GoogleNet'®’ as a
feature extractor, then converted the learned features
into binary codes to improve the accuracy of fabric re-
trieval. Bell et al. "' concatenated the features pro-
duced by different depth convolutional layers of a deep
network to improve the feature representation ability.
In addition, some ulira-deep networks, i. e., Res-
Net'* and DenseNet'®! | are sensitive to learn more
discriminate features for fabric retrieval, according to

Refs[ 20,21 ].

1.3 Fusion of hand-crafted and deep-learned fea-
tures

Recently, the fusion of hand-crafted features and
deep-learned features has achieved excellent perform-
ance in the field of image retrieval. Overall, there are
2 methods of fusing hand-crafted and deep-learned fea-
tures, i.e. , serial fusion and parallel fusion.

For the serial fusion method”?*!' | RGB images
are firstly transformed into some types of hand-crafted
features, and then the hand-crafted features are input
into a deep network for learning deep-learned features.
For example, Ref. [22] firstly extracts LBP-Texture'
images of RGB images and then trains a CNN from
LBP-Texture'”’ images. Hand-crafted features hold
some robusiness properties, e. g. , LBP-Texture'?’ is
robust to illumination changes and SIFT'**! is invariant
to scale variations. However, they inevitably lose some
intrinsic information of RGB images. For instance,
LBP-Texture loses color information, while SIFT'**
cannot take spatial information. The intrinsic informa-
tion losing is harmful to the subsequently deep feature
learning, and the accuracy performance is restricted.

For the parallel fusion approach'™’ | the network
contains 2 feature learning branches to learn the hand-
crafied features and deep-learned features simultane-
ously. Specifically, Ref. [25] applied VGGNet">' and
weighted HOG'®! 1o obtain the deep-learned features
and hand-crafted features, respectively. Then, they
integrated deep-learned features and hand-crafted fea-
tures via a fully connected layer to acquire a strong fea-
ture descriptor for pedestrian gender classification.
This parallel fusion approach has a huge risk of losing
the balance of hand-crafted and deep-learned features
since the hand-crafted feature is a type of shallow fea-

tures.
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2 Proposed method

2.1 Overview

Fig. 1 shows the framework of the proposed DFN-
FN. It can be seen that the DENFN contains two inputs
and one output. The 2 inputs are RGB fabric images
and the corresponding LBP-Texture images, respective-
ly. Both RGB fabric images and the corresponding
LBP-Texture images are processed with 2 feature learn-
ing branches. The 2 branches are merged to form sin-
gle output by using the proposed NFM. The details of

DFNFN will be described in the following subsections.

2.2 Nonlinear fusion module
2.2.1

As shown in Fig. 1, the feature extraction on RGB
images is completed by the RGB feature learning
branch. For ease of description,

Feature extraction on RGB images

a convolutional
(Conv) layer, a batch normalization (BN) layer and a
ReLU are sequentially packaged to construct a CBR
block. Then, 3 CBR blocks (i.e., CBRI-CBR3) and
3 max-pooling layers (i.e. , MP1-MP3) are packaged
in turn to build the RGB feature learning branch.

N2s6, K333, S1

N512 N2se, Kixt, S1

-
-
-
-

RGB Ned, K3x3, S1 K3x3, S2 N128, K3x3, S1 K3x3, §2 N192, K3x3, §1 K333, 52
: RGB feature learning branch
1 NFM
:
: K3x3, 82 N320, £3x3, 51 K3x3, 52
Y LBP-Texture feature learning branch

CBRI Naso
Ne64, K353, S1 K3x3, 52 N128, K3x3, S1 K3x3, §2 N192, K3x3, S1K3x3, 52
LBP-Texture

Fig.1 The framework of the proposed deep feature nonlinear fusion network

MP, NFM, and FC represent max-pooling, non-
linear fusion module, and fully connected layers, re-
spectively. For those capital letters lying under each
component, N is the channel number of the resulted
features; K means a filter size if the component is a
convolution layer, while K represents a pooling window
size once the component is a pooling layer; S denotes a
stride size working on the component.

