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Abstract

In order to adapt to the specific task, the six-axis dynamic contact force between end-effectors
of intelligent robots and working condition needs to be perceived. Therefore, the dynamic property of
six-axis force sensor which is installed on the end-effectors of intelligent robots will have influence on
the veracity of detection and judgment to working environment contact force by intelligent robots di-
rectly. In this paper, dynamic analysis to double-layer and pre-stressed multi-limb six-axis force
sensor 1s conducted. First, the structure of the sensor is introduced, and the limb number is con-
firmed by introducing the related definitions of convex analysis. Then, based on vibration of multi-
ple-degree-of-freedom system, a mechanical vibration simplified model of double-layer and pre-
stressed multiple limb six-axis force sensor is set up. After that, movement differential equations of
sensor and the response of analytical expression are deduced, and the movement differential equa-
tions is solved. Finally, taking the double-layer and pre-stressed seven limb six-axis force sensor as
an example, numerical calculation and simulation of deriving result is conducted, which verify the
correctness and feasibility of the theoretical analysis.
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0 Introduction

With continuous development of computer technol-
ogy, the intelligent level and interaction ability of ro-
bots are increasing rapidly. In the field of the robot,
intelligent sensor makes robots have the function simi-
lar to the five sense organs and brain of humans. So,
an intelligent robot system is the sensor integra-

121 Because it can realize the force perception of

tion
robot in working condition, force sensor becomes very
important. When robot motion is in three-dimensional
space the load upon anywhere of robot actually contains
three directions of force and three directions of mo-
ment. Therefore, six-axis force sensor which can detect
six force components simultaneously is needed on the
robot” s wrist contacting with the working condition to
make robot have full force information of working con-
dition.

In 1983, the Stewart platform parallel structure

was used in designing six-axis force sensor firstly by
Gaillet and Reboulet”'.

sors has received more attention of many scholars in the

Since then, this type of sen-

world. With its inherent advantages like high stiffness,
stable structure, high carrying capacity, no error accu-
mulation and easiness to solve inverse kinematics*' |
the Stewart parallel structure has become a successful
implementation of six-axis force sensor structure. In
actual detection of the six dimensional force sensor at
present, 6-dimensional dynamic forces need to be
measured in more and more situations. Veracity of
measurement and real-time performance of control are
influenced by merits of sensor’ s performance dynamic.
Six-axis force sensor is demanded to reflect the varia-
tion of measured contact force accurately and rapidly in
many dynamic and quasi-static fields. Therefore, the
dynamic performance of six-axis force sensor becomes
very important. Fujii””' contrasted and discussed multi-
ple force sensors’ dynamic calibration methods, and
put forward a levitated-mass method to realize accurate
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measurement of inertia force. Kim et al. '*7' developed
a 6-axis force/moment sensor to use it as an intelligent
robot”’ s gripper for safely grasping an unknown object
and accurately perceiving the position of the object in
the grippers. Li et al. "*°/ presented a novel parallel
spoke piezoelectric 6-DOF heavy force/torque sensor
by using adjustable load sharing device, and discussed
the static and dynamic calibration experiments for fabri-
cated piezoelectric force/torque sensor. Hirose et al. "’
proposed the dynamic motion analysis method of ski
turns using the inertial and force sensors. Yuan et al''"
developed and evaluated of a six-axis force/moment
sensor used under humanoid robot foot, and carried out a
characteristic test of the developed sensor. Sun et al.
designed and optimized a novel six-axis force/torque
sensor based on strain gauges for space robot devel-
oped, which has a rather good performance in sensitivi-
ty, nonlinearity, repeatability, stability, hysteresis,
and accuracy. Chen et al. '’ focusing on the follow-
ing special requirements of space application, large
measurement range, high reliability and high preci-
sion, designed a six-axis force/torque sensor, which
could be used as a component for the large manipulator
in the space station. Zhao et al. "' demonstrated a
kind of six-axis force sensor based on 6-UPUR parallel
mechanism with flexible joints, which has large meas-
urement range and high accuracy.

