HIGH TECHNOLOGY LETTERSIVol.25 No.4[Dec. 2019 1pp.417-425

doi:10.3772/j. issn. 1006-6748.2019. 04. 010

Optimizing deep learning inference on mobile devices
with neural network accelerators”

Zeng Xi(§)@ "™, Xu Yunlong™, Zhi Tian" "

(" Intelligent Processor Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China)

(™ University of Chinese Academy of Sciences, Beijing 100049, P. R. China)
(™ Cambricon Technologies Corporation Limited, Beijing 100191, P. R. China)

Abstract

Deep learning has now been widely used in intelligent apps of mobile devices. In pursuit of ul-
tra-low power and latency, integrating neural network accelerators (NNA) to mobile phones has be-
come a trend. However, conventional deep learning programming frameworks are not well-developed
to support such devices, leading to low computing efficiency and high memory-occupation. To ad-
dress this problem, a 2-stage pipeline is proposed for optimizing deep learning model inference on
mobile devices with NNAs in terms of both speed and memory-footprint. The 1st stage reduces com-
putation workload via graph optimization, including splitting and merging nodes. The 2nd stage goes
further by optimizing at compilation level, including kernel fusion and in-advance compilation. The
proposed optimizations on a commercial mobile phone with an NNA is evaluated. The experimental
results show that the proposed approaches achieve 2.8 x to 26 x speed up, and reduce the memory-
footprint by up to 75% .

Key words: machine learning inference, neural network accelerator (NNA), low latency,

kernel fusion, in-advance compilation

0 Introduction

In recent years, more and more deep learning
(DL) models have delivered outstanding performance
in varieties of fields, including image classification' '’
. DL models often

have heavy load of computing and large size of model

andnatural language processing>*.

files, making it hard to deploy these models on edge
devices like mobile phones, whose performance are
still far behind the normal desktops and remote serv-
ers. However, there are more and more demands for
applying DL models on mobiles, as it helps to protect
privacy and saves time of transporting streaming data
generated by edge users from local device to cloud cen-
ters. To launch DL models on mobile devices, there
are mainly 2 challenges.

1) Latency. Mobile users are often sensitive to the
Besides, DL models are
evolving deeper and deeper. In the filed of image clas-

response time of apps.

sification, AlexNet from Ref. [5] has only 8 layers and

nearly 60 million parameters approximately, while In-
ception-V3 from Ref. [6] has 47 layers and nearly 5
billion parameters.

2) Memory-footprint. Compared to server proces-
sors, memory size of mobile devices is usually small.
When doing DL inference,, we need to minimize the oc-
cupation of memory, especially when mobile devices
are doing multiple tasks.

Thanks to the development of mobile’ s neural
network accelerators (NNAs) , latency and energy con-
sumed when performing inference has decremented
drastically. However, there also exist limitations of
NNAs. Firstly, as the special-purpose processors,
NNAs often have different instructions from general
processors. Common deep learning frameworks are not
able to fully support all these different architectures.
Secondly, NNAs perform well on computing, while
they lack enough optimization for 1/0s. Thirdly, their
memory capacities, similar to mobile devices’ , are the
bottleneck when processing large scale data.

In this work, a pipeline for optimizing inference

(D Supported by the National Key Research and Development Program of China (No. 2017YFB1003101, 2018 AAA0103300, 2017YFA0700900) , the
National Natural Science Foundation of China (No. 61702478, 61732007 ,61906179) , the Beijing Natural Science Foundation (No. JQ18013),
the National Science and Technology Major Project (No. 2018ZX01031102) and the Beijing Academy of Artificial Intelligence.

2 To whom correspondence should be addressed. E-mail; zengxil 5@ mails. ucas. ac. cn

Received on Oct, 11, 2018

418

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

on mobile devices with NNAs is proposed. Given a
pre-trained DL model, graph optimization like splitting
or merging nodes to reduce workload of computation is
firstly done, and then the model is transformed into a
special binary model through in-advance compilation.
Meantime, a memory-reuse assignment is also per-
formed to save memory cost.

The paper’ s main contributions contain ;

1) A 2-stage optimizing pipeline for accelerating
inference on mobile devices with NNAs is introduced
which is also memory-efficient.

2) The proposed optimizations are implemented
on concrete deep learning models running on a real
commercial mobile device with an NNA, and results
show that our method is capable of improving inference
performance.

