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Abstract
Deep neural networks ( DNNs) have drawn great attention as they perform the state-of-the-art

results on many tasks. Compared to DNNs, spiking neural networks ( SNNs) , which are considered

as the new generation of neural networks, fail to achieve comparable performance especially on tasks

with large problem sizes. Many previous work tried to close the gap between DNNs and SNNs but

used small networks on simple tasks. This work proposes a simple but effective way to construct deep
spiking neural networks ( DSNNs) by transferring the learned ability of DNNs to SNNs. DSNNs
achieve comparable accuracy on large networks and complex datasets.
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0 Introduction

Deep neural networks ( DNNs) perform the state-
of-the-art results on many tasks, such as image recog-
1141 speech recognition””’ and natural lan-
guage processing'®®'. Current state-of-the-art DNNs

usually contain many layers with high abstracted neu-

nition

ron models, causing a heavy burden for computation.
To highly efficiently process DNNs, many customized
architectures have been proposed.

Despite DNNs, another type of neural network
from neuroscience is also emerging. Spiking neural
networks ( SNNs) mimic the biological brain bionically
and consequentially are thought as the next generation
10,11]

of neural networks' . Spike, used in SNNs to pass
information among neurons, is thought to be a more ef-
ficient hardware solution as 1-bit is enough for repre-
senting one spike. Some special hardware architectures

U214 However, currently,

have been proposed for SNNs
the bio-inspired, spike-based neuromorphic SNNs still
fail to achieve comparable results with DNN.

To close the performance gap between DNNs and
SNNs, researchers have tried many solutions. IBM'"’

proved that the structural and operational differences

between neuromorphic computing and deep learning are

1161 applied a weights con-

not fundamental. ConvNets
verting technique and IBM adopted back propagation
(BP) in training. However, these techniques are only
proven feasible using small networks on simple tasks,
such as recognition on hand-written digital numbers
(MNIST"")). As a result, the capability of SNNs re-
mains unclear, especially on large and complex tasks.

This work proposes a simple but effect way to con-
struct deep spiking neural networks ( DSNNs) by trans-
ferring the learned ability of DNNs to SNNs. During
the process, initial trained synaptic weights are conver-
ted and used in SNNs; features in SNNs are introduced
to original DNN for further training. Evaluated with
large and complex datasets (including ImageNet'"®) |
DSNNs achieve comparable accuracy with DNNs. Fur-
thermore, to appeal the hardware design, this work
proposes an enhanced SNN computing algorithm,
called * DSNN-fold’ , which also improves the accura-
cy of the directly converted SNN.

Therefore the overall contribution is as follows:

(1) An algorithm to convert DNN to SNN is pro-
posed.

(2) The algorithm is improved for more hardware
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friendly design.
1 DNN vs. SNN

In this section, two different models are briefly in-
troduced : DNNs and SNNs,as depicted in Fig. 1. De-
spite the layer based architecture, SNNs are different
from DNNs in neuron model, input stimuli, results
readout and training method.

(a) DNN topology (b) SNN topology
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(c) DNN neuron model (d)SNN neuron model
Fig.1 DNN vs. SNN

1.1 Topology

Both DNNs and SNNs mimic the biological brain
but in different levels of abstraction. DNNs usually
contain multiple layers where each layer contains nu-
merous neurons; inputs are passed and processed
through layers with different inter-layer connections
(i.e., synapses) (Fig.1(a)). Recent development
of deep learning leads to increasingly deeper and larger
networks, i. e. , more layers and more neurons in a
layer. Meanwhile, connections among layers vary
through different types of layers, which consequently
leads to different types of layers and neural networks,
e. g. , multiple layer perceptron ( MLP) , convolutional
neural network ( CNN ), recurrent neural network
(RNN), and long-short-term-memory ( LSTM).