The measuring limbs of Stewart platform parallel
structure are tow-force bars in theory. No stress cou-
pled 6-dimensional forces measure is realizable among
sensitive elements. But in the actual measurement, be-
cause there is friction on spherical pair after pre-tighte-
ning, strict linear relationship between 6-axis forces
with action on the force sensor and axial force of meas-
uring limbs are no longer presented, thereby it leads to
a certain measurement error and restrains application of

151 Sensor of double-

this kind of sensor in practice
layer and pre-stressed multiple limb six-axis force both
keeps the advantage of Stewart platform parallel struc-
ture and greatly overcomes the main drawback of the
described earlier. A preloaded platform of double-layer
and pre-stressed multiple limb six-axis force sensor is
added between top and bottom platforms, and two ends
of the measuring limb are connected with the platforms
using the cone-shaped spherical pairs instead of the
traditional spherical pairs. Thus the clearance of spher-
ical pair is eliminated, the overall stiffness of sensor is
improved and friction torque of traditional spherical
pair is diminished significantly.

In this paper, the simplified model of mechanical
vibration of double-layer and pre-stressed multiple limb
six-axis force sensor is set up firstly based on vibration

of multiple-degree-of-freedom system. Then, the move-
ment differential equations of sensor and the response
of analytical expression are deduced, and the move-
ment differential equations are solved. Finally, taking
the double-layer and pre-stressed seven limb six-axis
force sensor as an example, numerical calculation and
simulation of deriving result is conducted, which verify
the correctness and feasibility of the theoretical analy-
sis.

1 Double-layer and pre-stressed multi-limb
six-axis force sensor

1. 1 Structure of the double-layer and pre-
stressed multi-limb six-axis force sensor
Fig. 1 is the schematic diagram of double-layer
and pre-stressed multiple limb six-axis force sensor. It
is composed of a pre-stressed platform, a measuring
platform, measuring limbs and a base platform. The
measuring limbs composed of integrated one-dimension-
al force sensors are connected with platforms by cone-
shaped spherical pair instead of traditional spherical
pair and divided into two layers to distribute on both
sides of the up and down measuring platform. The con-
tact area of two types spherical pairs is compared in
Fig.2. o is the center of spherical pair, curves ¢, and
¢, are projections of contact surface in limb plane, f re-
presents the direction of the affordable force of limb.
From Fig.2, in the case of ensuring the contact
strength, the cone-shaped spherical pair can realize a
small contact area thus efficaciously reduce the friction
moment on contact surface of spherical pair. Besides,
the cone-shaped spherical pair only makes limbs suffer
from stress, thereby, zero passage is non-existent, the
impact of force contact with spherical contact surface is
eliminated, and the integral rigidity is improved.

Pre-stressed platform

Measuring limb

Measuring platform

Base platform

Fig.1 Schematic diagram of the double-layer and pre-stressed

multiple limb six-axis force sensor
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(b) cone-shaped spherical pair

(a) traditional spherical pair

Fig.2 Comparison of the contact area of spherical pair

Before measuring, making each measuring limb
have a certain initial pre-stressed force by means of
compressing pre-stressed platform and measuring plat-
form to ensure that measuring limbs are always pressed
in the process of measurement. When measuring, ex-
ternal force is applied to measuring platform, axis force
will be measured by measuring limbs that are distribu-
ted on both sides of the up and down of measuring plat-
form. Then 6-dimensional external force will be ob-
tained by static equilibrium. Putting measuring limbs
to distribute on both sides of the up and down of meas-
uring platform and take some advantages like stable
pre-stressed way, high rigidity and large over turning
moment can be supported.

1.2 Determination of measuring limb count

The unilateral constraint of cone-shaped spherical
pairs is similar to the frictionless point contact. So if
the sensor wants to resist any external force, it must be

10181 Moreover, the pat-

in the state of force-closure
tern of force-closure is determined by the number of the
sensor’ s measuring limbs. For the double-layer pre-
stressed multiple limb six-axis force sensor, upper and
lower bounds for the number of measuring limbs re-
quired for a force-closure constraint can be obtained by
using two classical theorems in convex analysis.