1 Background

In this section, background information of deep
learning and common DL programing frameworks is
firstly introduced. Then neural network accelerators in
recent days are discussed.

1.1 DL graph architecture

Deep learning, consisting of at least one deep
neural network (DNN) ") is inspired by the connec-
tion of neurons of human brain. Common operations in
a DNN include convolution, activation and so on. To
facilitate users’ programming, DL frameworks like Ten-
sorflow'® and MxNet'® are using computation graph to
represent the model. Data flows along with the connec-
tion in the graph. When they arrive a graph node, a
particular computation like addition or convolution will
launch. This is called layer-by-layer execution.

In a heterogeneous processor architecture, each
node can be assigned to a particular device. For exam-
ple, all addition nodes can be placed to a GPU and all
convolution operation nodes to an NNA. According to
the varied status (memory size, number of cores,
etc.) of these processors, device placement should be
adjusted to maximize utilization of their computation

and memory resources.

1.2 Neural network accelerators

In 2012, Google used 16 000 CPU cores to train a
neural network (NN) for teaching computer to recog-
nize cat''”’ | which costs 3 days to finish the training.
A single NN operation may trigger thousands of instruc-
tions in a CPU, which needs too much time to load,
decode and manage them. GPUs are processors spe-
cialized for complicated mathematics and geometry.

They accelerate deep learning significantly. But they
focus more on parallel and cannot fully meet require-
ments of DL models that may have many branches and
cannot be efficiently parallelized.

Application specific integrated circuit (ASIC) has
now become a popular way to accelerate deep learn-
ing'"'. In 2016, Google launched TPU (Tensor Pro-

cessing Unit) '

, an ASIC processor for its open-
sourced framework Tensorflow. Chen et al'"*’ designed
DianNao that could have the same performance as the
main stream GPUs while using much smaller chip size
and less energy. DaDianNao, based on DianNao, even
outperformed NVDIA K20M to a large extent "'
There are also many other ASIC accelerators that have
been designed to meet different demands of deep learn-

170 These ASIC neural network accelerators have

ing
been proved to significantly speed deep learning togeth-
er with general purpose processors.

Though ASIC NNAs are helpful, they are not per-
fect. They are exiremely good at computing but they
may lack in some other aspects as below.

1) As the coprocessors, NNAs need CPU cores to
begin launch, which can be costly since launching time
is the same as that of computing kernels.

2) NNAs are not quite suitable for 1/0s. So it is
time-consuming to do operations like split, concatenate
and so on.

3) Like mobile devices, they also have strictly
limited on-chip memory.

2 Methodology

In this section, techniques of 2-stage optimization
pipeline are presented in detail as shown in Fig. 1.
Several graph optimization methods for the given model
are discussed. Next, kernel fusion and in-advance
compilation of the model are dipicted.

2.1 Graph optimization

DL models after training often remain many redun-
dant nodes. Based on this fact, we implement several
ways to release computing workload as much as we
can.

Splitting nodes Sometimes there are operations
that NNAs cannot compute efficiently. Taking LSTM-
BlockCell operation in Tensorflow as an example, part
of its computation is shown as the following.

xh = [x, h]

[i,c,f, 0] =xhxw+b
where x has the shape [bs, is], h has the shape [bs,
cs], and w has the shape [is +cs, cs x4]. Tt first
concatenates input x and h to a new tensor, and then it

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

419

does Matmul with matrix w and BiasAdd with a bias b
to get result which has eventually been split into 4 parts

Graph optimization

Pre-trained
model’s graph :>

4
=
B
2
]

Fig. 1

As mentioned on Section 1.2, performing splitting
or concatenating operation on an NNA is not a wise
choice. So that here we change the computation to a-
void this situation. Rather than concatenating inputs,
firstly the weight matrix w is split into 8 parts, as can

csx 4

|

along the 2nd axis.

Compilation optimization

Optimized
models

Memory :

[ustration of the complete process of our optimization pipeline

be seen in Fig. 2. Each part does a MatMulandBiasAdd
with input x or h. Then additions are conducted to get
the final output. Since the weight matrix M is con-
stant, we are able to do the split before launching this
model, which saves time greatly.

i = XXWi ot hxw,,
C= XXW; Thxw,
f= xXsz"‘hXch 2

0= XXWc 3t hXxwg 4

@

®)

(a) How we split weight w in to 8 parts; (b) How we do matrix multiply and addition to get the right result

Fig. 2

Merging nodes When a node or a kernel has
been computed by an NNA, it experiences 4 stages
showed in Fig. 3. Tt firstly needs a CPU core to begin
the launch, and then loads data from DDR. Next it
does computation and returns results back to the CPU.
Kernel launch can be costly. It may take tens of micro-
seconds to several milliseconds, which is the same as
kernel computation on NNAs. Especially when the

CPU is busy, launching costs more.

