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Abstract

Deep learning algorithms are the basis of many artificial intelligence applications. Those algo-

rithms are both computationally intensive and memory intensive, making them difficult to deploy on
embedded systems. Thus various deep learning accelerators ( DLLAs) are proposed and applied to
achieve better performance and lower power consumption. However, most deep learning accelerators

are unable to support multiple data formats. This research proposes the MW-DLA, a deep learning

accelerator supporting dynamic configurable data-width. This work analyzes the data distribution of

different data types in different layers and trains a typical network with per-layer representation. As

a result, the proposed MW-DLA achieves 2X performance and more than 50% memory requirement

for AlexNet with less than 5.77% area overhead.

Key words: deep learning accelerator ( DLA ), per-layer representation, multiple-precision

arithmetic unit

0 Introduction

With the rapid growth of data scaling and continu-
ous improvement of hardware computing capability, the
advantages of deep learning algorithms became more
and more obvious than traditional machine learning al-
gorithms. Recent studies showed that the recognition
results are highly correlated with the depth of neural

2] At present, in the field of image classifi-

[5,6]

networks!

341 object detections

cations , and semantic analy-
sis, the effects of deep neural networks far exceed
those of traditional machine learning algorithms.

However, deep neural networks demands more
computation and memory resources than traditional ma-
chine learning algorithms. For example, AlexNet'"! re-
quires 1.2 billion operations to process a picture. As a
consequence, it is difficult to deploy deep learning
neural networks in embedded systems which are power
constrained and resource constrained. Therefore, de-
signing an energy-efficient deep learning accelerator
with limited resource is highly demanded.

Many previous work have made a lot of efforts to

specialize deep learning computation paradigm in order
to obtain higher performance power ratio. Chen et al. '
proposed a scheme by using fixed-point data instead of
floating-point data format, and combined with other op-
timization methods, realized a neural network processor
with more than 100 times higher performance than the
general-purpose processor, and the energy consumption
is reduced by more than 30 times. Subsequently, Chen

1 and Du et al. [

processor applied to different occasions. The sparse
1. [11]

et al. realized the neural network
neural network processor proposed by Zhang et a
saved 10 memory consumption by compressing weights.
The sparse neural network processor proposed by Han
et al. ") focused on the weight compression technique.
By removing invalid weights or the multiplication and
addition operations of zero-value neurons, the total
computational amount can be saved by 70%. The
reconfigurable neural network processor proposed by
Chen et al. "' saved power by means of data multiple-
xing techniques and turning off the arithmetic unit
when the input neuron value is zero. Brandon et al. "
proposed a design space search method based on the
analysis of neural network errors. By using fixed-point
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neural network data, pruning, and reducing SRAM
power consumption, the average power consumption of
the neural network processor is saved by 8. 1x.

In this paper, a deep learning processor support-
ing dynamically configurable data-width, MW-DLA | is
proposed. The contribution of this study includes:

® This work analyzes the difference of various da-
ta types in the same layer and the same data type
through different layers in a neuron network. Then,
this paper applies a dynamical method to quantify neu-
rons and weights in different layers while maintaining
the accuracy of networks.

® This research proposes a deep learning proces-
sor to support dynamic data-width.

® This research evaluates the performance and
area overhead of the proposed processor relative to
baseline design. The results show that this design can
achieve high performance with negligible extra resource
consumption than fixed point processors.

The rest of this paper is organized as following:
Section 1 describes the background and motivation for
MW-DLA. Section 2 shows the quantification method-
ology for training per-layer representation networks.
Section 3 introduces MW-DLA. Section 4 evaluates
MW-DLA, and compares MW-DLA’ s performance and

]

3 i 9 . . .
area with DaDianNao'®’. Conclusion is made in Sec-

tion 5.
1 Background and motivation

The deep convolutional neural network (CNN) is
a directed graph composed of a plurality of structures
called neurons, and input layer neurons are mapped to
output layer neurons by connections called weights.
Neurons in each layers are arranged to multiple 2D ma-
trices, each called a feature map. The feature maps in
the same layer are of the same size. Typically, CNN
includes a convolution layer for feature extraction, a lo-
cal pooling layer for reducing the scale of neurons, and
a full connection layer for feature classification.