Theorem 1 ( Caratheodory). If a set X = {v,,
vy,*+, v, | positively spans R’ , thenk = p + 1.

Theorem 2 (Steinitz). If S C R’ and ¢ € int(co
S), then there exists X = {v,, v,,-,v,} C S such
that ¢ € int(co X) and £ < 2p. Let co S denote the
convex hull of set S, int(co S) denote the interior of
the convex hull.

Theorem 1 and Theorem 2 allow us to bound the
number of contacts required for a force-closure grasp
using frictionless point contacts. Caratheodory’ s theo-
rem implies that if a rigid body can be restricted with a
force-closure state, then it must have at least p + 1 uni-
lateral contacts. And Steinitz’ s theorem places an up-
per bound on the minimal number of unilateral contacts
which are needed. For a rigid body in three-dimension-

al space, the applied external force is six-dimensional
(three-dimensional force and three-dimensional torque ),
so at least seven and at most twelve measuring limbs
will be available in order to restrict the measuring plat-
form in the state of static balance.

2 Vibration mechanics equation of single
limb

Double-layer and pre-stressed multiple limb six-
axis force sensor is a complex multiple parallel limbs
system with the characteristic of that every limb is sin-
gle-degree-of-freedom system in same structure. As the
basis of overall vibration mechanics analysis, the vibra-
tion mechanics model of single measuring limb should
be built firstly. A single measuring limb can be regar-
ded as an idealized element in ideal, and a single-de-
gree-of-freedom system is composed of mass piece,
damper and spring. The simplified model of vibration
mechanics is shown as Fig. 3.

()
k |—'
i —VVVV— F(t)

L
N~ S5

Fig.3 Vibration mechanics model of a single measuring limb

The movement differential equation of single
measuring limb is built as

ml(t) +cl(t) +kl(t) = f(1) (1)
where &, ¢, m, [(t) and f(t) are equivalent stiffness
equivalent damping, equivalent mass, axial direction
displacement and limb axial direction of sensor measur-
ing limb.

From Eq. (1), put all measuring limbs together
and rewrite them as the matrix equation;

[m]1() + [e]1(2) + [k]I(t) =f(1) (2)
where I(¢) = [[,(t) 1,(1) L()]", [m] =
diag (m,, m,, ==+, m,), [¢] = diag (¢,, ¢,, **,
c,), Lk] = diag(k,, ky, -, k), f(1) =
(fi(t) f,(t) - f(t)]", n is the number of
measuring limbs.

Under the initial circumstances of no external
forces, the system is preloading. There is only pre-
stressed force on measuring limb. When¢ = 0 , the in-
itial conditions of initial force, initial displacement and
initial velocity in Eq. (2) are expressed as

f()yle=0=f (3)
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= diag (L L L
b= diag (1o e ()

k
()1, =0 (5)

()1,

()1,

3  Vibration mechanics equation of the
force sensor

Then make the pre-stressed multiple limb six-axis
force sensor as the object of study and build the vibra-
tion mechanics equation of system. Assuming that
measuring platform is rigid body, when generalized 6-
dimensional external force F'(¢) is applied on measur-
ing platform the generalized coordinates g(¢) =
(i @ a5 @ 45 4]
motion of it. x(t) = [¢, @,

is used to describe the
¢5]" is 3-dimensional
moving coordinates of measuring platform, and @(¢) =

(40 q5 6]
of measuring platform. Choosing ¢(t) as generalized

is 3-dimensional rotational coordinates

coordinates of the system can eliminate coupling among
generalized coordinates, and solve movement differenti-
al equation easily.

As shown in Fig. 4, the simplified vibration me-
chanics model of multiple limb six-axis force sensor is
built. This model is combined with multiple spatial sin-
gle-degree-of-freedom system and a mass piece M.
Each limb is single-degree-of-freedom system with
damped spring mass. The reference coordinate system
of overall system is o-xyz.

