HIGH TECHNOLOGY LETTERSIVol. 26 No.1[Mar. 20201pp. 17 ~24

dOi H

10.3772/j. issn. 1006-6748. 2020. 01. 003

Exploring serverless computing for stream analytic®

Cheng Yingchao ({3E#8) @ " ™ | Hao Zhifeng™ ™ , Cai Ruichu”
(" School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, P. R. China)
(™ School of Mathematics and Big Data, Foshan University, Foshan 528000, P. R. China)

(™ Department of Statistics, Texas A&M University, College Station 77840, USA)

Abstract

This work proposes ARS (FaaS) serverless framework scheduling and provisioning resources for
streaming applications autonomously, which ensures real-time response on unpredictable and fluctua-
ting streaming data. A HPC cloud platform is used as a de facto platform, on which serverless com-
puting for stream analytic is explored. This work enables application developers to build and run
steaming applications without worrying about servers, which means that the developers are able to fo-
cus on application features instead of scheduling and provisioning resources of the infrastructure. The
serverless computing framework, ARS(FaaS) , provides function-as-a-service to make the developers
write code in discrete event-driven functions. ARS(FaaS) is capable of running and scaling the de-
veloper’ s code automatically, according to the throughput of streaming events. The major contribu-
tion of this serverless framework is effective and efficient autonomous resource scheduling for real-
time streaming analytic, which enables the developers to build applications faster with autonomous
resource scheduling. ARS (FaaS) framework is appropriate for real-time and stream analytic on
event-driven data with spiky and variable compute requirements.

Key words: serverless,steam processing, HPC cloud , auto-scaling, function-as-a-service (FaaS)

0 Introduction

Serverless computing emerged as a key paradigm
for processing streaming data in the cloud''”'. Tradi-
tional clouds (e. g., infrastructure-as-a-service) pro-
vide users with access to voluminous cloud resources,
and resource elasticity is managed at the virtual ma-
chine level, which often results in overprovisioning of
resources leading to increased hosting costs, or under-
provisioning of resources leading to poor application

4] while the developing serverless com-

performance
puting is a compelling approach which hosts individual
callable functions to provide function-as-a-service,
1. e. , the computation unit is a function. When a serv-
ice request is received, the serverless platform allo-
cates an ephemeral execution environment for the asso-

51 Serverless

ciated function to handle the request
computing promises reduced hosting costs, high availa-
bility, fault tolerance, and dynamic elasticity through
automatic provisioning and management of compute in-

Le]

frastructure Thus, the developers could focus on

the application (business) logic, leaving the responsi-

bilities of dynamic cloud resources managements to the
provider while the cloud provider could improve the ef-
ficiency of their infrastructure resources. A more de-
tailed evolutionary cloud computing story about server-
less was illustrated by Ref. [7].

Serverless computing is also a form of utility com-
puting. Its pricing is based on the actual amount of re-
sources consumed by an application, rather than on
pre-purchased units of capacity'®’. The main commer-
cial and open source serverless providers include AWS
Lambda, Apache/IBM OpenWhisk, Google Cloud
Functions, and Microsoft Azure Functions. Although
serverless is a new paradigm, various serverless micro-
services are emerging in recent years, it is referred the
reader to a comprehensive survey''’.

Case Study Numerous mobile apps have sprung
up. By providing high-quality and innovative services,
globally popular mobile apps, e. g. , Instagram, What-
sApp, WeChat and AliPay, have been installed in bil-
lions of devices. Stable and high-volume streaming big
data are generated by millions of daily active users.
However, the overwhelming majority of mobile apps
only have a very limited number of the users that are no

@D Suported by the National Natural Science Foundation of China (No. 61472089, 61572143) , NSFC-Guangdong Joint Found (No. U1501254)

and China Scholarship Council (No. 201608440336).

