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Abstract
In view of the inaccuracy of the estimated symbols on the edge of the observation window, a de-
cision-feedback subset aided multiple-symbol differential detection ( MSDD ) framework, dubbed
DF-S-MSDD, is proposed in ultra-wideband impulse radio ( UWB-IR) system with differential
space-time block-code ( DSTBC) modulation. Specifically, motivated by the decision-feedback ai-
ded MSDD (DF-MSDD), a subset of the decision-feedback symbols is selected, and the optimal

symbols are preserved, and then all the remaining symbols are optimized. Furthermore, the simula-

tions validate that the proposed DF-S-MSDD provides solid bit error-rate performance with a low
complexity in UWB-IR system with DSTBC modulation.

Key words: multiple-symbol differential detection (MSDD) , decision-feedback ( DF), deci-
sion-feedback subset, ultra-wideband impulse radio (UWB-IR) , differential space-time block-code
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0 Introduction

Coherent detection is capable of achieving per-
formance improvement with accurate channel state in-
formation ( CSI)''".

CSI is a demanding task. By contrast, the noncoherent

However, collecting the perfect

receivers mitigate the problem of estimating CSI.
Therefore, transmitted reference and differential detec-
tion get attention as noncoherent schemes in the single

241 Unfortunately, there is a wastage

antenna system
of the transmit power with the transmitted-reference,
and the differential detection leads to bit error rate
(BER) performance loss because the current symbol is
detected using a noisy template of the received sig-
nal">’

tection (MSDD) receives much research attention

Furthermore , multiple-symbol differential de-
[79]
As a milestone for noncoherent detection, differ-
ential space time block-codes ( DSTBC) becomes at-
(10,117

tractive ', which is capable of improving the BER
performance significantly compared to the single-anten-
na system. Furthermore, generalized likelihood ratio

test based MSDD ( GLRT-MSDD) and sphere decoding
based MSDD have been conceived for the system''’.
However, the aforementioned MSDD algorithms impose
exponentially increasing complexity with the number of

the observation window. Thus, the GLRT-MSDD and
the sphere decoding based MSDD are impractical when

the number of the observation window increases. Deci-
sion-feedback based MSDD ( DF-MSDD ) represents
the computationally efficient algorithm with a low com-

plexity ")

On the other hand, due to the inaccuracy
of the estimated symbols on the edge of the observation
window, there leaves a gap in terms of the BER per-
formance between DF-MSDD and GLRT-MSDD.

Aiming to solve the problem of the performance
loss caused by inaccurate detection on the edge of the
DF-MSDD, in this work, a decision-feedback subset
aided MSDD ( DF-S-MSDD) is developed in the sys-
tem with DSTBC modulation. More specifically, based
on the DF-MSDD, a subset of decision-feedback sym-
bols is employed, and the remaining symbols are opti-
mized with GLRT-MSDD. The proposed DF-S-MSDD
can simplify the classic exhaustive search as a detec-
tion with a lower computational complexity. Another
benefit of the DF-S-MSDD is that, by getting rid of the
inaccurate decision-feedback symbols on the edge of
the observation window, it also enjoys a better BER
performance when compared to the DF-MSDD. In gen-
eral, the proposed DF-S-MSDD strikes an appealing
performance-versus-complexity trade off.

It is worth emphasizing that the proposed DF-S-
MSDD can be generalized in many noncoherent trans-
mission with DSTBC modulation. Particularly, the ul-
tra-wideband impulse radio (UWB-IR) signal contains

[14]

lots of dense multi-paths components Therefore,,
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using the optimal coherent detector will increase the
difficulty and cost of system implementation. Thus,
noncoherent schemes become inevitable in UWB-IR
system. Relying on this technique, the system descrip-
tion and simulation experiments are discussed in the
UWB-IR system with DSTBC modulation.

The structure of this paper is formulated as fol-
lows. The system description is offered in Section 1. In
Section 2, the GLRT-MSDD and DF-MSDD are intro-
duced. The proposed DF-S-MSDD is described in de-
tails in Section 3. Considering the practicability, the
detection performance of the DF-S-MSDD is discussed
by simulations in Section 4. Finally, conclusion is
shown in Section 5.

( upper-case ) boldface
"and Tr()

denote the transpose and the trace of a matrix, respec-

Notations: lower-case

symbols represent vectors ( matrices); ()

tively; #* stands for convolution; 8(¢) represents the
Dirac delta function.

