HIGH TECHNOLOGY LETTERSIVol. 25 No.41Dec. 2019 |pp. 386-394

doi:10.3772/j. issn. 1006-6748. 2019. 04. 006

(" Intelligent Processor Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China)

Assembly language and assembler for deep learning accelerators”

Lan Huiying(é%%) @ = , Wu Linyang L , Han Dong* ok , Du Zidong* .

(™ University of Chinese Academy of Sciences, Beijing 100049, P. R. China)
(™ Cambricon Technologies Corporation Limited, Beijing 100191, P. R. China)
(™" CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, P. R. China)

Abstract

Deep learning accelerators (DLAs) have been proved to be efficient computational devices for
processing deep learning algorithms. Various DLA architectures are proposed and applied to different
applications and tasks. However, for most DLAs, their programming interfaces are either difficult to
use or not efficient enough. Most DLAs require programmers to directly write instructions, which is
time-consuming and error-prone. Another prevailing programming interface for DLAs is high-per-
formance libraries and deep learning frameworks, which are easy to be used and very friendly to us-
ers, but their high abstraction level limits their control capacity over the hardware resources thus
compromises the efficiency of the accelerator. A design of the programming interface is for DLAs.
First various existing DLAs and their programming methods are analyzed and a methodology for de-
signing programming interface for DLAs is proposed, which is a high-level assembly language
(called DLA-AL) , assembler and runtime for DLAs. DLA-AL is composed of a low-level assembly
language and a set of high-level blocks. It allows experienced experts to fully exploit the potential of
DLAs and achieve near-optimal performance. Meanwhile, by using DLA-AL, end-users who have
little knowledge of the hardware are able to develop deep learning algorithms on DLAs spending min-

imal programming efforts.

Key words: deep learning, deep learning accelerator (DLA) , assembly language, program-

ming language

0 Introduction

Deep learning algorithms become state-of-the-art-
techniques in a broad range of applications such as
computer vision tasks and natural language process-
ing''*). Meanwhile, networks keep increasing towards
deeper and larger architectures. Recently, customized
accelerators have been emerging rapidly as effective al-
ternatives to CPUs/GPUs for processing neural network
algorithms because of their high efficiency in both per-
formance and energy. On traditional devices (e. g. ,
CPUs/GPUs), neural network programs are written
with high-level frameworks (e. g., TensorFlow' " |
MXNet'*, TVM"™') or libraries (cuDNN'*'). Pro-
gramming on DLAs is much more difficult than that on
traditional devices due to the lack of suitable program-
ming supports. Most DLAs require developers to write

programs directly with instructions in order to achieve

high efficiency. For example, DianNao'”' and ShiDian-
Nao'® programed the hardware through manually writ-
ten instructions, which was a time-consuming ap-
proach. Deep learning frameworks are another pro-
gramming interface used by DLAs, for example,
TPU"’ used TensorFlow as the programming interface.
The high-level abstraction of frameworks allows devel-
opers to conveniently develop deep learning algorithms ,
but not able to manipulate hardware resources. It is
important and urgent to design a programming interface
that satisfies both developing efficiency and perform-
ance so that DLAs can be used actually in practical ap-
plications.

The challenge of designing such an interface for
DLAs lies in 3 aspects. 1) Computation partitioning.
Due to the limited on-chip resources, a computation
(e.g., a convolutional layer) needs to be partitioned
into several parts of sub-computations. Reasonable par-
titioning can allow maximum overlapping between com-

@D Supported by the National Key Research and Development Program of China (No. 2017YFA0700902, 2017 YFB1003101) , the 973 Program of
China (No. 2015CB358800) and National Science and Technology Major Project (No. 2018ZX01031102).

2 To whom correspondence should be addressed. E-mail; lanhuiying@ ict. ac. cn

Received on Oct. 25, 2018

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

387

putation and memory accesses, and results in better ex-
ecuting efficiency. 2) As the on-chip memory of deep
learning accelerators are usually divided into multiple
modules for various types of data utilization, it also in-
creases the burden of managing this memory for devel-
opers. For example, developers have to manually as-
sign data addresses of on-chip memory for different data
blocks, especially for operations that have multiple in-
dependent data blocks residing on the same on-chip
memory module (e. g. , a convolutional layer needs to
manage an input neuron, an output neuron and a bias
in the same block of on-chip memory). 3) The parti-
tioning strategy between segments can result in compli-
cated scheduling. Unlike serial programs on CPUs,
memory accesses and computations in deep learning
programs can be highly paralleled. It is error-prone
and difficult to write and debug such programs with a
low-level assembly language, especially with synchro-
nization primitives in the picture.