2 To whom correspondence should be addressed. E-mail; zfhao@ fosu. edu. cn

Received on Dec. 19, 2018

18

HIGH TECHNOLOGY LETTERSIVol.26 No.1|Mar. 2020

larger than ten thousand. What’ s more, the user activ-
ity distribution is irregular. Thus, the non-mainstream
mobile apps are dealing with couples of and/or thou-
sands of small tasks (steams). They are stateless,

1. Most of the developers

short run times, and agile'®
rent a certain amount of cloud resources for the non-
mainstream applications. The amount of resources have
to handle the peeks of user activity. However, these
resources are idle for most of the time. To improve the
resource efficiency, many developers change the re-
source configuration manually when necessary. With
serverless computing, numerous non-mainstream mo-
bile apps could achieve autonomous resource schedu-
ling, it handles everything required to run and scale
mobile apps with high availability.

In serverless computing, the application logic is
composed of functions and executed in response to
events. The events can be triggered from sources exter-
nal to the cloud platform but also commonly occur in-
ternally between the cloud platform’ s service offerings,
allowing developers to easily compose applications dis-
tributed across many services within a cloud'""’.
Serverless computing is event-driven, where applica-
tions are defined by actions as well as events that trig-
ger them. This character makes it very appropriate for
stream analytic. Event-driven stream processing is one
of the important research issues among the data stream
4 Data

stream management systems are creating extremely

researchers and has many applications

high-(volume, velocity, variety and value) streams to
continuously process terabytes of data per hour from
hundreds of thousands of sources such as IT logs, fi-
nancial transactions, website click streams, social
media feeds, and location-tracking events.

The remainder of the paper is organized as fol-
lows. Section 1 introduces the challenges of serverless
computing. Section 2 gives the ARS(FaaS) serverless
framework in detail. Section 3 describes the serverless
stream analytic and the framework design on HPC
cloud. Section 4 contains the empirical studies on real
data. Finally, this paper concludes the work in future
in Section 5.

1 Challenges on serverless

Even though serverless is perfect for event-driven
stream processing, it is limited to short-running, state-
less simple applications. It is good for micro-services,
mobile backend, IoT and modest stream processing,
but not well-suited for more complex services, e. g. ,
deep learning training, Spark/Hadoop analytic, heavy-
duty stream analytic and video streaming, especially

when the application logic follows an execution path

53] Consider a workflow

spanning multiple functions
of logo detection from a video stream, which executes
five consecutive functions; split video into frames, ex-
tract features from each frame, measure 12 distance
between the extracted features and pre-generated logo
features, out-put matching pairs, and aggregate the
matching pairs. This workflow is run using AWS Lamb-

da'®’, IBM Functions''", Google Cloud Functions' "
[12]

)
and Azure Functions' ™', all of which integrate multiple
functions into a single service through different meth-
ods. On these commercial offerings, it is observed
(‘through Fig. 1) that the total runtime is obviously lon-
ger than the execution time of application logic func-
tions, i.e. , the execution of such connected functions
introduces considerable runtime overheads. Another
observation is that existing serverless platforms do not
support long-term function execution. To overcome it,
the developer may choose making one function to in-
voke another to continue the process. However, the
second and subsequent functions would need to start
new containers, which increases overall overhead.

1800

Loty N Compute time

1400
1200
1000
800
600
400
200
0

IBM Functions AWS Lambda Google Cloud Azura Functions
Functions

B Total runtime

Time (ms)

Fig.1 Total runtime and compute time of the workflow of logo
detection from a video stream. Results show the mean
values with 95% confidence interval over 10 runs, after

discarding the initial (cold) execution

Through expanding serverless to general stream
analytic, it is found that this relatively new technology
still has certain challenges.

The first challenge is cold start. The practical ad-
vantage of serverless is its ability of auto-scaling such
that developers could reduce cloud costs and develop-
ment costs. Meanwhile, cloud providers could improve
resource management. However, existing serverless of-
ferings usually execute each function within a separate
container instance, which inevitably leads to increased
invocation latency as a result of cold starts. When the
request is received, the platform initializes a new, cold
container instance to execute the associated function,
and terminate the instance when the execution finishes.

HIGH TECHNOLOGY LETTERSIVol.26 No.1IMar. 2020

19

Thus, it incurs long invocation latency for each re-
quest. Take the JVM-implemented function as an ex-
ample, it could cost up to ten seconds to run the first
invocation occasionally.