A CPU launches
kernel

An NNA loads
data from CPU

DDR
Load
An NNA computes data 1;:21“;
NNA on-chip
memory
An NNA returns
results to the CPU

Fig.3 Workflow of an NNA’ s computing an operation/kernel

[lustration of our method of doing LSTMBlockCell

Since each operation needs launching kernel once
a time, several nodes are chosen to merge into a single
one, which brings us 3 aspects of benefits as follows.

1) The number of kernel launches could be re-
duced, saving time and energy.

2) The kernel’ s internal computations can be op-
timized can be optimized by eliminating unnecessary
operations or change their order to gain better memory
locality.

3) Since outputs generated by former kernels are
consumed by latter kernels immediately, there is no
need to transport temporary data from on-chip memory
to off-chip DDR, which saves time.

We have concluded several patterns of kernel
combinations that can significantly help to improve per-
Go through the

whole graph, merge nodes when encountering these

formance, as shown in Fig.4(b).

patterns.

When merging nodes, we should pay attention to
inputs and outputs. As can be seen in Fig.4(a) , both
node B and D have an input from outside. So the mer-

420

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

ged node F’ s input should be A and C. Similarly, its
outputs are the outputs of all its internal nodes.

Before merging After merging
BatchNorm (Add, Rsqrt, Mul, Sub, Mul) FusedBatchNorm
Conv2D+BatchNorm FusedConv2DBias
Conv2D+BiasAdd FusedConv2DBias
MatMul+BiasAdd MLP
SpaceToBatch+Conv2D+BatchToSpace Conv2D (with dilation)
SpaceToBatch+MaxPool+BatchToSpace MaxPool (with dilation)
SpaceToBatch+AvgPool+BatchToSpace AvgPool (with dilation)

(®)

Fig.4 (a) Graph of how we merge nodes B, D, E (in dashed rectangular) are merged to a single node F;

(b) Table of patterns which are useful for improving performance when merging them together

To illustrate how can we benefit from merging
nodes, we take combining Conv2D and BatchNorm''®'
as an example. BatchNorm means doing normalization
in batch, aiming to solve problem of vanishing gradi-
ent'") which is a common but unneglectable situation
in deep learning. It consists of 7 nodes, as being visu-
alized in Fig.5(a). When the training process has
been accomplished, weights of BatchNorm have been
fixed, so that we can pre-compute these constants rath-
er than calculate all 7 nodes every time. Jiang et al >
also reduces the computation of BatchNorm while we do
more than his strategy. When we merge BatchNorm

and Conv2D, all data are constant except the original

(2)

input. We firstly multiply Conv2D’ s filter with Batch-
Norm’ s constant input to form a new filter. Then only
an Add operation after convolution is needed. As listed
in Fig.4(b), we have already merged Conv2D and Bias-
Addor Add to a new operation named FusedConv2DBias.
So we are able to incorporate BatchNorm into a single
convolution operation which has a new filter and a fol-
lowing BiasAdd operation. There is no need to move
data out since we do BiasAdd immediately after convo-
lution. So far, we have managed to reduce totally 8 in-
dependent operations into a single one, as can be seen

in Fig. 5(b).

New filter= i Bias=offset-
filter*scale* @ mean*(scale*
sqrt(var+epsilon) sqrt(var+epsilon))

®)

(a) Original graph of Conv2D and BatchNorm that consists of 7 operations;

(b) New graph after Conv2D and BatchNorm are merged into a new node named FusedConv2DBias

Fig.5 Example process of merging nodes

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

421

Miscellany Not all operations contained in the
graph are necessary for inference. Those redundant
nodes could be safely removed if they are in one of the
following types.

1) Nodes’ input are only weight data or other con-
stant data. These nodes can be pre-computed since
they don’ t have to wait for input data from other
nodes.

2) Nodes only need intraining process. For exam-
ple, nodes for loading datasets, saving models or upda-
ting weights, are useless during inference. Another ex-
ample is Dropout, which will not be calculated too.