Fu(?)

Fig.4 Vibration mechanics model of the multiple limb

six-axis force sensor

The relationship between liner-displacement of
measuring limb and generalized coordinates ¢ (¢) will
be built. For initial state t = 0, each limb’ s liner-dis-
placement caused by pre-stressed force is [, (1 = 1,2,
=+,n). Then the liner-displacement of limb i is ex-
pressed as

Li(t) =S8 [x(t) +0(r) xr] +1,

ST oxs)IEO]

where S, is the direction vector of limb i axis, r; is the

position vector of a point on limb i axis.
Putting all limbs together and the liner-displace-
ment of limbs can be rewritten in the form of matrix as

i 1

1(1) = G'q(1) + [ |fo (7)
where

L1 giae (L L
[k]_dlag(k, s k,,,) (8)
S S S
G — [ 1 2 n ] (9)
ro xS, r,xS, r, xS,
Supposing that Eq. (9) does not change with
T

time, which means ag = 0. The derivative of

Eq. (9) can be expressed as
I(1) = G'q(1) (10)

I(1) = G"4(1) (11)

Substituting Eqs(7), (10) and (11) into
Eq. (2), Eq. (12) will be got:

[m]G'q(1) +[c]G'q(1) +[k]1G'q(1) +f, = f(1)
(12)

Then taking mass piece M of measuring platform
into account, the differential equation can be obtained
as

[M,]q(t) +G - f(1) = F (1) (13)
where [M,] = diag (M,, M,, M,, I, I, , 1) is
the matrix of measuring platform’ s mass. M, is the
mass of measuring platform, and [, [, , ), are rota-
tional inertia of measuring platform rotating about coor-
dinate axis.

When no external forces and torques are applied
on the platform of the sensor, that is G + f, =0, Sub-
stituting Eq. (12) into Eq. (13) and simplifying, the
following equation can be obtained

[M]q(1) +[Clq(s) + [Klg(t) = F (1)

(14)
where [M] = [M,] + G[m]G" is the matrix of sys-
tematic total mass, [C] = G[c¢]G" is the matrix of
systematic total damping, [ K] = G[k]G" is the ma-
trix of systematic total stiffness.

Eq. (14) is the movement differential equation of
the multiple-degree-of-freedom system. From Eq. (14),
there is no relationship between sensor system respon-
ses ¢(¢) and initial pre-stressed force f,. System re-
sponse ¢q (t) is obtained by solving Eq. (14). Then
substituting ¢(¢) into Eq. (12), the force response of
measuring limbs can be obtained as
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f(t) =[m]G'q(1) +[c]G'q(t) +[k]G'q(1) +f,
(15)
Each limb’ s force response f(¢) can be obtained

by solving Eq. (15).

4  Solving of the movement differential
equation

4.1 Solving of the non-damping free vibration
movement differential equation
Under the circumstance of non-damping free vi-
bration, system movement differential of Eq. (14) can
be rewritten as
[M1q(t) +[Klq(t) =0 (16)
Eq (16) can be extended as

Zml]q](t) + Zkyqj(t) =0 (¢=1,2,--,n)
(17)

where m; and k are line i column j element of systemat-
ic mass matrix and stiffness matrix respectively.

[19]

Adopt the way of synchronization solution to

solve Eq. (17). Supposing that

(D) = uf() (j=1.2,.6) (18)
where u;(j = 1,2,-++,6) is a constant, and f(¢) is a
function only related to time.

The homogeneous algebraic equation about u =
(u, u, ug ) is expressed as follows

(Klu -’ [M]u =0 (19)
where w is frequency of simple harmonic motion.

The necessary sufficient condition that makes the
equation have untrivial solution is the coefficient deter-
minant equals to zero. That is to say

A(o’) =1 [K] -0’[M]1 =0 (20)

Eq. (20) is the systematic frequency equation.
Each order systematic inherent frequency w,(r = 1,2,

-,6) can be obtained by solving the equation.