The second challenge is execution time and re-
source restrictions. In stream processing, traditional
data stream management systems are best equipped to
run one-time queries over finite stored data sets. How-
ever, the fluctuating streaming big data require not on-
ly one-time queries but also continuous queries over
high-volume unbounded data in real-time. Most exist-
ing serverless offerings do not support continuous com-
putation longer than 5/10 minutes. Serverless functions
are limited in their execution time, but streaming ap-
plications may need more than that of short-running
functions. In many scenarios, e. g. , financial or emer-
gency applications, it is necessary to apply long-run-
ning logic. Besides function execution time limit, en-
forceable resource restrictions on a serverless function
include memory, CPU usage and bandwidth. For in-
stance, the maximum execution memory per invocation
is 3 008 MB for AWS Lambda and 512 MB for IBM
Functions. These resource restrictions are needed to
make sure that the platform could deal with spikes,
and withstand attacks. Additionally, there are aggre-
gate resource restrictions that can be applied across a
number of functions or across the entire platform''’.

To overcome the above challenges, a novel, high
performance serverless framework, ARS(FaaS) , is de-
signed and prototyped, that is running on a HPC cloud
ARS (FaaS)
(e.g., self-optimizing and self-configuring) on HPC

platform. enables self-characteristics
cloud, which promises increased elasticity and efficien-
cy for scheduling, provisioning resources autonomously
on demand. The main contributions of this work in-
clude; 1) The applicability of function-as-a-service
and high performance serverless architecture are ex-
plored for general stream analytics. 2) A prototype that
11 with Apache
Storm and OpenWhisk is implemented. 3) Experi-

combines Tianhe-2 supercomputer

ments with four streaming applications show the good
scalability and low overheads of ARS(FaaS). 4) Per-
formance analysis of ARS (FaaS) and state-of-the-art
work (e.g., AWS Lambda).

2 Serverless for streaming data

Serverless workloads today are very lived shorty,
but serverless gives the illusion of unlimited resources

to handle long running compute tasks '*'.

To explore
serverless for longer running tasks, one of the different

facets of serverless is tried to address: streaming data.

ARS(FaaS) serverless framework is designed to solve
the scheduling issues by providing developers an effi-
cient way of approaching general streaming applica-
tions. It tries to exclude the complexity of handling the
resource scheduling work at all levels of the technology
stack. The ARS(FaaS) framework is implemented with
Apache Storm linked to Apache OpenWhisk which is
responsible for basic process of the streaming data. The
output of Storm is sent to a data stream and processed
by an OpenWhisk function.

2.1 Pre-warm container

In ARS(FaaS) framework, the cloud operator is
used to manage system resources so as to run the func-
tions supplied by application developers. Specifically,
ARS(FaaS) framework uses containers to handle this
work , mapping each function into its own container.
This mapping makes the function code portable. Thus,
the operator is able to execute the function as long as
there are enough resources in the HPC cloud. The con-
tainers are also able to isolate most of the faulty code
execution by providing virtually isolated environments
with name spaces which separate HPC cloud resources,
e. g. , processors, networking.

When the ARS(FaaS) framework starts new con-
tainers to deal with the incoming requests, the initial-
ization of the container may cost some time. And the
container is responsible for its associated function code
and the code’s execution. Therefore, the initialization
can court undesired start up latency to the function ex-
ecution, which is known as cold start issue. To solve
this issue, the reuse strategy is used in many prac-
tices, which means that the launched container is re-
used to handle future requests by keeping them
‘warm’ , i.e., running idle. Although the first func-
tion call still faces the clod start issue, the subsequent
function calls are able to reuse the launched container.
Therefore, the start up latency could be optimized for
processing. Even though reducing the latency, this
strategy comes at a cost of resource inefficiency, i.e. ,
the containers occupy cloud resources unnecessarily for
the idle period. The ARS (FaaS) frame-work uses
pre-warm technique, by which containers are launched
before the arrival of requests.