In order to address the above challenges, a novel-
high-level assembly language and an assembler are de-
signed, which is designed to achieve the following 2
objectives

Performance efficiency Performance efficiency
should be achieved by professional and amateur devel-
opers. For deep learning accelerators, the proposed as-
sembly language should allow developers to fully lever-
age the potential of the hardware. For developers who
do not understand the hardware details, the language
should help them to construct neural networks with ac-
ceptable performance. Experienced developers,
through our language, should have full access to the
hardware and thus be able to explore the hardware po-
tential.

Developing efficiency Developing efficiency re-
fers to the efficiency of writing codes for neural network
algorithms. Our assembly language should allow devel-
opers to construct a neural network easily (e. g. , less
code) for achieving near-the-best performance.

The following major contributions are made :

® A domain-specific assembly language designed
for deep learning accelerators is proposed, which is
composed of specialized data structures and a set of
high-level operators.

® An assembler and runtime to support all fea-
tures of the proposed assembly language are designed.

® The assembly language and the assembler on
ten benchmarks with Cambricon as the backend are
evaluated, that shows that the language can significant-
ly alleviate the developing burden and the assembler is
able to produce highly efficient executable code.

1 Assembly language

In this section, newly designed DLA-AL, a do-
main-specific assembly language for DLAs is presen-
ted. First the overall view of DLA-AL is illustrated and
then the data type, basic statements, macro instruc-
tions, blocks, and cross-layer fusion are introduced.

1.1 Overview

Fig. 1 shows the overall architecture of DLA-AL
while implementing deep learning algorithms. To build
a network , developers are expected to mostly use the
block that is predefined as optimized for high-level ab-
stractions of neural network operations, e. g. , convolu-
tional (Conv.), pooling (Pool.), or fully-connected
(FC). Thus, developers can easily specify a network
by using the built-in blocks. Additionally, developers
are allowed to build their own blocks with basic state-
ments and macros. Macro is a meaningful sequence of
basic statement that achieves a certain purpose, e. g. ,
computation or 0. Note that because of partitioning, a
block usually contains segments that execute several
times.

In Fig. 2 and Fig. 3, an example code is showed
for a 2-layer FC network written in DLA-AL. Similar to
that of a traditional assembly language, a DLA-AL
source program can be divided into several meaningful
sections: code, static _ro, and static _rw. The code
section is used to store DLA-AL statements, which will
be translated into executable machine codes. Section
static _ ro and section static _ rw are used for declaring
statically allocated data, where ro and rw represent
read-only and read-write, respectively, which is intro-
duced for address checking. Code and static data are
defined separately as they will be placed in different
memory segments and processed differently during as-
sembly.

" Loopl:segmentation

Loop2: segmentation

Macro:
compute statement

‘ compute statement
Blocks]
? Macro:
s Y io statement
“ io statement.
Output
Neuron

Fig.1 Overview of DLA-AL

388

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

;; FC1 (1024->256)
;; FC2 (256->128)
;; Both layers uses 128 as the segment size
.code
smove $R1, #1
smove $R2, #1
smove $R3, #2566
@block_fc_fp fcl_out, fcl_inp, fcl_weight, fcl_bias
@block_fc_fp fc2_out, fcl_out, fc2_weight, fc2_bias

.static_rw
@neuron fci_out, 1, 1, 1, 256, 1, 1, 1, 128
@neuron fc2 out, 1, 1, 1, 128, 1, 1, 1, 128

.static_ro
@neuron fci_inp, 1, 1, 1, 1024, 1, 1, 1, 128
@synapse fcl_weight, 256, 1, 1, 1024,
128, 1, 1, 128
@synapse fc2_weight, 128, 1, 1, 256,
128, 1, 1, 128,

Fig.2 Code example of a 2-FC layer network

;5 in_seg_size: input segment size
;5 tn_seg_n: input segment number
;; out_seg_size: output segment size
;; out_seg_mn: output segment number

smove $reg_out_seg, $out_seg_n
out_seg:
smove $reg_in_seg, $in_seg_n
in_seg:
@macro_load_input $in_seg_size
@macro_load_weight $w_seg_size
@macro_compute_fc $in_seg_size,
$out_seg_size
ssub seg_in_seg, #1
CB $reg_in_seg, $in_seg_size

@macro_store_output $out_seg_size
ssub, out_seg, #1
CB $reg_out_seg, $out_seg_size

Fig.3 Code example of the block of FC

1.2 Datatype

There are 3 types of data in DLA-AL; neuron,
synapse, and parameter. These 3 data types can cover
most data structures in neural networks, and also can
be mapped to different functional units and on chip
memory in Cambricon architecture.