2.2 Compiling optimization

In the 2nd stage, we do optimization on the com-
pilation levelwith the aim of accelerating computing and
saving memory-footprint.

Fusing kernels as many as possible We use fu-
sion kernel to represent a set of continuous operations
on the same device. These kernels have been fused to-
gether. A single NNA’ s launch processes a single fu-
sion kernel. This fusion is not the same as the method
mentioned in Section 2. 1, which changes the graph,
explicitly replacing multiple nodes with a single merged
one. Fusion kernel is a compiling notion and its inter-
nal kernels’ computation has been delayed as much as
possible, which is the most significant difference com-
pared to the normal way of layer-by-layer graph execu-
tion.

Our optimization goal is based on the following
principle. Since NNAs give high performance on NN
computation,, we want to assign operations to it as many
as possible, which means the larger the fusion kernel
is, the better performance it will have. This is be-
cause ;

1) Number of kernel launches can dramatically be
reduced, even for some networks only one time launch
is needed.

2) Number of instructions of loading DDR can be
greatly reduced, since temporary data will not be trans-
ported from the NNA’ son-chip memory to outside until
the fusion kernel has finished computation.

Kernel fusion is implemented on the following
way. When a kernel has been loaded, we obtain its
operation’ s description (including operation type,
source nodes and input data shape, etc.) and not ac-
tually do the computation but caching them into a fu-
sion kernel list. Then the next kernel is processed,
and next. When we find an operation outputs for a ker-
nel on a different device or there is no enough space for
the current kernel to do the computation (we pre-allo-
cate memory for every cached operation) , we then stop

and actually launch those kernels we cached before.

Unexpectedly, not all continuous kernels on the
same device can be compiled into a single fusion ker-
nel. As shown in Fig.6(a), the kernel NNA 2 can-
not be merged into fusion consisting of NNA _ 0 and
NNA _ 1. Because NNA _ 2 needs inputs from both
CPU 1 and NNA 1, while CPU _ 1 needs inputs
from NNA 0. If we fused NNA 2 with NNA O,
NNA 2 can no longer wait out its inputs’ coming.

Another special situation is shown as Fig.6(b).
Both NNA _ 1 and NNA _ 2 have outputs for next CPU
~ 1 and CPU _2. According to the algorithm mentioned
above, NNA _ 1 finds its output will be consumed by
CPU _ 1, a node on other device. So it begins launch-
ing current cached kernels. But at this moment NNA _
2 hasn’t been added to this fusion yet while it should
be. To solve this problem, we have to delay sending
outputs from NNA _ 1 to CPU _ 1, waiting for NNA _ 2
being added and launched. In another word, we must
guarantee that all data transportation of fusion kernels
on different devices takes place after all kernels in this
fusion finish their computation.

(a) One situationthat two continuous nodes on the same device can not be
fused; (b) One situation that control dependency is added to some nodes

to fuse them

Fig.6 Special case when performing kernel fusion

Reusing memory inside a fusion kernel Inside a
fusion kernel, large amount of temporary outputs will
be generated and it is necessary to reuse buffer space.
A simple reusing-memory assignment method is imple-
mented to reduce the memory footprint during infer-
ence.

As shown in the following Pseudocode, a buffer
list is used to record and manage allocated buffer
space. When a new operation needs buffer, we firstly
estimate memory size it requires according to its meta-

data including inputs/outputs’ shape and operation

422

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

type. Then we ask buffer list if there is such a large
space available now. If so, buffer list will return the
address of this already-assigned space. While if not,
we need to allocate new buffer space and record this
buffer into the buffer list, setting its status to be busy.
When the operation finishes computation, we only set
its buffer to available status rather than actually free it.
® Pseudocode of memory-reuse assignment algorithm
class Buffer |
buffer addr
buffer _size
status
}
buffer list = []
for op in fusion _ kernel ;
reuse = false
required _size = estimate(op. input _shape, op.
output _ shape, op. type)
for buffer in buffer list:
if required _ size < buffer. buffer _ size
and buffer. statu = = available:
#reuse this buffer
addr = buffer. buffer _addr
buffer. status = busy
. #do operation
buffer. status = available
reuse = true
break
if not reuse: #cannot reuse buffer
buffer = allocate (required _ size)
buffer _list. append (buffer)
buffer. status = busy

. #do operation
buffer. status = available

Compile the model in advance Usually deep
learning models are compiled just-in-time (JIT). This
is because through compilation frameworks could know
metadata of this model, like kernel type, input size or
data type. With these information, they could perform
some optimizations. But compilation takes a long time.