Similarly, SNNs consist of multiple layers, but
less types than DNNs. Commonly, each neuron con-
nects to not only all neurons in the last layer but also
all other neurons in the current layer through an inhibi-
tion mechanism. Therefore, the state of each neuron is
related to inputs (i. e., spikes) from previous layers
and inhibition signals from its layer (Fig. 1(b)). The
inhibition mechanism, observed from biological nerve
system, causes the so-called ‘ Winner-Take-All ’
effect, i.e. , only one neuron can fire in a shot period
(inhibition period) , which has been proven to achieve

good results in previous work' ",

1.2 Neuron model

A typical neuron in DNNs receives different inputs
and generates output passing through synapses to fol-
lowing neurons, as shown in Fig. 1(c). Formally, a
neuron generates output N, as N, = f( ch(li,
W;)) , where I, is the inputs, W; is the synapse weight,
C is the set of connected input neurons, g( ) and f( )
are processing operators. g( ) can be inner production
as in fully-connected layers and convolutional layers,
or unsampling in pooling layers. f( ) is the activation
function, such as sigmoid and ReL.U functions typical-
ly.

A neuron in SNN accumulates input spikes contin-
uously to its potential and fires out spikes to following
neurons once its potential reaches the firing threshold;
its potential will be reset afterwards. Formally, the po-

tential of an output neuron P, () in the time window

[T,, T,] can be described by

dpgé}(t) # P”";(t) =Y S IR -T)), W(i))

where IF (') is the integrate-and-fire functional model

7 is the leaky constant, W, is the synaptic weight relat-
ed to input neuroni, and §,(¢ — T, ) is an impulse func-
tion indicating whether receiving spike from input neu-
ron i at time . Thus, for two successive input spikes at
T, and T,, the solution to that formula ( turns to
4P, (1) P (1)
& 7

i. e., the potential will drop following an exponential
curve P, (T,) = P,,(T,) X exp((T, = T,)/7), as
shown in Fig. 1(d).

= 0 ) is an exponential function,

out

1.3 Input stimulus

Typical inputs, i. e., image pixels, audio infor-
mation, are used directly with or without preprocessing
like normalization and centralization. Texts are pro-
cessed to digital representations through word embed-
ding process, such as word2vec'”’.

Unlike DNNs, SNNs take spikes as inputs, thus
an encoding process which converts numeric values into
spikes is required. However, SNN encoding has been
a quite controversial topic in the field of neuromorphic
computing. There have been years of debates and dis-
cussions about better encoding schemes, e. g. , rate
coding, rank order coding, temporal coding, etc. De-
spite that, there is no obvious experimental evidence
showing the superiority of temporal coding, which uses
it is believed that tem-

poral coding carries more information but currently it is

the precise time of firing
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unclear how to leverage that. While all of them have
been shown to be biologically plausible, researches
have proved that SNN with temporal coding schemes is

31 with regard

less accurate than rate coding schemes
to hardware brevity. Here,rate coding is chosen as the

coding scheme in the following sections.

1.4 Readout

The output layer of DNNs is used to classify or
recognize the input sample. For example, each output
neuron in an MLP corresponds to a label; for CNNs,
the softmax function is applied to output layers to turn
the output value into probability distributions. Usually,
the winner neuron has the maximum output value and
will label the input with its label.

Readout in SNN is tightly related to the network
topology and training method. All these different read-
outs aim to find the winner output neuron (s) as
DNNs. The winner neuron can be the one having the
largest potential, the one firing first or the one firing
most times. Note that output neurons in SNNs could be

much more than the labels'"’

. Thus the current input
sample can be labeled with the label of the winner neu-
ron or neurons. In this work, considering the construc-
tion work from DNNs to SNNs, which is trained with
supervised learning, 3 readout strategies are exploited
that might fit in the transferred networks, i. e., FS
(first spike), MS ( maximum spike times) and MP
( maximum accumulated potential ). In this explora-
tion, FS fails to achieve the same accurate results with
other two strategies; while MS and MP show good per-
formance on simple tasks such as MINIST or simple
networks such as Lenet-5. However, MS fails on larger
or deeper topology where the accuracy drops drastical-
ly. Therefore, MP readout method is the first choice
which shows steady good performance.