2.2.2 Feature extraction on LBP images

As shown in Fig. 1, LBP-Texture images are fed
into the LBP-Texture feature learning branch. Follow-
ing Ref. [26], an RGB image is firstly gray processed
and then the 3 x 3 sized LBP'* encoding operation is
applied to transform the gray image into a LBP-Texture
image. As shown in Fig. 2, the 3 x3 sized LBP'* en-
coding operation is implemented between each spatial
position and its 8 neighbors. That is, the pixel value of
a spatial position is applied as a threshold, and if a
neighbor’ s pixel value is smaller than the threshold,
the corresponding code is 0, otherwise, it is 1. In this
way, 8-bit binary codes are obtained at each position.
Those 8-bit binary codes are further transformed into
decimal representations by using Eq. (1). As a result,

the LBP-Texture image is acquired, and its pixel val-
ues are ranged in [0, 255].

8
LBP,,;(g,) = Zl(gi >g,) x2° (1)
1=0

where, g, is the gray value of a spatial position and g;
represents the 8-neighbor of g,. [ is an indicator func-
tion, which is equal to 1 if g, > g,, otherwise, it is

equal to 0.
(01101100),= 108

128 0|1 |1
9i i

Thresholding
923 IQS 0

0| 14 1

Decimalism

Fig.2 The diagram of transforming an RGB image into a

LBP-texture image
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The architecture of the LBP-Texture feature learn-
ing branch is kept the same with that of the RGB fea-
ture learning branch to reduce model complexities.
However, it should be noted that parameters of the 2
branches are independently learned because they are
learned on the different input sources. Similar to
Ref. [22], this paper learns features on LBP-Texture
images, yet this paper designs a novel network that al-
so learns on RGB images. Therefore, the proposed
method can receive more information to train a stronger
network.

2.2.3 Nonlinear fusion

The RGB feature learning branch and the LBP-
Texture feature learning branch are merged into a sin-
gle branch via the proposed NFM to realize the nonlin-
ear fusion, as shown in Fig. 1. Firstly, for both RGB
and LBP-Texture feature learning branches, NFM ap-
plies Conv and BN layers to deal with the generated fea-
tures. Secondly, NFM applies a concatenation ( Con-
cat) layer to concatenate features resulting from the 2

4 CBR1 H?H CBR2 Hzﬁl

‘ RGB feature learning branch

\
NFM {f‘ CBR4 }-){EH CBRS Hf »  FC
‘ \

LBP-Texture feature learning branch /
- e B s
| | e

(a) NFM is embedded between MP2 and MP3 of the deep network

branches according to the channel dimension. Moreo-
ver, the Concat layer is followed by a bottleneck layer
(i.e., the combination of a conventional layer using 1
x 1 sized filters and a ReLLU) to nonlinearly compress
the concatenated features. Finally, at the end of NFM,
there are MP4, CBRS, MP5 and 3 fully connected lay-
ers (i. e., FCI-FC3). Among these fully connected
layers, FC1 and FC2 are followed with batch normali-
zation layers and ReLU activation functions.

Last but not least, it should be pointed out that
the NFM is flexible, which means that it can be em-
bedded at different depths of the DFNFN to find the
best nonlinear fusion position. As shown in Fig.3(a),
the NFM is embedded between MP2 and MP3 to re-
place CBR3, while in Fig. 3(b) the NFM is embedded
between MP4 and MP5 to replace CBR4. This flexibil-
ity allows the proposed DFNFN is more general than

the parallel fusion way' ™| since the parallel fusion
way is just a special case that embeds the NFM at the

deepest position.