The convolution layer uses multiple filters of the
same size to perform feature extraction on the input lay-
er to obtain different output feature maps. Each filter
performs matrix multiplication with the Kx X Ky rectan-
gle receptive field on all input feature maps to obtain
an output neuron. By sliding the filter’ s receptive field
by stride Sx in the x direction or Sy in the y direction, a
new output neuron can be computed. Thus the output
feature maps are formed by traversing the input feature
maps.

Similarly, pooling layer computes the average or
selects the maximum one from Kx x Ky rectangle recep-

tive field on one input feature map to obtain an output
neuron on the corresponding output feature map. The
whole output feature map is computed by sliding the re-
ceptive field on the input feature map. The scale of
each feature map can be reduced by performing pooling
on one layer of neurons while keeping the feature maps
number unchanged.

Full connected layers are appended after a se-
quence of convolutional layers and pooling layers to
classify the output categories of the input image. Full
connected layer computes weighted sum of all neurons
in input layer, and then performs active function on the
weighted sum to obtain an output neuron. The weight
vectors of different output neuron are different from
each other.

Typically, the data of a network is represented in
float32 or floatl6 format in general processor units.
While float point arithmetic units are resource consu-
ming and power consuming, Chen et al. '"® proposed
using 16 bit fixed-point data instead of floating-point
data format to achieve better performance and lower
power consumption. Further, Patrick!"’ pointed out
that data from different layers can be layer-specified
with little loss penalty. Motivated by Patrick’ s work,
this paper proposes a deep learning accelerator to sup-
port dynamic data-width with negligible extra resource
consumption to achieve higher performance and better

energy consumption.
2 Quantification methodology

In this paper, it takes a representative network of
deep learning networks, AlexNet!”', for example. The
network is trained on Caffe''® framework. And the out
of sample error is less than 0. 1% . For each layer,
weights and input neurons are converted to fix-point
representation and then back to float format to feed
them to obtain output neurons.

Per-layer representation network are obtained by
fine tuning the pre-trained model downloaded from the
Caffe model zoo''”’.

quantification configuration for each layer. Then a two-

First, this work chooses a set of

phase termination method to fine tune the network at
each iteration is used. In the first phase, neurons and
fine-tuned weights are obtained using BP algorithm. In
the second phase, decreasing the bit width of neurons
or weights on the precondition of maintaining the accu-
racy within manageable proportions. Fine tuning termi-
nates when the accuracy on validation set against no-
quantified model exceeds 0. 1% . After iterations, the
resulting quantification configuration as Table 1 shows
is obtained.
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Table 1  Quantification configuration of AlexNet
Neuron eight
Layer Ne.u ron exponent W(.aight emeent
width bere (2] width basel2)
Convl 4 5 6 -6
Conv2 6 3 8 -7
Conv3 6 3 8 -8
Conv4 7 3 8 -7
Conv5 7 3 7 -7
FC6 8 1 8 -11
FC7 7 1 6 -9
FC8 7 0 6 -8
3 MW-DLA

The above results indicate that the dynamical
quantization of neurons and weights between different
layers can be exploited to implement deep learning pro-
cessor with higher performance and better power con-
sumption. This section introduces MW-DLA, a deep
learning accelerator which reduces memory bandwidth
requirement and memory traffic simultaneously to im-
prove processing performance of deep learning net-
works.

The proposed MW-DLA is an extension scheme of
DaDianNao, a multi-tile DNN accelerator using uni-
form 16 bit fixed-point representation for neurons and
weights. MW-DLA takes advantage of layer-wisely
quantified neurons and weights to save memory band-
width and storage as well as improve computing per-
formance. To convey the mechanisms of MW-DLA
clearly, Section 3.1 introduces the baseline accelera-
tor, and the followed sections describe how to incorpo-
rate it with per-layer data representation to achieve
higher performance and lower power consumption.

3.1 Baseline accelerator architecture

This paper takes DaDianNao as the baseline ac-
celerator, which is organized in a tile-based form as
shown in Fig. 1 (a). There are 16 neural functional
units (NFU) in DaDianNao. All the computations of
output layer are split in 16 segments of the same size to
conduct on 16 SIMD NFU tiles.