In-advance compilation is an effective way to im-
prove inference performance on edge device. By saving
model into instructions ahead-of-time, on the one
hand, we can get rid of redundant DL frameworks but
only remain kernels that we need, which helps to re-
duce model size. While on the other hand, there is no
need to compile when doing inference so the response
time has been greatly reduced.

Now we explain how to do in-advance compilation
to a model with a multiple-devices assignment. We
take a model ofTensorflow as an example. As for those
fusion kernels assigned to the NNA, a platform-cross
compiler is applied to save its instructions and model
data. While for those CPU nodes, we seek help to
AOT (ahead of time) offered by Tensorflow, which
helps to pre-compile a sub graph of the model into a
dynamic-linked shared library (. so file) which we can
call later during inference. All we need to do is to set
the inputs and outputs of this subgraph. If there is no
dependency of two fusion kernels on different devices,
parallelism between them can be applied to accelerate
computation. Fig.7 is the illustration of this combined
pre-compiling method.

Mg)

Meta_data

NNA fusion kernel 0 s

NNA converter

=l NNA fusion kernel 1

Graph with

device assignment

— - CPU

N

. cPU 4
Tensorflow AOT A sub- e
graph1 | cee*e¢ e

graph 0

some .so files

Fig.7

Compiling in advance helps to reduce preparation
time when performing inference, but in order to do
that, we need to prepare some exira stuff. Firstly,

more attention should be paid to the model”’ s detail in-

[llustration of compiling methods in advance

formation. For subgraph consisting of CPU nodes, its
input nodes and output nodes should be specified care-
fully. High-efficient inference engine is another work

we need to do to execute the whole inference. It de-

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

423

fines how we manage all these small files, and this is
also a challenge.

3 Evaluation

We did our experiments of graph and compiling
optimization methods based on Tensorflow, Google’ s
open source deep learning framework. The mobile de-
vice used for evaluation is acommercial mobile phone
with a special Al accelerator. We benchmarked several

bs=512 cs=1024

classical convolution neural networks to see if our

methods really work.

3.1 Speed up of kernels

For the method of splitting nodes, LSTMBlockCell
is tested with varied input size of is, bs and ¢s. As can
be seen in Fig.8, on some of the cases our methods
could gain a little improvement. This is because we
pre-compute the weights which help to reduce time.

bs=512 is=1024 is=512 cs=1024

Time Time Time

3 40 8
25 35 7

30 6

2 25 5
15 20 4

1 15 3

| s an NN

0 0o W L1 . [| 0 [] |

64 256 512 1024 2048 is 64 256 512 1024 2048 CS 64 256 512 1024 2048 bs

= before split = after split

(@

= before split = after split

®)

= before split = after split

©

Fig.8 Resulis of before and after split LSTMBlockCell node

VGG16 model is also tested before and after merging
graph nodes of convolution and adding bias. Table 1
shows the result. We can see that merging nodes out-
perform original graph on all workloads. When the in-
put channel and output channel are not much deep,
more speed up can be gained. This is because convolu-

tion’ s executing time is more allergic to the computa-
tion scales while BiasAdd remains nearly unchanged.
Despite that, by merging these 2 nodes, we can reduce
the time which is occupied by BiasAdd, which still
make contributions to overall time-saving.

Table 1 Comparison of before and after merging Conv2D + BiasAdd of VGG16.
H/W is the image scale. 1C and OC stand for number of input channel
and output channel respectively

H/W IC 0oC conv + bias fused _ conv _ bias speed up
224 3 64 1.37 1.00 1.37
224 64 64 1.47 1.05 1.39
112 64 128 1.40 1.03 1.37
112 128 128 1.51 1.14 1.32
56 128 256 2.87 2.52 1.14
56 256 256 2.95 2.64 1.12
56 256 256 2.95 2.68 1.10
28 512 512 4.32 3.99 1.08
28 512 512 8.38 5.90 1.42
28 512 512 8.29 7.93 1.04
14 512 512 5.74 5.44 1.06
14 512 512 5.65 5.40 1.05
14 512 512 5.72 5.47 1.05

3.2 Speed up of networks

Fig.9 is the end-to-end inference performance of
several models. Pre-trained models are used to classify
1 000 images with batch size set to 1. Every model has

been executed 100 times and each batch’ s average
time are the final performance of this model.