NN IMP | cnms Ll MP L | MP
o 4 o o

RGB feature learning branch

g=3

LBP-Texture feature learning branch ‘

o P o R e B

(b) NFM is inserted between the MP4 and MP5 layer of the deep network

Fig.3 The proposed NFM is flexible to be embedded at different depths

2.3 Network configuration

The parameter configuration of the DFNFN is
shown in Fig.1. The channel numbers of CBRI,
CBR2, CBR3, CBR5 are 64, 128, 192, 256 and
320, respectively. Except for Convl in the NFM, the
resting convolutional layers apply 3 x 3 sized filters
since smaller sized filters are beneficial to learn local
fabric image details. All convolutional layers apply 1-
pixel strides to retain fabric image details as much as
possible. Moreover, all pooling layers use 3 x 3 sized
max-pooling windows and 2-pixel strides.
2.4 Brief description of fabric retrieval imple-

mentation

After training the proposed DFNFN network shown
in Fig.2, the fabric retrieval is implemented as fol-
lows. Firstly, both probe and gallery images are re-
sized into a unified size, i.e. , 224 X224, and the ap-
plied image resizing method is the commonly-used bi-

]

linear interpolation algorithm'®”). Secondly, using the

proposed DFNFN network, same dimensional deep fea-

tures (i.e. , output vectors of the full connection layer
(i. e., FC3) shown in Fig.1) of probe and gallery
images can be extracted. Thirdly, the Euclidean dis-
tance between a pair of the probe and gallery images
described with the learned deep features is employed to
measure the similarity. Finally, based on the similarity
measurement, gallery images are ranked to produce
candidates for the probe image.

CMC" curve shows identification accuracy rates
at different ranks. The average precision ( AP) is the
area under the precision-recall curve of a query, and
MAP'®’ is the mean value of APs. Hence, the MAP

can evaluate the overall fabric retrieval performance.
3 Experimental results and analysis

3.1 Dataset

To validate the superiority of the proposed ap-
proach, extensive experiments are conducted on Fabric
1.0"°), Fabric 1. 0 contains 46 656 fabric images of
972 subjects from a garment factory in Quanzhou, Chi-
na. The class label of each subject is annotated by
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workers of the factory. Both front and back sides of
each subject have been recorded. In order to better
simulate actual application scenarios, each side of a
subject has been rotated randomly 12 times between 0
and 360 degrees.
each side of a subject is randomly cropped at 2 differ-

Moreover, to reduce redundant,

ent spatial positions, and each cropped patch is a 256
x 256 sized RGB image. As a result, each subject
contains 48 cropped images. Ref.[10] described the
details of Fabric 1.0.

The Fabric 1.0 is separated into non-overlapped
training and testing sets for evaluating performance. To
be more specific, the half of Fabric 1.0 is applied as
the training set and the rest half is used as the testing
set. Consequently, both training and testing sets in-
clude 23 328 images of 486 subjects. Furthermore, on
the testing set, the half of each subject’ s images is ap-
plied to construct a probe subset and the other half is
used to form a gallery subset. Therefore, both the
probe and gallery subsets of the testing set contains

11 664 images of 486 subjects.

3.2 Implementation

The hardware is an ASUS workstation, containing
E5-2650 v2 CPU, 128 GB Memory, and a 12 GB
Memory NVIDIA TITAN GPU. The deep learning tool
is TensorFlow' ™. The training set of Fabric 1.0 is di-
vided into 2 parts; Part I for training and Part 1T for
validation. The ratio between Part I and Part I is 0.7 .
0.3. During the training process, all images are ran-
domly cropped to 224 x 224 sized patches. The hori-
zontal flip and randomly rotating operations are applied
for the data augmentation. Each mini-baich is com-
posed of 64 images that are randomly selected from the
Part I of training set. The AlexNet " is applied as the
backbone network, which is pre-trained on ImageN-
et for accelerating the training process. The L, regu-
larization and dropout techniques are applied to prevent
an over-fitting risk, and their hyper-parameters are set
as 0.01 and 0. 5, respectively. The Adam'™! optimizer
is applied to optimize the model, with a learning rate of
10 *and a momentum value of 0.9. At last, the train-
ing is finished by using 500 epochs.

For making a clear experiment presentation, in
the following experiments, the feature learned by using
the proposed NFM is denoted as the nonlinear fusion
feature (NFF). Moreover, discarding NFM of Fig. 1,
RGB-DF represents deep-learned features produced by
only using the RGB feature learning branch, while
LBP-DF represents deep-learned features produced by
only using the LBP-Texture feature learning branch. In

addition, LBP-DF + RGB-DF is the case that directly

concatenates LBP-DF and RGB-DF.