2.2 Serverless for stream

A serverless stream processing model is provided
to facilitate the serverless execution of streaming appli-
cations. In this model, the key idea is the conversion
function which injects the compute logic to the stream.
Thus, the framework puts the conversion functions into
the applications’ data processing topology.

20

HIGH TECHNOLOGY LETTERSIVol. 26 No. 1|Mar. 2020

The framework controls the deployment and execu-
tion of streams along with related functions by a high-
level description. The description gives the developers
fine-grained control over the run time mechanisms of
the framework, including QoS requirements, scaling
policies, etc. The description is divided into parts, in
which each part describes a respective runtime mecha-
nism. Take an instance, the QoS part describes the
QoS requirements of the framework (e.g., maximum
stream latency, minimum stream through-put); The
scaling part describes the elasticity strategies, specif-
ying the framework to adapt to the varying workloads.

3 Framework design

As cloud computing has become a dominant com-

puting paradigm, many HPC systems with tremendous
computing power have enabled cloud features. A HPC
cloud based serverless computing framework is devel-
oped to explore serverless implementation considera-
tions on stream analytic, and provide a baseline for ex-
isting work comparison. The design of this framework
aims to implement FaaS on the HPC cloud platform,
enabling self-characteristics (e. g. , self-optimizing and
self-configuring) on HPC cloud.

Fig.2 shows an overview of the components of
ARS (FaaS) framework. As we can see, the frame-
work is running on the Tianhe-2 supercomputer plat-
form with a cloud resource pool service provider Kylin
cloud. This HPC cloud platform is chosen because it
provides tremendous and highly scalable compute pow-
er that aligns well with the goals of this work.

I App streamQ
I App stream3 ,rz:m

apps is
@ Load Balancer hafd into
Stormin
I App stream2 real-time
IAppstreaml

D \‘D@}: .

Mobile Services | (Stream Services | Function-as-a-Servite torage & Messagi

User
Interface

Tianhe-2 HPC Cloud

Fig.2 [llustration of serverless computing on high — volume stream analytic

Real-time event data from numerous applications
are sent to Apache Storm, which provides streaming
services and allows multiple Apache OpenWhisk func-
tions to process the same events. Function executions
start from the services to receive the invocation calls by
the events, and then retrieve function metadata from
NoSQL. Services create the execution requests which
contain function metadata and inputs. Subsequently, to
process the execution requests, the available containers
of the FaaS services are located by the services. An in-
fo-mechanism is designed to control the interactions be-
tween stream and FaaS service. For each function, the
framework maintains a global cold queue and a warm
queue. The warm queues contain information of availa-
ble container, including the address of the Apache
Storm worker instance and the name of the available
container. The cold queues contain information indica-
ting the workers with unallocated memory that they

could start new containers. The services primarily

check the warm queue of the function to find informa-
tion of the available containers. If no information is
found, the services check the cold queue of the func-
tion. The cold queue will send a message containing
the URI to the FaaS services which will assign a new
container to the function. Then the function will be ex-
ecuted and its outputs will be returned to the services
to respond to the invocation call.

4 Empirical studies

Two sets of experiments are designed to test and
demonstrate the execution performance of the frame-
work, including function throughput and concurrency
for streaming applications. Its performance is also com-
including AWS
Lambda, Google cloud Functions, IBM Functions, and

pared with commercial offerings,

Azure Functions. To evaluate the performance of ARS
(FaaS) on stream analytics, the following streaming

HIGH TECHNOLOGY LETTERSIVol.26 No.1IMar. 2020

21

applications are implemented; real-time event detec-

tion'”", logo detection™®’ | frequent pattern detec-

[19] [20]

tion and density-based clustering for stream
ARS(FaaS) framework is deployed on Tianhe-2 HPC
cloud which provides laaS. Tianhe-2 physical resources
are virtualized as a virtual resource pool. Tianhe-2
HPC cloud provides users with a certain amount of re-
sources in the form of virtual machines running Ubuntu

Linux system. Each visual machine configuration could
be customized. Since the serverless offerings have dif-
ferent resource restrictions (Table 1), five groups of
experiments are executed to test the function through-
put performance of the serverless offerings. The experi-
ments in each group are executed with a same memory
allocation which is the key resource configuration pa-

rameter in serverless computing.