1.5 Training

Training is essential and crucial to DNNs and sev-
eral training methods have been proposed. Among
them, BP, a supervised learning algorithm, has been
proven to be most effective. During neural network
training, errors between actual outputs and desired out-
puts are back propagated to input layers to adjust the
network parameters gradually.

SNN training techniques are far different from
DNNs. Most SNNs adopt neuromorphic learning models
in biology/neuroscience to optimize their training
processes. For example, the well-known STDP ( spike-
timing-dependent plasticity) mechanism, an unsuper-
vised learning algorithm, achieves similar accuracy as

a two-layer MLP on MNIST dataset'”"’. In STDP, the

learning principle is to detect causality between input
and output spikes (i. e., presynaptic and postsynap-
tic). If a neuron fires soon after receiving an input
spike from a given synapse, it suggests that synapse
plays an important role in the firing, and thus it should
be reinforced by long-term potentiation ( LTP). Con-
versely, if a neuron fires a long time after receiving an
input spike, or shortly before receiving it, the corre-
sponding synapse will be depressed by long-term de-
pression (LTD). Additionally, neuron will adjust its
potential threshold to keep the neuron firing at a rea-
sonable speed through a homeostasis mechanism.
Thus, all the neurons are forced to participate with
similar activities. Recently, researchers begin to ex-
plore supervised learning with backward propagation.
But none of them is able to achieve the comparable re-
sults as BP in DNNs, especially on tasks with larger
problem sizes.

2  Constructing DSNN

In this section, a construction procedure that
transfers learned ability in DNNs to SNNs is proposed.
This work focuses on CNNs. As shown in Fig.2, the
DSNN construction workflow can be divided into 2 sta-
ges: from CNN to SNN and from SNN to CNN. In the
former stage, DSNN is constructed with weights and to-
pology directly converted from CNN; in the latter
stage , SNN features are introduced in the original CNN
which will be modified for further training. Final DSNN
is constructed with retrained weights.

“!;«.e: i eﬂf'é-i

SNNtoCNN

Fig.2 Flow of DSNN construction

2.1 Intrinsic consistency between DNNs and SNNs

The intrinsic consistency between DNNs and SNNs
reveals a possibility of transferring the learned ability of
DNNs to SNNs. Despite the differences of neuron mod-
els and training algorithms, regarding the inference,
DNNs can be viewed as a simplified version SNNs by
removing the timing information. Given an SNN and a
DNN in a same topology, considering the formulas in
Section 1, SNN turns out to convert the original input
of the DNN from floating-point numbers or high fixed-
width numbers into lower width integers of spikes if re-
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moving the time window. The following question is
about the accuracy loss due to that conversion. Previ-
ous work show that spiking encoding currently works
worse. However, recent work on less bit-width for data
representation have been extended to binary neural net-
works %) that use 1 bit for data. Such feature indi-
cates that SNNs with rate encoding may not suffer accu-
racy loss due to moderate discretization of DNNs inputs.

In addition, RelL.U, the most popular activation

function used in deep learning'”*', may help to

bridge the gap between DNNs and SNNs. ReL.U elimi-
nates the negative neuron outputs and preserves the lin-
ear property of the positive outputs. Its function is in-
trinsically consistent with the firing mechanism ( IF
model) in SNN that a neuron fires only when its poten-
tial (always=0) is larger than the threshold. That in-
dicates that an integrate-and-fire (IF) neuron'?”’ is
equal to an ‘ artificial neurons plus ReLU’ in some de-

gree.