3.3 Comparison with state-of-the-art methods

In order to show the superiority of the proposed
NFF, it is compared with the state-of-the-art methods,
including LBP"*' | BoF'®'  SIFT + FV*!  SIFT +
VLAD"®) | LeNet'®’, AlexNet'*!, and VGGNet'*’.
From Table 1, it can be found that the proposed NFF
acquires the best performance. Specifically, it outper-
forms the strongest hand-crafted method, i.e. , SIFT +
VLADP | by a 3.52% higher rank-1 identification
rate. Moreover, the proposed NFF also defeats the
most powerful deep learning method, i. e., VGG-
Net'! | by an approximately 7% higher rank-1 identifi-
cation rate.

To make an intuitive comparison, Fig.4 shows the
top-10 ranked retrieval results of 2 query images. From
Fig.4, it can be found that the proposed NFF works
better than multiple state-of-the-art methods, even fab-
ric images are rotated and deflected.

For each query, its top-10 ranked images resul-
ting from LBP, LeNet, AlexNet, VGGNet and NFF are
shown, respectively. True matched images are marked
with ticks, while false matched images are labeled with

Crosses.
Table 1  The performance comparison among the proposed
method and state-of-the-art methods on Fabric 1.0
Method Rank =1 Rank =5 MAP
HOG™ 50.89% 63.47% 44.63%
LBpPL 55.47% 72.62% 45.12%
SIFT + BoF'™! 62.28% 79.74% 46.33%
SIFT + FV'* 89.86% 91.51% 48.59%
SIFT + VLAD™*!  94.87% 96. 54% 50.88%
LeNet™® 83.59% 94.55% 48.57%
AlexNet'* 89.58% 98.99% 50.42%
VGGNet™! 91.14% 98.43% 50. 82%

NFF ( proposed) 98.39% 99.73% 72.44%

3.4 Analysis
3.4.1 Role of nonlinear fusion module

From Fig.5, one can find that the proposed NFF
consistently outperforms LBP-DF, RGB-DF and LBP-
DF + RGB-DF. For rank-1 identification rates, the
proposed NFF defeats the LBP-DF and the RGB-DF by
26.93% and 14.59% , respectively. Moreover, NFF
beats the LBP-DF and the RGB-DF by 26. 87% and
25. 08% larger MAPs, respectively. Moreover, one
can see that although LBP-DF + RGB-DF concatenating
LBP-DF and RGB-DF obtains large improvements, it is
still obviously defeated by the proposed NFF. To be more
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Fig.4 Examples of retrieval results on Fabric 1.0

Cumulative identification rate (%)

MAP=45.57, R1=71.46, R5=82.48, LBP-DF

—O— MAP=47.36, R1=83.80, R5=90.86, RGB-DF

—k— MAP=49,52, R1=82.44, R5=94.99, RGB-DF+LBP-DF
._A_ MAP=72.44, R1=98.39, R5=99.73, NFF

[ r
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Rank
Fig. 5 The CMC curve comparison of LBP-DF, RGB-DF,

LBP-DF + RGB-DF and NFF cases on Fabric 1.0 (R1
and R5 represent rank-1 and rank-5 identification
rates, respectively)

specific, the rank-1 identification rate of NFF is about
16% higher than that of LBP-DF + RGB-DF.
3.4.2 Comparison of different fusion approaches

In this subsection, different fusion methods are
compared to show the superiority of the proposed NFM.
Both the serial fusion method”' and the parallel fusion
method'”! are evaluated. For the serial fusion meth-
od'?' | RGB images are firstly transformed into LBP-
Texture images and then the LBP-Texture images are
fed to train the deep network. Hence, this serial fusion
way is the same as the above-mentioned LBP-DL case.