Totally 3 steps are implemented to accelerate in-
ference. Graph optimization can slightly speed up due
to removing redundant computations which are still a ti-

424

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

ny fractional part compared to large graph with thou-
sands of nodes. But in Inception-V3, which repeatedly
has pattern of convolution followed by batch normaliza-
tion. Its computation time can be effectively reduced
by merging this pattern into a single node.

Kernel fusion and in-advance compilation has
been proven to be extremely effective to accelerate
computing. The deeper the model is, the more speed-
up it could have. Kernel fusion helps to dig potential

computation ability of NNAs. It helps reducing kernel
%0
kernel fusion

M baseline M graph opt

25

0 I i i [

alexnet

in-advance compilation

launches as well as eliminating data transportation be-
tween CPU and an NNA. So that with kernel fusion we
can improvethe time of inference by 20% for AlexNet
and 85% of Inception-V3.

As for in-advance compilation, though we need to
manage more small files, it separates compiling from
computing, which saves time dramatically. It can be
seen from experiments that it brings 2. 8 x speed up for
VGG16 and 26 x for Inception-v3 compared to their
baseline respectively.

= L

resnet18 resnet50 inception-v3

Fig.9 End-to-end inference performance of five models

3.3 Memory-footprint.

The maximum buffer size for every model’ s infer-
ence 1is also counted, as can be seen in Table 2. The
simple memory-reuse assignment algorithm is able to
save at least 2. 2% of AlexNet and at most 75.7% of
ResNetl152. The deeper the model is, the more space
it can save. As larger batch size is used, memory
saved also greatly increases. This is because buffers’
size in the buffer list tends to be large enough, making
it easier to be reused. Actually, there exists space for
us to improve this simple memory-reuse assignment.
Since buffer list chooses to give the first buffer space it
finds suitable for the requirements, while in some situ-
ation, this buffer may be extremely larger than what we
need.

Table 2 Comparison of memory occupation before and after

conducting our memory-reuse assignment methods

Model Batch size # of layers Save ratio
| . 1 37 2.2%
alexne 10 37 12.8%
16 1 49 12.3%
ves 5 49 31.6%
722 55.0%
resnet]52 72 75 7%
lenet 1 174 38.9%
googiene 10 174 55.3%

4 Related work

Many DL frameworks have been developed to help
people both in academic and industry fields'***'. On
nowadays’ Al heterogeneous computing platform, many
high performance algorithm libraries like cuDNN'*
and Eigen help frameworks to optimize kernel computa-
tion. To further accelerate computation, Tensorflow
and MXNet has developed XLA and NNVM/TVM"**
compiler, which can speed up high-frequently-used
linear algebra. Both of them do graph optimization to
accelerate computation on CPUs and GPUs. Compared
to them, NVDIA’ s NN optimizing tool named Tensor-
RT are targeting runtime rather than compilation. Based
on GPUs, TensorRT are able to process DL models pre-
trained by many kinds of frameworks.

With the increasing demand of deploying DL mod-
els on mobile devices, many tools emerged to acceler-
ate inference. Google launched Tensorflow Lite and
AndroidNN. Tensorflow models can be easily converted
to a lite model and perform efficient inference by call-
ing AndroidNN on android devices. While on i0S de-
vices, Apple also released a machine learning frame-
work named Core ML.

But all these related work targets on general pro-
cessor like CPU or widely-used GPU, and there is little
work on ASIC NN accelerators that are totally different
from CPU in terms of instruction set and computation
pattern. What we do in this paper aims to bridge this

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

425

gap.
5 Conclusion

A 2-stage optimization pipeline for inference on
mobile devices with neural network accelerators is per-
formed. The st stage uses graph optimization to re-
duce workload of computation while the 2nd stage opti-
mizes compilation to gain better execution mode as well
as memory allocating. After we perform optimization,
all DL models we tested are able to gain 2. 8 x to 26 x
speed up during inference and memory cost can be re-
duced up to 75.7%.