2.2 From CNN to SNN

Topology To transfer the learned ability, multi-
ple layers are needed in SNN to achieve the functions
of different layers in CNN. Intuitively and directly,
this work constructs a new topology of SNN with SNN-
CONV, SNN-POOL, and SNN-FC layers for convolu-
tional (CONV) , pooling (POOL) , and fully-connect-
ed (FC) layers, as shown in Fig.3. In another words,
SNN retains the connections and weights in the trained
CNN during the transfer. Especially, for layers having
no weights like POOL, SNN-POOL is constructed with
fixed weights 1/Size( Kernel) , where Size( Kernel) is

the number of presynaptic neurons in the kernel.

y PR \
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Fig.3 DSNN construction from LeNet-5

Input This work has explored 2 commonly used
methods uniform coding'* and Poisson coding'™ to en-
code CNN input values into spike trains for SNN. With
uniform coding, the input neuron fires periodically with
a firing rate which is proportional to the input value.

With Poisson coding, the input neuron fires spikes fol-
lowing a Poisson process whose time constant is in-
versely proportional to the input value. Additionally,
note that the centralization and normalization tech-
niques in DNNs can accelerate the convergence of the
training process, but it will inevitably introduce nega-
tive input values. To overcome the difficulty that input
spikes are unable to decrease the neuron potentials,
‘ negative spike’ is introduced in the converted SNN
model.

For an input neuron firing a ‘ negative spike’ , re-
ceived neurons integrate it similarly as positive spikes
but decrease their potentials.

Parameters The converted SNN needs to decide
2 types of parameters: synapse weights and firing
threshold in each neuron. For the former one,they are
directly obtained from the fully trained CNN in the from
SNN to CNN flow.

For the latter one, previous methods such as mod-
el-based normalization and data-based normaliza-
tion'"®’ | work only on simple and small datasets/net-
works, such as MNIST/LeNet-5, but fail on larger
datasets and complex networks, such as ImageNet/
AlexNet. The model-based method requires large spike
time window and leads to longer computation latency in
SNN. Data-based method is worse, since it needs to
propagate the entire network with the entire training da-
ta set and store all the activations which will further be
calculated as scaling factors. Instead, this work propo-
ses a greedy search based method to decide the firing
thresholds, as shown in Algorithm 1, which makes bet-
ter trade-offs between accuracy and efficiency. Briefly,
first find the maximum possible output M, for each layer
based on the current weight model (in Algorithm 1, M,
=input _sum, input _wt is the synapse weight). The
threshold for each layer is given by o x M;, where o is
a constant to be decided. Search widely on ¢ in the set
{1, 0.1, 0.01,---| until a satisfactory result is ob-
tained. To guarantee the optimal thresholds, greedy
search on the nearby thresholds is needed.

Algorithm 1. Threshold set algorithm
for layer in layers do

max _pos _input = 0
for neuron in layer. neurons do
input _ sum =0
for input _ wt in neuron. input _ wits do
input _ sum + =max(0, input _wt)
end for
max _pos _input = max(max _pos _input, input
_sum)
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end for
layer. threshold = o x max _ pos _ input.
end for

Search on ¢ in the set {1, 0.1, 0.01, ---} until a satisfac-
tory result is obtained.

2.3 From SNN to DNN

After the first stage of transfer, features from the
converted SNN are introduced to the original CNN
model for further adjustments. The adjusted CNN will
be trained finely to obtain parameters that better retain
the accuracy on SNN.

ReLU activations In CNN, all the CONV layers
and FC layers are made to use ReLU as an activation
function, in order to eliminate negative neuron outputs
(which could be only transferred as ‘negative spikes’
in SNN). There is no need to add ReLU functions after
POOL layers since both MAX-POOL and Average-
POOL do not change the polarity of input spikes. For-
tunately, most of the mainstream CNNs have already
included ReLU as activation function since it is shown
to have better accuracy results.

Average pooling Regarding the pooling layer in
CNN, this work changes them to average pooling
(AVG-POOL) as it is easier to be simulated in the
form of spikes. Also, previous work have demonstrated
that MAX-POOL or AVG-POOL does not have a signif-

icant impact on network accuracym] :

Bias No suitable methods have been found to ac-
curately simulate bias in SNN.

The adjusted CNN in this stage will be fully
trained to obtain new weights. Together with the SNN
architecture in the first stage, a powerful DSNN is con-
structed.

The performance of the DSNNs is reported in Sec-

tion 4.