Fig. 1(b) shows the architecture of an NFU. Da-
DianNao uses massive distributed eDRAMs which is
called SBs to store all weights closed to NFU to save
power consumption of weights reading. There are also
eDRAMs to buffer input neurons and output neurons in
each tile, namely NBin and NBout. During every cy-
cle, 16 elements of 16-bit input neurons and 256 ele-
ments 16-bit weights are read from NBins and SBs sep-

arately by NFUs. Then NFUs conduct matrix multipli-
cation to obtain partial sums for the 16 output neurons.
These calculated 16 elements of 16-bit output neurons
are written to NBout when their corresponding partial
sums are accumulated.

(a) Tile-based organization of DaDianNao

nonliner

ur

(b) Block diagram of NFU
Fig.1 Overview of DaDianNao system

Since DaDianNao stores the full copy of input
neurons in a central eDRAM, an internal fat tree is ap-
plied to broadcast identical neurons to each tile, and to
collect output neurons of different values from 16 tiles.
The central eDRAM consists of 2 banks, each bank
performs the roles of NBin and NBout similar to that in
NFUs. Input neuron vectors are broadcast to all tiles
for different output neurons. Since the computation of
an output neuron usually takes more than 16 cycles,
these output neuron vectors can be collected from dif-
ferent tiles in time division multiplexing manner with
no performance penalty.

3.2 Memory layout

Since the data width of input operating elements is
uniform for all networks, the memory layout can be
simplified as shown in Fig.2(a). Weights feeding to
each NFU in every cycle are arranged in the same line
in SB. Each NFU reads weights with line index accord-
ing to the expected execution order. In this case, SB
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memory is designed to provide one group weights with
equal size every memory accessing. Similarly, each
group neurons in NBin, NBout and central eDRAM are
arranged in the same line. Whereas a group of weights
consists of 256 weight elements and a group of neurons
consists of 16 neuron elements.

The input operating element width can be different
for each layer since the quantification width of neurons
and weights varies between layers. The data size of a
group weights varies if there are various data represen-
tations with different bit width. Meanwhile, a group
weights can start at any arbitrary position of a line in
memory if the input operating element width ranges
from 1 to 16. In addition, the execution engine cannot
read weights as a data stream from SB simply accumu-
lating the address because weights would be reused
many times while NFUs are conducting convolutional
layers. As a consequence, it would be a challenge to
feed weights to NFUs.

Considering the quantification width of both neu-
rons and weights can be ranged from 1 to 16, the situa-
tion would be more complex for execution engine to
feed NFUs with neurons and weights. To resolve this
problem, MW-DLA supports bit-widths of 2, 4, §,
and 16 in memory and the inputs of NFUs. This work
applies the following methods to determine the input
operating element width and storage element width.
Firstly, searching for the nearest supporting width
which is larger than quantification width to the weight
representation width in a layer to obtain weight storage
element width. Then, storage element width for neu-
rons is obtained by searching up the nearest supporting
width to the neuron representation width in a layer. Fi-
nally, comparing the optimum widths and choosing the

F255 FO
E255 EO
D255 Do
C255 Co
B255 BO
A255 A0

(a) Memory layout in DaDianNao

F255 FO

E255 EO D255 DO

/ /czss .. |COB2ss| .. |[BOJa2ss| .. |AO

(b) Memory layout in MW-DLA
Fig.2 Memory layout comparison

larger storage element width as the input operating ele-
ment width for the certain layer.

As Fig.2(b) shows, there can be 1,2, 4, and 8
groups of weights in a memory line depending on the
data-width. NV groups of weights and neurons are fed to
a NFU on every cycle. Parameter N is obtained by di-
viding 16 with input operating element width. Weights
for each layer are aligned to memory storage line size to
avoid weights for one input batch to a NFU spreading
over two memory lines. In this case, MW-DLA reduces
the footprint of memory with negligible extra hardware
cost.

3.3 Multi-precision multiplier

MW-DLA adopts multiple-precision multipliers to
achieve higher performance. Multiple-precision multi-
pliers are capable of conducting more multiplication op-
eration for input operands with shorter data-width. The
multiple-precision multipliers in NFUs support 2, 4,
8, and 16 bit. Correspondingly each NFU is able to
conduct 2 048, 1 024, 512, 256 times multiplication
on every cycle.