References

[1] Claudiu C D, Meier U, Gambardella L. M, et al. Deep
big simple neural nets excel on handwritten digit recogni-
tion[J]. Computing Research Repository, 2010,22(12) .
3207-3220

[2] He K M, Zhan X Y, Ren S Q, et al. Deep residual
learning for image recognition [C]//Proceeding of the
29th IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, USA, 2016.770-778

[3] Ankit K, Ozan I, Peter O, et al. Ask me anything; dy-
namic memory networks for Natural Language Processing
[C]//Proceedings of the 33rd International Conference
on Machine Learning, New York, USA, 2016.1378-1387

[4] Bengio Y, Ducharme R, Vincent P, et al. A neural prob-
abilistic language model[J]. Journal of machine learning
research, 2003, 3(2): 1137-1155

[5] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classi-
fication with deep convolutional neural networks[C]//In-
ternational Conference on Neural Information Processing
Systems, Nevada, USA, 2012:1097-1105

[6] Szegedy C, Vanhoucke V, loffe S, et al. Rethinking the
inception architecture for computer vision [C]//Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, Las Vegas, USA, 2016:2818-2826

[7] Epelbaum T. Deep learning: technical introduction[]].
arXiv: 1709.01412, 2017

[8] Girija S S. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems [J |. arXiv: 1603.
04467, 2016

[9] ChenTQ, LiM, Li Y, et al. MXNet: A flexible and ef-
ficient machine learning library for heterogeneous distribu-
ted systems[J]. Statistics, arXiv; 1512.01274, 2015

[10] Le Q V. Building high-level features using large scale un-
supervised learning [C]//Proceeding of Acoustics,
Speech and Signal Processing, Vancouver, Canada,
2013 8595-8598

[11] Shen Y, Harris N C, Skirlo S, et al. Deep learning with
coherent nanophotonic circuits [J .

2017, 11(7) ; 441441

Nature Photonics ,

[12] Jouppi N P, Young C S, Patil N, et al. In-datacenter
performance analysis of a fensorprocessing unit[J]. Inter-
national Symposium on Computer Architecture, 2017, 45
(2):1-12

[13] Chen T, Du Z, Sun N, et al. DianNao; a small-footprint
high-throughput accelerator for ubiquitous machine-learn-
ing[J]. AcmSigplan Notices, 2014, 49(4) :269-284

[14] Chen Y, Luo T, Liu S, et al. Dadiannao: a machine-
learning supercomputer[C]//Proceedings of the 47th An-
nual IEEE/ACM International Symposium on Microarchi-
tecture, Cambridge, UK, 2014 . 609-622

[15] Chen Y, Chen T, Xu Z, et al. DianNao family; energy-
efficient hardware accelerators for machine learning[J].
Communications of the ACM , 2016, 59(11) :105-112

[16] Chen Y, Luo T, Liu S, et al. DaDianNao: aneural net-
work supercomputer[J |. IEEE Transactions on Comput-
ers, 2016, 66(1) :73-88

[17] Han S, Liu X, Mao H, et al. EIE: efficient inference
engine on compressed deep neural network[J]. ACM Si-
garch Computer Architecture News, 2016, 44 (3);243-
254

[18] Toffe S, Szegedy C. Batch normalization; accelerating
deep network training by reducing internal covariate shift
[C]//Proceedings of the 32nd International Conference
on International Conference on Machine Learning, Lille,
France, 2015 448-456

[19] Pascanu R, Mikolov T, Bengio Y. On the difficulty of
training recurrent neural networks [C]//Proceedings of
the 30th International Conference on Machine Learning,
Atlanta, USA, 2013.1310-1318

[20] Jiang Z, Chen T, Li M. Efficient deep learning inference
on edge devices [C]//the Conference on Systems and
Machine Learning, California, USA, 2018

[21] Bastien F, Lamblin P, Pascanu R, et al. Theano: new
features and speed improvements[J]. arXiv;1211.5590,
2012

[22] Tokui S, Oono K, Hido S, et al. Chainer; a next-genera-
tion open source framework for deep learning[C]//Pro-
ceedings of Workshop on Machine Learning Systems in
the 29th Conference on Neural Information Processing
Systems, Montréal, Canada, 2015. 1-6

[23] Chetlur S, Woolley C, Vandermersch P, et al. cuDNN;
Efficient primitives for deep learning[J]. arXiv ;1410.
0759, 2014

[24] Chen T, Moreau T, Jiang Z, et al. TVM: end-to-end op-
timization stack for deep learning[C]// the Conference
on Systems and Machine Learning, California, USA,
2018

Zeng Xi, born in 1993. Now, she is a Ph. D can-
didate in Institute of Computing Technology, Chinese
Academy of Sciences. Her research interests are ma-
chine learning inference, low latency technology and
neural network accelerator.