Substituting r order inherent frequency w, into

Eq. (19),

then solution u, of response can be ob-

tained. Systematic generalized coordinates’ response
under r order inherent frequency is
q,(t) = Au,cos(w,t —¢) (r=1,2,-,6)
(21)

where w, and u, are decided by the system parameter, A
and ¢ are decided by the initial conditions.

4.2 Solving of the general response of vibration
movement differential equation

Using the method of vibration system modal analy-

sis, the general response of differential equation of the

force sensor can be solved as follows. Firstly, r order

inherent frequency w, and corresponding modal vector

u, can be obtained from Eq. (20).
matrix can be expressed as follows.
[w] = [u, u, - ug] (22)

Substituting natural coordinates n(¢) for general-

Systematic modal

ized coordinates g(t) of movement differential equa-
tion, moreover the relationship between n(¢) and q(¢)
can be expressed as follows
q(t) = [uln(t) (23)
Because the modal matrix is constant matrix, thus
q(t) = [uln(t), q(t) = [uln(t) (24)
Substituting Eqs (23) and (24) into Eq. (14),
and premultiplication [u#]", Eq. (25) is obtained
[l [M][uln(e) + [u]'[Cllu]n() +
(u]"[K][uln(0) = [u]F, (1)
(25)
Then making the modal vector orthonormal by or-
thogonality, and regarding the systematic damping as
proportional damping or small damping, Eq. (25) can
be simplified as
(1) +[2¢0 o In(t) = [u]"F (1)
(26)

where matrixes [ 2€,w,] and [ w? ] are the diagonal ma-

An(e) + 1

trix with diagonal elements 2¢,w, and w, (r = 1,2+,
6). &(r=12,-

atic r order modal.

,6) is the damping ratio of system-

After the linear transformation of coordinates men-
tioned above, the movement differential equation of
multiple limb six-axis force sensor is expressed as
Eq. (26). The equation is decoupled to natural coordi-
nates (¢). Therefore, Eq. (26) is the differential e-
quation with six single-degree-of-freedom system in e-
quivalently that can be solved by the way of single-de-
gree-of-freedom system movement differential equation.

Eq. (26) can be solved as follows.

1 ! _ _
[T () e
e Skl
sinfw, /1 —&(t-7)]dr (27)

When the six-dimensional dynamic external force

n, (1) =

changes as sine function, that is to say, F (t) = F,
sin(wt) , substituting it into Eq. (27) and the respon-
ses of steady state forced vibration are

[u,]"F, sin(wt - ¢,)

n (1) =
o /1 - (0/w,)’] + (2 0/v,)’
o 28 w/w, .
@r - tg 1 _ (w/wr)z ( - 192, 96)
(28)

where F; is the amplitude of imposed six-dimensional
fOTCC, Fo = [Fxo F;o on MxO M;o Mzo]'r-
Substituting Eq. (28) into Eq. (23),

ses of the generalized coordinates can be obtained as

the respon-
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[u,][u,]"F,sin(wt - ¢,)
o, /1 - (0/0)’] + (2w/w,)’
(29)

Substituting the solution of movement differential

q.(t) =

equation from Eq. (29) into Eq. (15) , the response of
measuring limbs’ axis forces with six-dimensional dy-
namic external force under this modality can be ob-
tained.

Till now, the solving of six-axis force sensor
movement differential equation is completed. It can be
seen that the mass matrix, damping matrix and stiffness
matrix in movement differential equation can be meas-
ured on the basis of real condition. In that way, substi-
tuting them into Eq. (13), then the theoretical solution
of dynamic force applied on the multiple limb six-axis
force sensor can be obtained by Eq. (29).

5 Solving and simulation of movement dif-
ferential equation

According to the theoretical derivation described
above, for double-layer and pre-stressed 7-limb six-ax-
is force sensor, the inherent frequency and the re-
sponse with six-dimensional dynamic force are solved
as follows.