3 Spatially folded DSNN

Considering the contradiction of limited hardware
resources and unlimited size of networks, architects
have to design architecture flexible enough to be reused
in time, i.e., a time division multiple accesses meth-
od. In another words, algorithms should compute dif-
ferent pieces at different time. Specifically, network
should be folded spatially. For time-independent
CNNs, they can be divided easily for a small footprint

of hardware"**’ .

However, this spatially-foled property
will not hold in any previous SNNs including the
DSNNs, because the computation in each neuron is
strongly related to the firing time of each pre-synaptic

neuron. To solve this problem, previously proposed ar-

chitectures usually use an expanded method for the
computation which keeps the time causality.

This work proposes an algorithm to further con-
struct “ DSNN-fold’ for hardware benefit while maintai-
ning the accuracy results. The key feature of ‘ DSNN-
fold’ is the split two-phase computation, which is de-
scribed in Fig. 4 and Fig.5. In first phase, postsynap-
tic neurons accumulate their potentials if the corre-
sponding presyanptic neuron emits negative spikes.
Since negative spikes only reduce the neuron poten-
tials, postsynaptic neurons will not fire spikes. In the
second phase, positive spikes are fired to postsynaptic
neurons. Other parts such as input encoding, readout
and threshold policy are not changed. Obviously, the 2
phases are independent and will not affect the number
of spikes. Thus, in DSNN-fold, the computation can
be divided into pieces.

Pre-synaptic
Neuron

Post-synaptic
Neuron

Pre-synaptic

Neuron

Post-synaptic
Neuron

Pre-synaptic
Neuron

Fig.4 The first phase of DSNN-fold

Pre-synaptic
Neuron

Post-synaptic
Neuron

Pre-synaptic

Neuron

Post-synaptic
Neuron

Pre-synaptic
Neuron

Fig.5 The second phase of DSNN-fold
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By using the DSNN-fold method, the spatio-tem-
poral correlation of the entire SNN is removed. In this
way, the deployment of network segments of any size
can be realized in hardware mapping. As shown in
Fig. 6, the computation of an SNN network is split into
operations of independent layers. The operation of each
layer can be divided into 2 phases and the polarity of
the influence of the operations in each phase on the
output neurons is independent and stable. Therefore, it
is possible to split computations in each phase into sev-
eral fragments. Computations in each fragment will be
easily mapped to any hardware design.

Fig.6 Folded SNN

Interestingly, the accuracy results of DSNNs-fold
are actually slightly higher than DSNNs. That is mainly
because DSNNs-fold eliminates the disturbance of acci-
dental spiking due to randomly input spikes from the
previous layer.

Also, the firing thresholds determination is much
easier. In DSNNs, the threshold is sensitive as the
neuron will fire too much times than the expected if
positive spikes come first. However, in DSNNs-fold,
the final numbers of spikes depend on inputs, regard-
less of the coming order.

Additionally, maximum pooling is feasible in
DSNNs-fold either, as it could be achieved by selecting
the neurons with maximum number of spikes and inhib-
iting other neurons to propagate to the next layer.

4 Evaluation

4.1 Methodology

In this work, 4 representative CNNs are selected as
benchmarks, and implement those 4 CNN models with
Caffe”™’ | including LeNet-5'""" | caffe-cifarl0-quick'?’
AlexNet'"! and VGG-16"*! | as shown in Table 1. The

4 CNNs are designed for 3 different datasets; LeNet-5
for MNIST, caffe-cifar10-quick for CIFAR10, AlexNet
and VGG-16 for ImageNet. Particularly, MNIST con-
sists of 60 000 individual images (28 x 28 grayscale )
of handwritten digits (0 —=9) for training and 10 000
digits for testing. CIFAR-10 consists of 60 k colorful
images (32 x32) in 10 classes. ImageNet ILSVRC-
2012 includes high resolution (224 x 224 ) images in
1000 classes and is split into 3 sets: training (1.3 M
images) , validation (50 k images) , and testing (100 k
images ) .