Table 1 Feature comparison of serverless frameworks
Item AWS Lambda Azure Function Google Function IBM Function ARS(FaaS)
Max Memory 3 008 MB 1536 MB 2 048 MB 512 MB 128 GB
Trigger 18 triggers 6 triggers 3 triggers 3 triggers 3 triggers
Container OS Linux Windows NT Debian GNU/Linux 8 Alpine Linux Ubuntu Linux
Container CPU 2.9 GHz 1.4 GHz 2.2 GHz,2 cores 2.1 GHz,4 cores 2.2 GHz,12 cores
Execution Timeout 5 min 10 min 9 min 10 min n/a
Code Size Limit 50,250 MB n/a 100/500 MB 48 MB n/a
Runtime Language 5 languages 9 languages 1 language 7 languages 7 languages
4.1 Function throughput in Fig.5. For the same memory restriction, AWS

Function throughput is an indicator of concurrent
processing because it tells how many function instances
are supplied to deal with extensive requests'”''. The
first group of experiments are executed with a memory
allocation of 512 MB. Thus, all the serverless offerings
are tested and their performances are shown in Fig. 3.
The second group of experiments are executed with a
memory allocation of 1536 MB. As the IBM Function
has a memory restriction of 512 MB, there are four
serverless frameworks tested in this group and the per-
formance are shown in Fig.4. In the third group, all
experiments are executed with a memory allocation of
2 048 MB. IBM Function and Azure Function are not
tested in this group also because of their memory re-
strictions. The experiment results of this group are shown

500
& ARS(FaaS)
=@ AWS Lambda
4004 |~ IBM Functions
% = Azure Functions
3 =®= Google Cloud Functions
; 300 1
hin s,
5| e
£ 200 e A— T,
= r “
&= 1001
0 T T T T
0 2000 4000 6 000 8000 10 000
Fig.3 The Ist experiment group of function throughput on con-

current invocations. Because of IBM Function’ s memo-
ry restriction, the experiments are executed with 512
MB memory allocation

Lambda and ARS(FaaS) are tested in the fourth group,
with a memory allocation of 3 008 MB. The perform-
ance comparison is shown in Fig. 6. The best perform-
ance of ARS (FaaS) is also provided in Fig. 7. It cau-
ses the work to break through all the memory restric-
tions of serverless computing offerings and set a new re-
cord of 128 GB, it is the only serverless framework
tested in the fifth group.

Fig. 3 - Fig. 7 are showing the overview of the
performance on function throughput of the serverless
frameworks. In those figures, the x-axis presents the
number of concurrent invocations from 500 to 10 000,
and the y-axis presents the function throughput per sec-
ond.

Fig.3 shows the experiment results of the 1st
group, where IBM Function (maximum memory: 512
MB) achieves its best performance (i. e., 207
throughputs per second in average) at 2 000 invoca-
tions. It’ s the best performance of the commercial
serverless frameworks. While, with the 512 MB memo-
ry restriction, the performance of our ARS (FaaS) is
better than IBM Function.

Fig.4 shows the experiment results of the 2nd
eroup, where Azure Function (maximum memory:
1536 MB) achieves its maximum throughput (133) at
However, both AWS Lambda
and our ARS(FaaS) performs better than Azure Func-
tion. What’ s more, all other serverless frameworks in

2 000 invocations, too.

this group have better performance than Azure Function
at the level of 10 000 invocations.

22

HIGH TECHNOLOGY LETTERSIVol.26 No.1|Mar. 2020

800
~&* ARS(FaaS)
7004 | —®— AWS lambda
»= Azure functions
-
g 6001 | =¥- Google cloud functions
(5
Q
g 5
a,
é 4
S 3
g
= 2
100 1
0 : T T T
0 2 000 4 000 6 000 8 000 10 000
Fig.4 The 2nd experiment group of function throughput on
concurrent invocations. Because of Azure Function’ s
memory restriction, the experiments are executed with
1 536 MB memory allocation
800
&+ ARS(FaaS)
7004 |—®— AWS lambda
=¥~ Google cloud functions