Neuron Neuron is the basic type in DLA-AL,
designed as a 4-dimensional data structure. It provides
abstractions for neuron data for the inference process
and the gradient data of the back-propagating process,
as well as bias data and its corresponding gradient. To
declare a neuron, the developer must specify the
batch, height, width, channel, and segment size, re-
spectively. The declaration of a neuron is placed in da-
ta sections (including the static _ ro and static _ rw
sections) of the source file with the following form .

@ neuron[var _ name |
[B],[H],[W],[C],[BS],[HS],[WS],[CS];

As partitioning is inevitable while performing large
neural networks on modern accelerators with limited
on-chip storage, the neuron data type also provides pa-
rameters for developers to flexibly set partitioning si-

zes, i.e., the BS, HS, WS, and CS. Fig.4 shows the

partitioning of a neuron, where the batch dimensional
is set to one for brevity. For each computational opera-
tion, only a slice of data (with a size of HS x WS x
CS) will be loaded into the on-chip memory to compute
a partial sum, which will be accumulated to obtain fi-

nal result.
w

X
r N H

/\S

Slice of data

Fig.4 Data partitioning

Synapse The synapse is a basic data type in
DLA-AL, which is designed as a four-dimensional data
structure to declare synaptic weights in neural net-
works. The declaration of a synapse is similar to that of
a neuron ;

@ synapse [var _name | CO],[KH],
[KW],[CI],[COS], [KHS], [KWS],[CIS];

CO, KH, KW, and CI represent the 4 dimensions
of the synapse data, and COS, KHS, KWS, and CIS
are the corresponding segments. The reason that the
synapse and neuron are considered as 2 independent
data types is twofold. First, from the algorithm aspect,
neuron and synapse represent different entities ; the for-
mer can be activated and passed to the next layer, and
the latter is a group of connections that determine the
neurons. Second, with considerations of the architec-
ture of Cambricon-ACC, execution,data of neuron and
synapse will be loaded to different types of on-chip
memory, i. e., neuron will be loaded to the vector
scratchpad, and synapse will be loaded to the matrix
scratchpad.

Parameter The parameter type represents scalars
used to specify configuration parameters in a neural
network such as the kernel size and stride of convolu-
tional layers. Parameters are also stored in the data

sections.

1.3 Basic statements

Basic statements in DLA-AL correspond to execut-
able instructions that can be translated into one-to-one
instructions. These statements are included as the
atomic operations by which blocks and macrostatements
are built. Through basic statements, DLA-AL can pro-
vide enough flexibility. Basic statements of DLA-AL
are grouped into 4 categories, i.e. on-chip memory
management statements, computational statements,
logicalstatements, and control statements.

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

389

1.4 Macro statements

In DLA-AL, a macro statement is defined as the
fundamental scheduling unit. In traditional assembly
languages, the macro instruction is a widely used tech-
nique that can provide abstractions by simple substitu-
tion. Similarly, in DLA-AL, macro instructions are
used to specify a sequence of serially executed basic
statements that can create computationalor memory ac-
cess instruction fragments. FEach macrostatement
should include only one type of instruction: computa-
tional (including computational statements and logical
statements) or memory access. The following is the de-

claration of a macro:

C- Macro ¢ _ macro varl
; comments

; a string of computational or
; logical statements

statement MYMvarl

mend

10 - Macro io _ macro var2

; a string of load / store statements
statement MY Mvar2

mend

; call macro with rl as its parameter
@c _macro rl

@10 _macro 12

The C-macro and 10-macro are words reserved for
declaring computational macros and memory access-
macros, C-macro and 10-macro are the names of the-
macro statement instances, and varl and var2 are the
parameter lists. Macro is closed at the mend reserved
word. The reason why providing macro in DLA-AL is
twofold. First, a macro can provide higher abstractions
and code reused for developers. It is difficult for devel-
opers to perform a complex NN algorithm by basic
statements that include only low-level vector/matrix op-
erations.