For the parallel fusion method ™’ the deep-learned
features and hand-crafted features are extracted by the
AlexNet and the LBP operation. Then, they are fused
via a fully connected layer (i.e., FC1). It should be
pointed out that in Ref. [ 25] the fusion occurs between
deep-learned features and weighted HOG features, but
in this paper, the weighted HOG features are replaced
with LBP-Texture features for making a fair compari-
son.

As shown in Table 2, the serial fusion method is
inferior to the parallel fusion method. This is because
the LBP-Texture images containing local illumination
variation information but losing color information,
which is harmful to the subsequently deep feature
learning. In addition, one can see that the proposed NFF
method defeats both the serial fusion way and the paral-
lel fusion way, which illustrates the proposed method is
an effective fusion method.

Table 2 The comparison of different fusion methods on Fabric 1.0

Method Rank =1 Rank =5 MAP
NFF 98.39%  99.73%  72.44%
Serial fusion ! 71.46%  82.48%  45.57%
Parallel fusion'®! 95.32%  98.86%  62.44%

In order to explore the contribution of the pro-
posed NFM more clearly, cases embedding NFM from
shallow to deep are evaluated and the corresponding re-
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sults are shown in Fig.6. For ease of description,
CBR1 denotes the case that replaces the original CBR1
block by inserting NFM at the CBR1 position of the
deep network, and the rest cases are named the same
way. From Fig. 6, it can be observed that the perform-
ance fluctuates when NFM is embedded into different
positions. The best result is generated by the CBR4
case that embeds NFM to replace the CBR4 block. For
example, the CBR4 case acquires a highest MAP
(i.e., 72.44% ), which is 21.19% , 12.66% , 7. 67%
and 3. 17% higher than CBR1, CBR2, CBR3 and
CBRS cases, respectively. These results show that the
optimal feature fusion does not always occur in the dee-
pest position and thus the existing parallel fusion meth-
od"™’ that forcibly fuses deep-learned and hand-crafted
features at the deepest position is not the optimal fea-
ture fusion solution.

100
99
g %8
g 97
=l
(=}
g 96
=
g 95
3
s %
s 9 1
g —A—MAP=51.25, R1=90.45, R5=98.18, CBR1
S 92 - %—MAP=59.78, R1=93.32, R5=95.23, CBR2 |
- ¥—MAP=64.77, R1=95.13, R5=98.90, CBR3
91 - ©—MAP=72.44, R1=98.39, R5=99.73, CBR4 | -
MAP=69.27, R1=98.15, R5=99.45, CBRS
90 1 L L 1 L
1 5 10 15 20 25 30

Rank
Fig.6 The CMC curve comparison of cases embedding NFM at
different positions

3.4.3 Visual analysis

As shown in Fig.7, the RGB-DF case and the
LBP-DF case exhibit different activation maps and their
activation maps can compensate each other to some ex-
tent. This illustrates that there is a complementarity
between RGB-DF and LBP-DF. Hence, the RGB-DF
+ LBP-DF case concatenating of RGB-DF and LBP-DF
can boost the fabric retrieval performance. In addition,
one can find that the proposed NFF method is almost a
union of RGB-DF and LBP-DF, which effectively fuses
LBP-DF and the RGB-DF to acquire a larger improve-

ment in the fabric retrieval performance.
4 Conclusions

In this work, a novel DFNFN is proposed to nonlin-
early fuse features learned from RGB and texture image

RGB-DF, LBP-DF and NFF

for fabric retrieval. Texture images are obtained by u-
sing LBP-Texture features to describe RGB fabric ima-
ges. The DFNFN applies 2 feature learning branches to
process RGB images and corresponding LBP-Texture
images simultaneously. Each branch contains the same
convolutional neural network architecture yet independ-
ently learning parameters. The features produced by
the 2 branches are nonlinearly fused via a special de-
signing NFM. The NFM is so flexible that can be em-
bedded in different depths to find the optimal fusion
position of the feature learned from RGB and LBP-Tex-
ture images. Consequently, the DFNFN can optimally
combine features learned from RGB and LBP-Texture
images to promote the fabric retrieval accuracy. Exten-
sive experiments on the Fabric 1. 0 dataset show that
the proposed method can outperform many state-of-the-
art methods.
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