(=N}
(=3
(=1

w

(=3

(=}
1

Throughput per second
w A
[=1 [=1
(=} (=}

0 2 600 4000 6 600 8000 10 000
Fig.5 The 3rd experiment group of function throughput on con-
current invocations. Because of Google Function’ s
memory restriction, the experiments are executed with

2 048 MB memory allocation

Fig.5 shows the experiment results of the 3rd
group, where the function throughput of Google Func-
tion (maximum memory: 2 048 MB) increases continu-
ously and reaches 223 throughputs per second at
10 000 invocations. In this group, Google Function
takes the advantage of its maximum memory allocation
but still cannot compete with AWS Lambda and our
ARS (FaaS).

Fig. 6 shows the experiment results of the 4th
group, where AWS Lambda (maximum memory;
3008 MB) achieves its best performance (i.e., 857
throughputs per second) at 3 000 invocations. Even
though there is no front runner in this group, our ARS
(FaaS) achieves the highest throughput at 2 000 invo-
cations.

Fig.7 shows the experiment result of the 5th group,
where ARS (FaaS) (maximum memory: 128 GB)
achieves its maximum throughput (about 53 000) at
100 000 invocations. It s the only serverless framework
tested in this group, because the commercial serverless
offerings, e. g. , AWS Lambda, have performance bot-

tlenecks (memory restrictions) , while ARS (FaaS)
technically could utilize the whole memory of Tianhe-2
supercomputer system (1. 408 PB). In this experi-
ment, we are authorized to access 128 GB memory of
Tianhe-2.

1200

& ARS(FaaS)
- AWS

1000 1

*®
(=1
(=}

Throughput per second

0 2 000 4000 6 000 8 000 10 000

Fig. 6 The 4th experiment group of function throughput on con-
current invocations. Because of AWS Lambda’ s memo-
ry restriction, the experiments are executed with
3 008 MB memory allocation

60 000

50 000

40 000

W
(=1
(=3
(=3
(=}

20 000

Throughput per second

10 000

0

0 200000 400000 600000 800 000 1000000

Fig.7 The 5th experiment group of function throughput on con-
current invocations. The experiment is executed with

128 GB memory allocation

This set of experiments reveal that ARS (FaaS)
performs much better than any other serverless frame-
works on the function throughput with the same memory
allocation. What’ s more, ARS (FaaS) also greatly in-
creases the available memory of serverless computing.
Thus, it has greatly expanded the application scope of
serverless computing. The current serverless computing
is not suited to some computing workloads, e. g.
high-performance computing and high-volume stream
analytic, because of the resource restrictions of the
serverless frameworks. ARS (FaaS) has overcome its
limitations and explored a new application scene for it.
Next, the experimental exploration of serverless compu-
ting is given on high-volume stream analytic.

4.2 Concurrency for high-volume streaming ap-
plication
Four streaming applications are used including re-

HIGH TECHNOLOGY LETTERSIVol.26 No.1IMar. 2020

23

[17 [1

al-time event detection'"”’ | logo detection'"™ | frequent

) and density-based stream cluste-

pattern detection
ring ™’ to form the high-volume data stream. The tes-
ting streaming applications are compute intensive, in
which CPU resources are mainly consumed. The com-
pute logic of each streaming application is represented
by a storm topology with five sequential vertices which
are defined serverless functions with execution time re-
corder. And the concurrency is evaluated with CPU in-
tensive function.

To test the concurrency of the serverless frame-
works, two groups of experiment are set in this part. In
the first experiment group, all of the four streaming ap-
plications are executed parallelly, and the degree of
parallelism of each application is set to 25. Thus,
there are 100 streaming function topologies running
parallelly. And 500 execution times are recorded with
100 concurrent invocations. And in the second experi-
ment group (experimental control group), the four
streaming applications are executed one by one. And
this procedure is repeated 25 times. Thus, all of the
500 returned execution times are recorded with one
concurrent invocations.