Fig.3 shows a common structure for a fixed-point
multiplier. It roughly contains 3 stages. In the first
stage, a radix4 booth encoder scans N-bit operand X
and Y to generate N/2 partial products. Radix4 booth
algorithm encodes continuous 3 bits in Y with a stride
of 2 bits to 5 possible partial sums 0, - X, +X, -
2X, and +2X. In the second stage, N/2 partial prod-
ucts are fed to a Wallace reduction tree for compression
to obtain 2 operands. In the third stage, the two oper-
ands are added by a carry-look-ahead adder to obtain
the final multiplication result.

| Multiplicand A ‘ Multiplicand B ‘

| I

Booth Encoder

N

Wallace Tree

L

Carry Look Ahead Adder

|

‘ result

Fig.3 Multiplier architecture block diagram

This work adopts the concept of shared segmenta-

[18]

tion to implement multiple-precision multiplier.

Since the width of outcome and partial products of mul-



HIGH TECHNOLOGY LETTERS| Vol. 26 No. 2| June 2020

149

tiplier is positive ratio to the input operand width,
there is possibility to reuse the logic to support multiple
precision in the same multiplier. A detailed example is
shown in Fig.4 and Fig.5. There are 4 16-bit partial
products when the input operands is 8 bit width. While
partial products are split into 2 groups, each group
contains 2 8-bit partial products, when the input oper-
ands is 4 bit width. A Wallace tree consisting of 16 4-2
Wallace carry-save adders( CSAs) can be used to re-
duce 4 partial products for 8 bit operation as shown in
Fig.4, and can also be used to reduce into 2 groups
partial products respectively for 4 bit operation as
shown in Fig.5. When conducting 4 bit multiplication
the carry bits from the seventh CSA (CSA _7) to
eighth CSA (CSA _8) are disconnected.

0000000000000 00
Fig.4 Booth partial product array for 8 x 8 bit multiplication
in 8 bit-mode

CCOCOCOCCC o000 0 000
CCOoCCOOCCC o000 00000
0000000 COCOCOOOO
0 000 O0O0O®_CCCOOOCOC

Fig.5 Booth partial product array for 8 x 8 bit multiplication
in 4 bit-mode

There are also efforts in first stage and third stage
to fully implement multiple-precision multiplier. In the
first stage, an extra mux is applied to select manner to
generate 4 non-zero partial sums, and then reuse the
radix4 booth encoder to obtain partial products. The
position of generated partial products are arranged in
that they are compressed in Wallace tree. In the third
stage, there are 7 extra 2-input ‘and’ gates to kill the
carries which pass across the element boundaries.

3.4 Multiple-precision add tree

The output partial sums from multi-stage are di-
vided into 16 groups corresponding to computing 16
output neurons in add-stage. Each group partial sums
are added up by an adder tree. This paper uses a 16-
input Wallace reduction tree followed by an adder rath-
er than 15 adders to add up 16 partial sums in order to
reduce logic and power consumption.

The adder tree also supports multiple precision in-
puts since there are multiple precision output partial
sums from multi-stage. Similar to the multiple-preci-
sion multiplier, adder tree divides the input data into

groups according to the operand type, and preferential-
ly adds up input data of the same group. Each group
contains 16 partial sums.

Fig. 6 shows an adder tree supports operands for
both 16-bit and 32-bit. Partial sums are extended by 4
bits with a sign bit to avoid data overflow. When input
operands are 16-bit width, the lower 20 CSAs and low-
er 20 bits of CLA compute one group partial sums and
the higher 20 CSAs and higher 20 bits of CLA compute
another group partial sums. There are also ‘and’ gate
to kill carries passing across bit 20 and bit 21 in Wal-
lace tree and CLA.

T T T T T T

1 T ¥ It [ f Tt
CSA 39« ... <-CSA721<—CSA720<—;®<—CSA719<— .. «CSA 1«—CSA 0
mode
Data_in

Fig.6 Block diagram for multiple-precision add tree

3.5 Data packing and unpacking

The width of input operating elements might be
different from the width of storage elements in neuron
memories or weight memories. This paper applies a da-
ta unpacking unit shown in Fig. 7(a) to convert the M-
bit neuron/weight element read from memory into N-bit
elements for computation. A 256-bit register is used to
store the weights or neurons read from memory. A row
of neurons or weights from memory may be decom-
pressed into multiple rows of data for computation since
N = 2" x M. Thus data unpacking unit does not read
new weights/neurons from the SB/N Bin on every cy-
cle. In each beat 256/N M-bit elements from the 256-
bit register are sign-extended to N-bit ones, then ele-
ments are shifted to obtain 256 bits of data feeding to a
NFU.