The classification performance is evaluated using 2
measures ;: the top-1 error and top-5 error. The former
reflects the error rate of the classification and the latter
is often used as the criterion for final evaluation.

Table 1 Network depth comparison
NN name Lenet-5 Caffe—c'lfar Alexnet VGG-16
10-quick
CNN depth 11 14 20 38
SNN depth 9 11 14 24

4.2 Accuracy

Table 2 compares the accuracies achieved by
CNN, adjusted CNN ( adjustments in stage from SNN
to CNN), DSNN, and DSNN-fold. Adjusted CNN
causes trivial accuracy loss (0.01% to 2.42% ) com-
pared to CNN. Even for the deepest network, VGG-
16, the accuracy loss is only 2.42% . This illustrates
that CNN training is able to make trade-offs on strate-
gies like bias and max-pooling, if the only factor that is
taken into consideration is accuracy, and other factors
such as convergence speed are ignored in such cases.

For small networks on MNIST and Cifar datasets,
DSNN-fold achieves comparable results with adjusted-
CNN, with accuracy decreases of 0.1% and 0.56%
respectively. Moreover, for large scale networks, Alex-
Net and VGG-16, the top-1 and top-5 errors are re-
stricted to a reasonable range (i.e., 1.03% and
1.838% for AlexNet, 3. 42% and 2. 09% for VGG-
16). Compared to previous work of converting CNN to
SNN, the results greatly improve the accuracy achieved

by SNN.

Table 2 Accuracy results

Dataset NN name CNN(% ) Adjusted CNN(% ) DSNN(% ) DSNN-fold(% )
MNIST Lenet-5 99. 05 99.04 98.94 99.02
CIFAR10 Caffe-cifarl 0-quick 75.00 74.04 73.40 73.56
Alexnet( topl ) 57.26 55.97 54.94 55.55
Alexnet ( top5) 80.20 79.09 77.25 78.76
ImageNet
VGG-16(topl ) 71.50 69.13 65.71 68.10
VGG-16(top5) 90. 10 89.23 87.14 88.39
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As the number of network layers increases, the
accuracy loss of SNN slowly increases due to parameter
settings. Two of the key parameters are the image pres-
entation time and the maximum spike frequency. Con-
sistent with the original SNN, the maximum firing fre-
quency is limited no larger than 100 Hz and the image
presentation less than 500 ms in this work. SNN could
be more efficient in practical tasks under these parame-
ters. However, these limitations could lead to bad sim-
ulation of output behaviors of CNN neurons. This prob-
lem has been solved by applying the following DSNN-
fold algorithm. Another crucial parameter is the firing
threshold. In order to reduce the complexity of SNN,
the same threshold value is set to neurons in the same
layer despite they can be set independently. Although
the simplified threshold setting strategy is able to re-
duce the workloads of threshold setting, this work sac-
rifices the higher accuracy that could be obtained by
setting an independent threshold for each neuron.

Compared to DSNN, DSNN-fold achieves a better
accuracy, e.g. , 88.39% for VGG-16, which is slightly
higher than the accuracy achieved by DSNN. In origi-
nal SNN, the positive and negative spike timings cross
each other, and bring about unreasonable firing behav-
iors of postsynaptic neurons. However, in DSNN-fold,
such behaviors avoided as negative spikes are compu-
ted before positive spikes.

The pre- and post-conversion accuracy and accu-
racy of previous SNN on a typical network are presen-
ted in Fig. 7. From left to right, the complexity of the
network is gradually increasing, and the difficulty of
identifying tasks is also gradually increasing. Although
the performance of DNN, SNN and the proposed meth-
od is very similar in the simple task, the stability of our

———DNN —— previous SNN =—— DSNN —— SNN-fold

100
90
80
70
60
50
40
30
20
10

Fig.7 Compare accuracy results among typical networks

method is obviously better than that of the previous
SNN network. Obviously, on the performance of com-
plex tasks, the improvement of the proposed method
compared to the previous SNN algorithm is significant.
Considering that the best result of previous SNN work
on ImageNet was 51. 8% (topl ) and 81. 63%
(top5)[32‘33] , this work improves the accuracy of the
SNN on ImageNet by a maximum of 6. 76% . It is clear
that our SNN is able to achieve practical results on
complex recognition tasks.