Fig. 8 — Fig. 12 are showing the CDF (cumulative
distribution function) of execution time, which is the
statistics of the 1000 returned time records. The x-axis
presents execution time, and y-axis presents the proba-
bility. The dotted lines show the execution time of the
function with one concurrent invocation, and the solid
lines show the execution time of the function with 100
concurrent invocations. The experiment results of the
control group with non-parallel setting are consistent,
while the results of the first group with 100 concurrent
indicate the overhead of (23% -4 606%) over the to-
tal execution time.

From the results, it is observed that ARS (FaaS)
is the only serverless framework whose execution time
of the function with 1 concurrent invocation is sub-sec-
ond. For the function with 100 concurrent invocations

CPU Intensive
1.0+| = 100 Concurrent =T
=== 1 Concurrent A
[Empirical-100 C | ,#./~
0.8 Empirical-1 C |
0.6
=
a
@]
0.4
0.2
IBM
0.0 T T T T T T
2 4 6 8 10 12
Elapsed time (s)

Fig.8 The concurrency overhead with CPU intensive functions
of IBM Function

CPU Intensive
1.0 ¢ — 100 Concurrent
=== 1 Concurrent
1 Empirical-100 C
0.8 [Empirical-1 C
o 0.6
(@
©
0.4
0.2
G Azure function
0 50 100 150 200 250 300 350 400
Elapsed time (s)
Fig.9 The concurrency overhead with CPU intensive functions
of Azure Function
CPU Intensive
1.0- —— 100 Concurrent
=== 1 Concurrent
1 Empirical-100 C
0.8 1 Empirical-1 C
0.6 /
=
=)
&)
0.4
0.2°
Google cloud function
0 : : r .
10 20 30 40
Elapsed time (s)
Fig.10 The concurrency overhead with CPU intensive functions
of Google Function
CPU Intensive
1.0 — 100 Concurrent
=== 1 Concurrent
1 Empirical-100 C
0.8 [Empirical-1 C
- 0.6
o
©)]
04
0.2
AWS Lambda
0 : . - : : : r ;
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Elapsed time (s)

Fig.11 The concurrency overhead with CPU intensive functions

of AWS Lambda

ARS (FaaS) also achieves the best performance with
the shortest execution time and lowest overhead. The
observations also indicate that multiple invocations are
allocated to a single function instance that may need to
share compute resources . For example , there are four
different streaming applications in this experiment, so
four CPU intensive function invocations may take four
times longer by sharing CPU time in quarter. This cau-
ses the concurrency overhead. The experiment results

24

HIGH TECHNOLOGY LETTERSIVol.26 No.1|Mar. 2020

CPU Intensive

1.0 1

N /ﬂ

0.6 = 100 Concurrent
= === 1 Concurrent
8 3 Empirical-100 C

0.4 3 Empirical-1 C

0.2

ARS(FaaS)
0 : . T T : x . .
025 050 075 1.00 1.25 1.50 1.75 2.00
Elapsed time (s)
Fig.12 The concurrency overhead with CPU intensive functions

of ARS(FaaS)

indicate that ARS (FaaS) serverless framework per-
forms much better than IBM Function, AWS Lambda,
Azure Function and Google Function, on the concur-
rency for high-volume streaming application.

5 Conclusion

This paper introduces a novel serverless framework
ARS(FaaS) which has accomplished both low latency
and high resource efficiency. The design and imple-
mentation of ARS (FaaS) are presented. This frame-
work has the advantage of a low or no initial cost to ac-
quire computer resources, which is the key property of
serverless. In this work, ARS(FaaS) framework sup-
plies high-efficient HPC cloud resources, accelerating
real-time and stream analytic on data. The experimen-
tal results have successfully validated the ARS(FaaS)
framework. In the feature, much work will be done to
enable autonomous resource scheduling for parallel pro-
gramming, i. e. , extend the MapReduce utilization of
function-as-a-service and to adapt this framework on
the next generation supercomputers which reach exas-
cale computing.