Macros can help developers to organize a program
in a more readable and structural fashion while impro-
ving code reuse in the assembly language. Second, by
grouping statements into separate types of macros, it
will be easier for the developers to predict the parallel
execution behaviors by the types of the macros, thus
making the manual scheduling process easier.

1.5 Blocks

Block is a critical structure in DLA-AL. It is com-
posed of a set of predefined optimized code that imple-
ments high-level neural network operations with arbi-

trary input and output data scales. DLA-AL provides a
set of built-in blocks. With blocks, developers can
conveniently construct a neural network. Blocks in
DLA-AL are defined with the same calling routine as

macros ;

@block conv nl, w, n2, #c str
@ block _relu nl, nl
@ block _pool n2, n3, #p str x, #p _str_y

X ,#c _str_y

Block conv, block relu, and block pool are pre-
defined blocks for Conv. , ReLLU, and pooling layers,
respectively; nl, n2, and n3 are neuron data, and w
is synapse data. This program computes the convolu-
tion of strides str _ x and str _ y, followed by the pool
operation of the p _str _x, and p _ str _ vy strides.
Thus, by repeatedly calling the predefined blocks, it
can easily define an existing neural network. DLA-AL
includes a set of built-in blocks dedicated to existing
common neural network algorithms for both inference

and training phases. The supported algorithms are lis-

ted in Table 1.

Table 1 Built-in blocks in DLA-AL, both inference and
training are supported for each algorithm
Domain Blocks
Neural Conv, MaxPool, AvgPool, LRN, BN, FC,
network Active(Sigmoid, ReL.U, Tanh)
matrix multiply vector, vector multiply matrix,
Math

matrix/vector add/sub/mul/div, vector power

Cross-layer fusion is a useful technique for impro-
ving performance. The output data of the previous
block can be computed immediately by the next block
before it is stored to the main memory, thus avoiding
storage of the previous block and loading of the next
block. It could be very effective for blocks with ex-
tremely large input/output neurons. Fig.5 shows an
example of a 3-layer (Conv-Pool-FC) fusion, the input
and output neurons of the three layers are partitioned
into segments to fit in the on-chip memory. For a fused
block (e.g., ReLU), the loading and storage of the
intermediate data (e. g., the output of Conv/inputof
ReLU) are saved. Only the operation loading the

N Convolution RelU Poolin
LOAD I~ L g
. / > = STORE
wo /] =
Loap | | | \

Fig.5 Layer fusion

390

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

first layer input, and the operation storing the last layer
output are performed in this process.

2 Assembler

An assembly and runtime are also provided to sup-
port DLA-AL. In this section, DLA-AL assembler ar-
chitecture is outlined and the design of the assembler
from 3 perspectives: preprocessor, address, and stor-
age allocation and relocation are discussed. Then, the
implementation of the built-in block and cross-block
scheduling are introduced.

2.1 Assembly process
In Fig. 6, the architecture of DLA-AL assembler

is shown, which produces executable code composed of
code for both the host and the accelerator.

.data

‘ Blocks ‘ ’ .code ‘ Neiion
l Synapse
Parameter

Storage
Allocation

Instruction

Fig.6 Assembly process

The assembler first preprocesses the source file,
dividing the code into separate sections according to the
section directives (1i.e. , . code,. static 1w and static
_ro). The preprocessor fetches the code section in an
assembly program for the substitution of built-in blocks
and macro statements. DLA-AL assembler further fet-
ches the data section that defines the neurons, synap-
ses, and parameters for data processing. The assembler
will further allocate addresses for static data. At last,
the assembler will be relocated for the program and
produces the executable program.

Compute

VMM VADD

2.2 Built-in blocks

The set of built-in blocks is a substantial compo-
nent of DLA-AL, which ensures performance and de-
velopment efficiency by providing predefined high-level
operations. In this section, scheduling inside a block
is introduced to demonstrate techniques for obtaining
high performance while programming on Cambricon ar-
chitecture.
2.2.1

Scheduling the computational and memory access

An example of FC

operations is a tricky process for deep learning acceler-
ator. As the parallel mechanism is hardware-specific,
without a comprehensive understanding of the hardware
execution process, one can hardly predict the results of
a program. An FC layer is used as a driving example to
demonstrate how the instruction order can affect the ex-
ecution process. In Fig.7 (Code #1), an intuitive im-
plementation of an FC layer written with instructions
from the Cambricon ISA'"" is presented. The develop-
er who wrote this code might expect that the computa-
tional instructions, i. e., VMM and VADD, and the
memory access instructions, i. e., VLOAD and
MLOAD, will be executed in parallel. However, be-
cause of the limitation of the depth of issue queue in