1 System description

In this section, the multiple-input multiple output
( MIMO ) system description will be introduced for
point-to-point UWB system with DSTBC modulation.
The transmitter is equipped with 7(T > 1) transmit an-
tennas, the receiver is equipped with R(R > 1) re-
ceive antennas. At the transmitter, S denotes the date
rate, TS bits map to T x T unitary matrices C,, which is
the i-th information symbol. With the aid of differential
encoding, the transmission symbol is given as

G. =6GC, (1)
where, i = 0,1,---,M — 1, and M denotes the total
number of transmission symbols. The DSTBC informa-

’

tion symbols are selected from a codeword set as C; e
. T x T matrices G, are transmitted from 7T transmit an-
It is noted that each
codeword symbol employed has to be a unitary matrix.

tennas in T successive intervals.

When the unitary matrices are designed according to
the DSTBC codex of Refs[ 15-17 ], the proposed MS-
DDs are applicable to the system where the number of
antennas is more than 2. In order to facilitate the enco-
ding scheme, the transmit antenna is set to T = 2 in the
following. Each DSTBC symbol maps onto the informa-
tion-bearing DSTBC symbol " **
set Q={C°, C", C*, C*}.
bits information and DSTBC symbols are given as fol-

lows. 00 — C° = ((1) (])),01HC1 _ (—01 _01)

_01 ) The ref-

, and it belongs to the
The corresponding rule for

10> =(_01 (1)) 11-C = ((1)

erence symbol is G, = (i _11). The m-th row, n-th

column entry of G, is represented as g,, ,;,,_, withm =
1,2; n = 1,2. For the m-th antenna, the transmitted
signal is given by

s, (1) = bz ng2t+n Iw(t_(n_l)T iT,)
(2)

where, ¢ is time parameter, w(t) represents the mono-
cycle pulse with duration 7, T} is the frame duration,
= 27,

which indicates that 2 frames are needed to transmit

the duration for transmitting a symbol is T

one information symbol, E, is the energy for transmit-
ting one bit. To facilitate the demonstration, j = 2i + n
- L is brought, and g, ,,,,, is simplified as g,, ; corre-
spondingly. Then

M-1

Ebz ngzm, w(t - (2i+n - I)T)

1=0 n=1

s, (1) =

2M-1
E[)

ng jo(t =jTy) (3)

The chdnnel impulse response between the m-th

transmit antenna and the r-th (1 < r < R) receive an-

tenna is given by
L
h,, (1) =
=
represents the total number of propagation

m,

RRCURE S (4)

where, L,
paths, o)"" and 7;"" denote the path-gain and the delay
of the [-th path,

overall channel response between the m-th transmit an-

respectively. Correspondingly, the

tenna and the r-th receive antenna is formulated as
L

pm*r(t) = w<t> X hm,r(t> = m r(U(t - 'Tmr)
=1
(5)

As a result, the received signal at the r-th receive
antenna can be expressed as

¥, (1) Z,lsm(t) xh, (1) +n.(1)

E, 2
S 2 D & s (1= JT)) + (1)
m=1 j=0

(6)
where n,(t) is the additive white Gaussian noise

(AWGN) ,
is N,/2 with two-sided. To help understand and imple-

its mean is zero and power spectral density

ment the proposed algorithms, the received signal from
R receive antenna can be rewritten with matrix as

v (¢t +2iT) y, (¢ +2iT + T)
yi(t) = : : (7)
ye(t +2iT) vy, (¢ +2iT + T)

The noncoherent transmission is designed under
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the the assumption, that the channel is constant during
T symbols intervals''>’. Based on the assumption and
the received signal in Eq. (7), MSDDs will be formu-
lated in the UWB system with DSTBC modulation.

2 GLRT-MSDD and DF-MSDD

It is assumed that the number of the observation
window is N DSTBC symbols. The target is how to de-
tect N — 1 information-bearing symbols jointly from the
N received symbols. As such, the relationship is inves-
tigated between the information symbols C; and the re-
ceived symbols. Firstly, NV — 1 information symbols are
expressed as the set ¢ = [C,, C,,-:+, Cy_,]. Fur-
thermore, C will be detected from the received signal
{y.(£) | of N observation window, where0 < ¢t < NT..
When y,(t) is obtained,
combined with R received signal as Eq. (7). Accord-
ing to the GLRT criterion'®
Ref. [12].

the signal matrices will be

, C can be determined with

. N-1 B-1 8
C = argmax{z ZTr H Cz)QB,«/]} (8)