References

[1] Baldini I, Castro P, Chang K, et al. Serverless compu-
ting: current trends and open problems[J]. arXiv:1706.
03178v1, 2017

[2] Hendrickson S, Sturdevant S, Harter T, et al. Serverless
computation with openLambda [C]//Proceedings of the
8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16) , San Diego, USA, 2016 33-39

[3] Yan M, Castro P, Cheng P, et al. Building a chathot
with serverless computing [C]// Proceedings of the 1st
International Workshop on Mashups of Things and APIs,
Trento, Italy, 2016 5

[4] Lloyd W, Ramesh S, Chinthalapati S, et al. [C]//2018
IEEE International Conference on Cloud Engineering
(IC2E 2018), Orlando, USA, 2018.159-169

[5] Akkus I E, Chen R, Rimac I, et al. {SAND/ : towards
high-performance serverless computing [C]//2018 USE-
NIX Annual Technical Conference (USENIX ATC 2018),

Boston, USA, 2018 923-935

[6] Fox G C, Ishakian V, Muthusamy V, et al. Status of
serverless computing and function-as-a-service (FAAS)
in industry and research[J]. arXiv;1708. 08028, 2017

[7] Alqgaryouti O, Siyam N. Serverless computing and sched-
uling tasks on cloud: a review [J]. American Scientific
Research Journal for Engineering, Technology, and Sci-
ences (ASRJETS) , 2018, 40(1) : 235247

[8] Miller R. AWS Lambda makes serverless applications a
reality [EB/OL]. https://techcrunch. com/: Verizon
Media, 2015

[9] Hellerstein J] M, Faleiro J, Gonzalez J E, et al. Server-
less computing; one step forward, two steps back [J].
arXiv:1812. 03651, 2018

[10] Mcgrath G, Brenner P R. Serverless computing: design,
implementation, and performance [C]// 1EEE Interna-
tional Conference on Distributed Computing Systems
Workshops, Atlanta, USA, 2017 405410

[11] Etzion O. Event processing: past, present and futare[J].
Proceedings of the VLDB Endowment, 2010, 3 (1-2) .
1651-1652

[12] Jin X, Lee X, Kong N, et al. Efficient complex event
processing over RFID data stream[C]//The 7th IEEE/
ACIS International Conference on Computer and Informa-
tion Science, Portland, USA, 2008 . 75-81

[13] Shaikh S A, Watanabe Y, Wang Y, et al. Smart
scheme: an efficient query execution scheme for event-
driven stream processing[J|. Knowledge and Information
Systems, 2019, 58(2) . 341-370

[14] Cugola G, Margara A. Processing flows of information;
from data stream to complex event processing[J]. ACM
Computing Surveys (CSUR) , 2012, 44(3) . 15

[15] Feng L, Kudva P, Da Silva D, et al. Exploring serverless
computing for neural network training[C]// 2018 IEEE
11th International Conference on Cloud Computing
(CLOUD) , San Francisco, USA, 2018 . 334-341

[16] Liao X, Xiao L, Yang C, et al. MilkyWay-2 supercom-
puter; system and application[J]. Frontiers of Computer
Science, 2014, 8(3) . 345-356

[17] Nguyen D T, Jung J E. Real-time event detection for on-
line behavioral analysis of big social data[J]. Future
Generation Computer Systems, 2017, 66 137-145

[18] Liu Y, Wang J, Li Z, et al. Efficient logo recognition by
local feature groups[J]. Multimedia Systems, 2017, 23
(3): 395403

[19] Yun U. Mining lossless closed frequent patterns with
weight constraints[J|. Knowledge-Based Systems, 2007 ,
20(1) . 86-97

[20] Chen Y, Tu L. Density-based clustering for real-time
stream data[C]//Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Da-
ta Mining, San Jose, USA, 2007, 133-142

[21] Lee H, Satyam K, Fox G. Evaluation of production
serverless computing environments[C]// 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD).
San Francisco, USA, 2018 442-450

Cheng Yingchao, born in 1989. He is a visiting
scholar in Statistics Department of Texas A&M Univer-
sity, USA. He is also a Ph. D candidate in School of
Computer Science and Technology of Guangdong Uni-
versity of Technology. He received his B. S. degree
from Chongqing University of Arts and Sciences in
2013. His research interests include machine learning,
data mining, high performance computing and service
computing.