101 architecture (i.e., 2), this process is

Cambricon
more serious than expected. Code #2 in Fig.7 shows
the program after switching the order of the computa-
tional instructions (i. e., VMM and VADD) and the

memory access instructions (i. e., VLOAD and

MLOAD) for optimization. Fig. 8 shows the pipelining

VLOAD VLOAD
MLOAD MLOAD

L Sync
MLOAD

_ VLOAD L .

23

MLOAD | VADD |
VLOAD VLOAD
Code #1 Code #2

Fig.7 Codes implementing a two-FC network with Cambricon-
ISA, Code #1 shows a naive version, and Code#2 is an

optimized version based on Code#1

VMM VADD

Compute VMM VADD

VMM VADD

11080 mioa> | wioso Jvioss mioso Jnond

VMM VADD

Fig.8 A pipeline of different implementations, top: Implementation of Code#1, bottom: implementation of Code#2

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

391

of Code #1 and Code #2 in Fig.7 is shown to further
clarify such optimization. It can be observed that paral-
lel execution happened only between VADD and VLOAD
instructions and that no memory access instruction can
be overlapped during the execution of the VMM instruc-
tion and MLOAD instruction (see top Figure in
Fig.8). However, as an optimized version of Code #
1, Code #2 improves the parallelism greatly. It is ob-
served that the two more instructions, i.e. , VMM are
overlapped with memory access instructions (see the
bottom Figure in Fig.8).

3 Runtime

The runtime of DLAs is similar to that of a GPU
device, which is basically handled by the host, as the
accelerators are not able to support functionalities like
storage management.

The process of executing a program is as follows.
First, the program is executed on CPU. All types of
data are allocated and initialized by the host (i. e. ,
CPU). Then, CPU sends the ACC program generated
by the assembler to the accelerator and invokes the de-
vice by sending an extra signal. As only static data al-
location is consided, the ACC program will be execu-
ted until all instructions are finished, and then a fin-
ished signal is sent back to the host. The host will take
over and perform the rest of the operations (e. g. , cop-
ying result data from device space to host space).

Data layout is a critical issue that has not been
discussed thoroughly in the programming of deep learn-
ing accelerators. Under the circumstance of segmenta-
tion, the data loading order might not be the same as
the storage order of the original data. An intuitive way
of loading non-continuous data is to break one loading
operation into multiple loading operations, and each of
which loads a part of the data block. This solution is
flexible and easy to implement, but it has 2 shortcom-
ings. First, the latency of memory access is inevitably
enlarged with the increasing number of instructions.
Second, this could lead to a drop in parallelism be-
cause the issue queue in the accelerator might be
stalled by a long sequence of memory access instruc-
tions. Our solution to this problem is to deploy a very
specific data layout so that for each computation in-
struction sequence the required data can be loaded by
only one loading instruction. In DLA-AL, neurons are
stored in the order of CWHB (column-width-height-
batch). Fig.9(a) shows the layout of a neuron with
the batch set to one, where the number in the square
represents the order of storage before segmentation. In
this case, the neuron is partitioned into 3 segments

from the feature map direction, which leads to discon-
tinuous data access during execution. To avoid such
nonconsecutive data access, the data is managed in a
computational-order-first layout, where the data resides
on the device memory according to the computational
order, as shown in Fig.9(b). This rearrangement
process is handled by CPU when the data are copied
from the host memory to the device memory. During
execution, the required sequence of data can be treated
as an entire unit and loaded onto the on-chip memory,

in order to reduce memory latency and increase paral-

lelism.
. W partition into 3 segments layout
f W
{
H 1
‘ . 3
,
i Other data...
c
() (b)