When 16 output neurons are calculated by an
NFU, a data packing unit shown in Fig.7(b) is used
to convert the output neurons to reduced precision rep-
resentation and pack them up. If the required bit width
of output neuron is P and corresponding element width
in memory is (), the data packing unit convert output
neuron into () bit data-width and the data ranges in
[ 277", 27 —1]. The data conversion equals to output
neuron to P-bit data with data overflow handling, and
then sign extending to Q) bit width. After data conver-
sion, 16 (-bit elements is shifted and spliced by a
shifter.
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256 bit reg

A 4

selector

A 4 Y

Extend 15 Extend 1 | Extend 0

TRy CIC

(a) Block diagram for unpacker

l L

convert 15

convert 1 | convert 0

shifter

\ 4
256 bit reg

(b) Block diagram for packer
Fig.7 Packer and unpacker

4 Evaluation

This section evaluates the performance and area of

MW-DLA. It also compares MW-DLA with baseline

] The comparison focuses on the

design DaDianNao
execution of convolutional layers and full-connected
layers, and the overall network performance of selected

typical neural networks.

4.1 Methodology

Per-layer representation network training By
fine tuning the pre-trained model downloaded from the
Caffe model zoo, per-layer representation network is
obtained. Since the data format difference between
Caffe and MW-DLA may cause the overall accuracy on
validation set mismatch, this work modifies the data
representation and arithmetic computation in Caffe.
Firstly, neuron/weight is represented in fix-16 format,
neuron/ weight is quantized to specified bit width and
then sign-extended to 16 bits. Secondly, partial sum
and residual error are represented in fix-32/48 format.
Thirdly, multiply and add operation are conducted
using integer operand in forward phase. Table 1 reports
the corresponding results.

Performance and area MW-DLA differs DaDi-
anNao in the implementation of NFU, while sharing the
other parts. This work implements the NFU of MW-
DLA and DaDianNao using the same methodology for
consistency. A cycle accurate model is used to simu-

late execution time. Both design are synthesized with
the Synopsys design compiler'"! with TSMC 16 nm li-
brary. The circuits are running at 1 GHz.

4.2 Result

Performance Table 2 shows MW-DLA’ s per-
formance relative to DaDianNao for precision profiled in
Table 1. MW-DLA’ s performance improvement is in

proportion to the reduction of computation width. MW-
DLA achieves 2X speedup for AlexNet.

Table 2 Speedup of MW-DLA relative to DaDianNao
Weight

Neuron Computation

Layer width width widdy ~ Peedup
Convl 4 6 8 2X
Conv2 6 8 8 2X
Conv3 6 8 8 2X
Conv4 7 8 8 2X
Conv5 7 7 8 2X
FCé 8 8 8 2X
FC7 7 6 8 2X
FC8 7 6 8 2X

Memory requirement
MW-DLA’ s memory requirement relative to DaDian-
Nao for precision profiled in Table 1. MW-DLA’ s

memory requirement is in proportion to the data-width

Table 3 shows reports

of neurons and weights. MW-DLA reduces more than
50% memory requirement reduction for AlexNet.

Table 3 Memory requirement of MW-DLA relative to DaDianNao

- Ne.uron we.ight Neur(')n Weigbt
width width reduction  reduction
Convl 4 6 75% 50%
Conv2 6 8 50% 50%
Conv3 6 8 50% 50%
Conv4 7 8 50% 50%
Conv5 7 7 50% 50%
FC6 8 8 50% 50%
FC7 7 6 50% 50%
FC8 7 6 50% 50%

Area overhead According to the report of de-
sign compiler, MW-DLA requires 0. 145 mm’ for each
NFU, while DaDianNao requires 0. 119 mm’. MW-
DLA brings 21. 85% exira area consumption for each
NFU. Considering the memory and HTs takes 47.55%
and 26. 02% area consumption of DaDianNao, MW-
DLA brings at most 5. 77% exira area consumption
compared with DaDianNao.
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5 Conclusion

MW-DLA, a neuron network accelerator supports
per-layer dynamic precision neurons and weights, is
proposed to achieve better performance and reduce the
bandwidth requirement. The design is a modification of
a high-performance DNN accelerator. According to the
evaluated performance and area consumption relative to
baseline design, MW-DLA achieves 2X speedup for
AlexNet while bringing less than 5. 77% area over-
head.
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