4.3 Maximum spikes vs. maximum potential

This work selects the maximum potential ( MP)
strategy over the maximum spikes (MS) strategy as the
readout strategy due to its ability to support large scale
networks. These 2 strategies are evaluated on bench-
marks shown in Fig. 8. These 2 strategies achieve simi-
lar performance on small datasets and networks. How-
ever, on large datasets and networks, the performance
of MS strategy is poor, as many neurons in the last lay-
er produce the same number of maximum spikes,
which seriously blocks the judgement of output labeling
in MS.

EMS EMP
100
75
50
25
0
Alexnet  Alexnet cifar10-quick Lenet-5 VGG(topl) VGG(top5)

(top1) (top5)

Fig.8 Comparison between 2 readout strategies

4.4 Robustness

The performance of the 2 encoding methods men-
tioned in Section 1 are compared in Fig.9. Both meth-
ods achieve satisfactory performance in the conversion
methods. Poisson coding adds randomness to the input
stimulus which proves that the converted SNN can still
be effective under unstable input environment. Since
Poisson encoding is statistically random and will in-
crease the computational complexity, it is not recom-
mended to be applied in algorithms or hardware de-
signs.
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Fig.9 Comparison between 2 coding schemes

W

5 Discussion

Compared to traditional CNNs, the major advan-
tage of DSNN is that it will significantly reduce hard-
ware storage and computation overhead. On the one
hand, DSNN converts floating-point numbers with large
data width into fixed-point spikes with smaller data
width , thereby reducing storage overhead. On the other
hand, DSNN divides the dot product operation in CNN
into add operations, which will significantly reduce the
computational power consumption and area in the hard-
ware.

Compared with another similar network BNN ( bi-
nary neural network ) 2] the effect of SNN on reduc-
ing overhead is obviously inferior to it, because BNN
only operates 1 bit neurons and weights. Besides, one
add operation is needed for calculating the effect of one
input neuron on an output neuron. Although DSNN is
weaker than BNN in this respect, DSNN achieves bet-
ter accuracy compared with BNN. Note that BNN has
completely failed to complete the task on ImageNet. In
summary, DSNN is very suitable for working in high-
precision and low-cost work scenarios.

The practice of using ReLU activations to avoid
negative neurons has appeared in many articles, but it
still lacks reasonable interpretations of the occurrence
of negative weights. It is a generally accepted fact that
it takes much more SNN neurons with inhibitory mech-
anisms to simulate negative weights, therefore the con-
version techniques of turning CNN into a biological
SNN is still worth exploring. If SNN would one day be
considered in hardware design, the quantification of
weights and neuron potentials are also critical, which
requires the SNN to remain high precision with low-
precision weights like half-precision floating-point
weights or neuron potentials. The latest CNN technolo-
gies such as sparse and binary techniques also pose
challenges to the accuracy of the SNN, and it remains

unknown whether SNN can successfully transform
them.

In addition to the previous classic network algo-
rithms, combined with the latest generative model,
DNN is still making breakthroughs in multiple applica-
tion scenarios ™. How SNN completes new network

technologies such as GAN in DNN is still worth stud-
ying.

6 Conclusion

This work proposes an effective way to construct
deep spiking neural networks with ‘learning transfer’
from DNNs, which makes it possible to construct a
high precision SNN without complicated training proce-
dures. This kind of SNN has been able to match the
accuracy of CNN in complex mission scenarios, which
is a huge improvement over the previous SNN. This
work also improves the computing algorithms of the
transferred SNN in order to extend SNN to a spatially-
folded version ( DSNN-fold). The DSNN-fold turns out
to be effective in both accuracy and computation,
which can be a good reference for future hardware de-

signs.
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