Fig.9 Data layout
4 Evaluation

In this section, the performance of DLA-AL is
evaluated by comparing its performance to 3 baselines;
1) hand-optimized instruction sequence, which is con-
sidered as the optimum performance, running on Cam-
bricon-ACC'""" (same as DLA-AL programs). 2)
hand-written instruction sequence, which is implemen-
ted according to the natural computational order of the
neural network algorithms. 3) GPU. Caffe'""
the high-performance deep learning framework, run on
an advanced modern GPU card (NVIDIA K40M, 12
GB GDDRS5, 4.29 TF lops peak at a 28 nm process)
with the back-end of cuDNN, which is a high-perform-
ance library. Only a NVIDIA GPU is used instead of
both NVIDIA and AMD GPUs to evaluate the perform-
ance for 2 reasons. First, NVIDIA GPU is the most

pervasive and widely accepted backend for executing

is used ,

DL algorithms and the DL framework used does not
support AMD. Second, the experiment is done without
an AMD card and it is believed that the NVIDIA card
is enough to show the performance advantage of DLA-
AL over the GPU.

Both DLA-AL programs and hand-written instruc-
tions run on a carefully implemented Cambricon-ACC
simulator. All specifications are set according to the
published paper. Our evaluation will demonstrate: 1)
DLA-AL can produce high performance executable
code. 2) DLA-AL provides a significantly program-
ming interface more productively than programming di-

rectly with ISA.

392

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

4.1 Performance

DLA-AL is evaluated on 10 representative bench-
marks, as listed in Table 2, which are extracted from
realistic networks. The speedups of GPU, hand-opti-
mized instructions, and hand-written instructions over
DLA-AL are presented in Fig. 10. DLA-AL achieves a
speedup of 2. 90 x at the forwarding propagation and
3.57 x at the backward propagation compared to that
of the GPU baseline on average. Compared with the
hand-optimized instructions, DLA-AL achieves a
speedup of 0.95 x and 0.96 x for forward and back-
ward propagation on average. Compared with hand-
written instructions, DLA-AL achieves a speedup of 1.
20 x and 1. 14 x for forward and backward propaga-
tion on average, respectively. DLA-AL accomplishes
the highest speedup of 0.99 x on FC forward bench-
marks, and the conv3-fp benchmark has a poor result
with only 0. 74 x compared with hand-optimized in-
structions. The main reason is the imbalance between
two load operations that the load time depends on input
data size and thus it is impossible for DLA-AL to dy-
namically schedule ahead with optimum. However, it
still achieves a speedup of 2. 76 X and 1.25 x com-
pared with the GPU and the hand-written baseline, re-
spectively. DLA-AL is further evaluated on 2 realistic
entire networks, VGG16 and AlexNet, compared with

handwritten instructions to demonstrate the performance
improvement obtained by DLA-AL. DLA-AL achieves
1.16 x improvements for AlexNet-inference and 1.09 x
improvements for VGG16-inference. Since a deep neu-
ral network can be viewed as the composition of a se-
quence of layers, and the performance of single-layer is
evaluated and hand-optimized baseline for this evalua-
tion is not performed. To demonstrate the benefits one
can get it from cross-block fusion, and select a repre-
sentative 3-layer benchmark extracted from VGG16;
Conv-ReLLU-Pool. Fusion of the 3-layer benchmark a-
chieves 1. 02 x improvements over non-fusion DLA-
AL. In addition, 10.16% of memory access time has
been reduced by saving a convolution output storing, a
ReLU input loading, a ReL.U output storing and a poo-
ling input loading operation.

i GPU/DLA-AL
S 7{ mmm Hand optimized/DLA-AL
T =l Hand written/DLA-AL
2
7]
3]
R 20 2R R 0l R g 4R ® ®
N S ST AT AR ALY X o
o o oV & e A\ \@ Geo\x\e
1 GPU/DLA-AL
S 7| mmm Hand optimized/DLA-AL
T 2] Hand written/DLA-AL
2
n
2

o o o 00 o o? w0 o0 o0 o° o®
o LIPS LRI L] N N o A 20
o™ o™ o X « QQO ng A\ \@ Geo‘“

Fig.10 Speedup over DLA-AL

Table 2 Benchmarks

Name Layer InS#F OutS#F K S Source

convl Conv T#512 7#2048 1 1 ResNet

conv2 Conv 14#512 14#512 3 1 VGG

conv3 Conv 13#256 13#384 3 1 AlexNet

pooll Pool 28#512 14#512 2 2 VGG

pool2 Pool 56#256 28#256 2 2 VGG
fel FC 1#9216 1#4096 - - AlexNet
fc2 FC 1#4096 1#4096 - - AlexNet
fe3 FC 1#4096 1#1024 - - AlexNet
Irn LRN 27#256 27#256 - - AlexNet
Istm LSTM Input(3) -hidden (400) -output(121)