1= _()\ 1og=1y= i=y+1
where @, is the correlation matrix received from R re-
ceive antenna, its entries are the correlation function of

the B-th and the y-th received signal expressed as

R

0, = ([, vy, (0 1) (9)
where T is the integration interval. By GLRT-MSDD in
Eq. (8), N — 1 consecutive symbols will be estimated
according to the N received symbols. It can be seen
that GLRT-MSDD in Eq. (8) is an exhaustive search
algorithm. Inspired by the decision-feedback algo-
rithm, instead of optimizing all the symbols over a ob-
servation window, the previous decision symbols are
feedback and implemented into the GLRT-MSDD met-
ric. For example in the observation window of
[CB_NH S G B] the prevmus decision-feedback
symbols, i. [CB Nl ’CB NCPELEN 67 , ] are substituted

into Eq. (8) then DF-MSDD is given by Ref. [11].

A Bil B_l A =
C, = arg Icr;in!(z{ 2 r[ ( H Ci)CBQBn/]} (10)

=B-N+1 i=y+l
According to the DF—MSDDy given in Eq. (10) , it
is obvious that only a codeword symbol is detected in a
observation window. Thus, when compared to the GL-
RT-MSDD, the computational complexity of DF-MSDD
On the other hand, it is
, the reliability of the estimated sym-

will be reduced significantly.
pointed out that'"*’
bols in the middle of the observation window is higher
than that at the edge. Thus, for the DF-MSDD, the er-
ror detection on the edge of the observation window re-
sults in performance loss. Therefore, DF-MSDD is mod-

ified, and DF-S-MSDD is proposed in the next section.
3 DF-S-MSDD in UWB system

In the GLRT-MSDD, N - 1 information symbols
can be estimated from the observation of N symbols; for
the DF-MSDD, the previous N — 2 estimated symbols
are feedback, and then the last symbol is detected. In
the following, the DF-S-MSDD will be formulated. For
the DF-S-MSDD,
feedback, and the optimization is employed over the
last ¢ + 1 symbols with GLRT-MSDD. Moreover, in or-
der to reduce the performance loss caused by the inac-

the previou N — 2 —  symbols are

curacy at the edge of the observation, instead of retur-
ning all the ¢ + 1 decision symbols but only ¢ +1 - ¢
symbols, and the remaining ¢ detection symbols are
discarded at the edge of the observation. Accordingly,
the sampling architecture for the DF-S-MSDD is de-
signed. Note that the observation window slides forward
t + 1 — / symbol durations each time. The proposed
sliding mechanism is particularly suitable for extracting

the cross-correlation information among different blocks.
4 Simulations and analysis

In this section, Monte-Carlo simulations are car-
ried out to validate the advantages of the proposed non-
coherent transmission in the UWB system with DSTBC.
The channel is given as the IEEE 802. 15. 3a CM2
model ', The monocycle waveform w (1) is w(t)

[1 - 4Tr(t/Tw)2]exp[ - Zw(t/Tw)z] s
pulse duration is T, =0.287 ns. The frame duration is
T, =80 ns,

is chosen as T, =40 ns, where T, > T, eliminates the

where the
the maximum excess delay of the channel
inter-symbol interference. The transmit antenna is set
to T = 2. Furthermore, when the receive antenna is R
=1, =1, ¢ =1, the BER performance of the DF-
S-MSDD is demonstrated. Specifically, as shown in
Fig. 1, as the observation window increases from 5 to
10 and 20, the BER performance of the proposed DF-
S-MSDD has been improving. When the size of obser-
vation window is M = 10, the SNR is 9 =10, as shown
in Fig.2, the BER performance of the DF-MSDD is
less than DF-S-MSDD about 0.3 dB. This is due to the

accurate detection at the edge of the observation win-

dow for the DF-S-MSDD.
5 Conclusion

In contrast to the existing DF-MSDD in UWB sys-
tem with DSTBC, the proposed DF-S-MSDD generates
the performance gain by discarding the symbols at the
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Fig.1 BER performance of the proposed DF-S-MSDD
in the UWB system with DSTBC
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Fig.2 BER performance comparison of the proposed
DF-S-MSDD and DF-MSDD in the UWB system

edge of the observation window. On the other hand,
DF-S-MSDD requires a low computational complexity
by exploiting the decision-feedback. Finally, Monte-
Carlo simulations confirm that DF-S-MSDD provides
the BER performance better than the DF-MSDD bench-
marker regardless of the number of the observation win-
dow, whereas with a reasonable complexity.
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