It is observed that Conv. layer has the poorest
performance and speedup compared with the other
benchmarks. The ideal situation of implementing com-
putational-intense algorithms like convolution is that all
memory access operations can be executed overlapping
with computational operations. By inspecting the exe-
cution process, it is found that a portion of convolution
computation operations are not overlapped by memory

loading and storing. The reason is that for each seg-
ment in Conv. , it needs at least 2 loading instructions
to load the neurons and the synaptic weights, one of
them could be stalled by the other one and leads to a
non-parallel window that causes the performance loss.
This observation does not appear in the FC layer evalu-
ation, since for I0-intense algorithms like FC, compu-
tation can be fully overlapped with the synaptic weights

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

393

loading instruction.

The worst case scenario is further analyzed with
five more convolutional layers with various scales (see
Table 3) , and similar scenarios are observed. The re-
sult is shown in Fig. 11, where convolutional layers a-
chieve 89.8% performance compared with that of the
hand-optimized implementation. The non-overlapping
window in these layers is caused by the limited depth of
issue queue of Cambricon-ACC. As only 2 instructions
can be issued simultaneously, later instructions are
blocked until these 2 instructions are finished. In the
case of convolutional layers, the 1st two instructions
(i. e., load neurons and synapses) block the later
computational instructions until the first load instruction
is finished. Therefore, only the 2nd load instruction is
executed in parallel with later computational instruc-
tions. This overhead can be saved in hand-optimized
code by manually splitting the computation into 2 in-
structions, each processes a part of the computation,
and the 2 load instructions can be overlapped with the
2 partial computations.

Table 3 Benchmarks for evaluating the worst-case scenario

Name Layer InS#FM OutS#FM K S
Convl Conv 227#3 55#96 11 4
Conv2 Conv 27#96 25#256 5 1
Conv3 Conv 56#128 56#256 3 1
Conv4 Conv 56#256 56#256 3 1
Conv5 Conv 28#512 28#512 3 1
100 —

S 80

g 60

g

g 40

& 20

Convl Conv2 Convd Conv4 Conv5 GeoMean

Fig.11 Test cases for worst-case scenario analysis

4.2 Developing efficiency

As a high-level assembly language, significantly
DLA-AL is more friendly and efficient than those pro-
gram via hand-written instructions, which can be re-
flected in 3 respects. First, the length of the source
program is vastly reduced. By DLA-AL, only 15 lines
of code is required to implement a 2-layer FC layer,
which is 3.33 x shorter than the code produced using
original programming interface introduced in
Ref. [10]. Second, DLA-AL assembler provides auto-
matic data address allocation and relocation that can
release the developers from calculating the addresses by

themselves. Third, DLA-AL assembler provides auto-
matic data deployment to make sure that the data can
be loaded sequentially and in the correct layout. With-
out this mechanism, developers have to manage and ar-
range the data manually, which is a very time-consu-
ming and error-prone approach.

5 Related work

Many DLAs are proposed in recent years as they
are more efficient in both performance and energy com-
DianNao
is a serial of ASIC accelerators that lever-

pared with traditional devices. fami-

Ry (7 -10:12:14]
age data locality in deep learning algorithms to improve
performance. In addition, FPGA-based accelerators are
also proposed. In addition, many accelerators leverage
the sparsity in neural networks to further reduce work-

loads of both

ing[12,15,16]]

computation and memory access-
Although these accelerators are able to
provide impressive performance, their usability is limit-
ed by the lack of suitable programming supports.

As a new technique, studies about programming
supports for DLAs are still insufficient. Most accelera-
tors use the instruction set as the programming inter-
face, which is error-prone. Deep learning frameworks
are another option for accelerators, for example,
TPU"/ uses TensorFlow as the programming interface.
The shortcoming of directly using a high-level frame-
work to program is that the program efficiency entirely
relies on the implementation of the framework, and
they do not have the opportunity to optimize the pro-

gram by themselves.
6 Conclusion

This paper proposes DLA-AL, a domain-specific
assembly language and an assembler for DLAs to solve
the issue of development efficiency and also provide
high execution performance. The language is composed
of 3 major components, basic statements, macro state-
ments, and blocks, each of which has a higher ab-
straction level than that of the previous one. Also an
assembler is proposed that supports macro processing,
static address allocation, and relocation. This paper
evaluates DLA-ALon 10 representative benchmarks,
achieves a speedup of 2.90 x and 3.57 X on forward
and backward propagation over the GPU, a speedup of
0.95 x and 0.96 x on forward and backward propaga-
tion over the hand-optimized baseline, and a speedup
of 1.20 x and 1. 14 x on forward and backward propa-
gation over the intuitive hand-written instruction base-
line. It is observed that the worst-case scenario appears

394

HIGH TECHNOLOGY LETTERSIVol.25 No.4|Dec. 2019

in convolutional layers, as multiple loading operations
stalling later computational instructions, and they can-
not execute in parallel. The worst case of DLA-AL
achieves 74% performance compared with that of the
hand-optimized implementation.

References

[1] He K, Zhang X, Ren S, et al. Deep residual learning for
image recognition [C]//Proceedings of Computer Vision
and Pattern Recognition, Las Vegas, USA, 2016. 770-
778

[2] Devlin J, Chang M, Lee K, et al. BERT; Pre-training of
deep bidirectional transformers for language understanding
[J]. arXiv.1810. 04805, 2019

[3] Abadi M, Barham P, Chen J, et al. TensorFlow; a sys-
tem for large-scale machine learning [J]. arXiv: 1605.
08695, 2016

[4] ChenT, LiM, Li Y, et al. MxNet: A flexible and flexi-
ble and efficient machine learning library for heterogene-
ous distributed systems[J]. arXiv:1512. 01274, 2015

[5] Chen T, Moreau T, Jiang Z, et al. TVM; an automated
end-to-end optimizing compiler for deep learning [J].
arXiv:1802. 04799, 2018

[6] Chetlur S, Woolley C, Vandermersch P, et al. cuDNN;
efficient primitives for deep learning [J]. arXiv: 1410.
0759, 2014

[7] Chen T, DuZ, Sun N, et al. DianNao; a small-footprint
high-throughput accelerator for ubiquitous machine-learn-
ing[C]//Architectural Support for Programming Langua-
ges and Operating Systems, Salt Lake City, USA, 2014 .
269-284

[8] DuZ, Fasthuber R, Chen T, et al. ShiDianNao: shifting
vision processing closer to the sensor[C]//International
Symposium on Computer Architecture, Portland, OR,
USA, 2015, 43(3): 92-104

[9] Jouppi N P, Young C S, Patil N, et al. In-Datacenter
Performance Analysis of a Tensor Processing Unit[C]//
International Symposium on Computer Architecture, Port-

land, USA, 2017, 1-12

[10] Liu S, Du Z, Tao J, et al. Cambricon: an instruction set
architecture for neural networks[C]//International Sym-
posium on Computer Architecture, Seoul, Korea, 2016 .
393-405

[11] Jia Y, Shelhamer E, Donahue J, et al. Caffe; convolu-
tional architecture for fast feature embedding[C]//ACM
Multimedia, Orlando, USA, 2014 . 675-678

[12] Zhang S, Du Z, Zhang L, et al. Cambricon-X: an accel-
erator for sparse neural networks[C]//International Sym-
posium on Microarchitecture, Taipei, China, 2016 1-12

[13] Chen Y, Luo T, Liu S, et al. DaDianNao: a machine-
learning supercomputer[C]//International Symposium on
Microarchitecture, Cambridge, UK, 2014 . 609-622

[14] Liu D, Chen T, Liu S, et al. PuDianNao: a polyvalent
machine learning accelerator[C]// Architectural Support
for Programming Languages and Operating Systems, Istan-
bul, Turkey, 2015 369-381

[15] Han S, Liu X, Mao H, et al. EIE; efficient inference
engine on compressed deep neural network[C]//Interna-
tional Symposium on Computer Architecture, Seoul, Ko-
rea, 2016, 243-254

[16] Albericio J, Judd P, Hetherington T, et al. Cnvlutin; in-
effectual-neuron-free deep neural network computing[C]//
International Symposium on Computer Architecture, Se-
oul, Korea, 2016 1-13

Lan Huiying, born in 1990. She is currently a
Ph. D student at Institute of Computing Technology,
Chinese Academy of Sciences, Beijing. She received
her B.S. degree in software engineering from Wuhan
University, Wuhan, in 2012. She received her M. S.
degree from School of Software and Microelectronics,
Peking University, Beijing, in 2015. Her research in-
terests include computer architecture, programming
language and computational intelligence.