Vibration system space modal of double-layer and
pre-stressed 7-limb six-axis force sensor are shown in
Fig.5. b, — b, and B, — B, express the position of the
centre of sphere in spherical pair of measuring limbs’
both ends. m; —m,, k;, = k,, ¢, —¢;, and §, - S, are
mass, stiffness, damping and axis position vector of
seven measuring limbs respectively. The reference co-
ordinate system o-xyz of vibration system modal is built
on the downside center of middle platform. M is mass
piece of measuring platform, whose mass is M,, and
the rotational inertias of measuring platform to coordi-
nate system o-xyz on each direction are expressed as

[()x \[0)' ‘[(Jz‘

Fig.5 Vibration system spatial model of the double-layer

pre-stressed seven limbs six-axis force sensor

The structure parameters of the double-layer and
pre-stressed 7-limb six-axis force sensor are: r = 25

mm, R=40mm, h =9 mm, [ =31 mm, « =%5:8 =

) :
—. The meanings of symbols are the same as

6
Ref. [20]. The mass and inertia of each part form
CAD software are obtained as follows: the mass of
measuring platform M, is 0. 5334 kg. The rotational in-
ertias /,, [, are 2. 8487 x 10 kg - m*, I, is 0. 6681
x10 kg » m >. The mass of measuring limb m; is
1.9322 x10 *kg (i = 1,2,-++,7). And the axial stiff-
ness k, is 1.12 x 10" N/m (i = 1,2,-++,7). Substitu-
ting the parameters into systemic frequency equation,
the theoretical value of the first six order inherent fre-
quency w,(r = 1,2,---,6) can be obtained. Modal a-
nalysis is simulated by ADAMS software, and each or-
der inherent frequency is also obtained. The theoretical
values and the simulated values are listed in Table 1.
From Table 1, the maximum relative error between the-
oretical value and simulated value is 12.5% , which
demonstrates the correctness of the theoretical analysis.
The error is mainly caused by the simplification of the
simulation model.

Table 1 Results of the natural frequency of the sensor
6-dimensional force/torque F, F, F, M, M, M,
Inherent Theoretical value 207.9 194.9 305.5 268.4 239.5 322.2
frequency (Hz) Simulated value 227.5 219.3 338.5 290.0 259.9 350.4
Relative error (% ) 9.4 12.5 10.8 8.0 8.5 8.8

It is provided that the dynamic force F.(t) = F,
coswt is applied on the center of sensor measuring plat-
form, where F;, = 200 is the amplitude of external
force, and w =10007 Hz is frequency. Expressing the

dynamic force F, (1) = [0 0 Fycoswt 0 0 0]"

as the 6- dimension force, then assuming the initial

condition isg(0) = q(O) = 0 and pretightening forces
of each limb aref, =[111 111 111 89 89 89]
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N, the steady state response under systemic generalized
coordinates can be obtained by substituting them into
Eq. (29).

Taking the vertical movement of measuring plat-
form, i. e. generalized coordinate ¢,(t) as an exam-
ple, the response curves of the generalized coordinate
g5 (1) and measuring limb axis force f, (¢) are shown
as dash line in Fig.6. The time-varying response
curves of sensor middle platform’ s movement and each
measuring limb stress under effect with external force
F_(t) are obtained by ADAMS dynamics simulation.
The simulation results are shown as solid line in Fig. 6.
Fig. 6(a) shows the time-varying curves of generalized
coordinate ¢, (¢), and Fig. 6(b) shows the time-var-
ying curves of F_(t) and f,(¢). Tt shows that the simu-
lation results of the generalized coordinate ¢;(¢) and
the force response f, () are consisitent with the theo-
retical calculation results.

4 ' T T
L e 4,(t) Theoretical value
d — g,(¢) Simulated value
2 ___________________ o i o
0
=
=
-2 R | I & S (A —
"y I | |
z i i i
1 | | |
0 2 4 6 8
Time (s) X107
(a) Variation curve of g5 (¢) versus time
200
100

WY

|
|
B B B s i s e e
g ) ] TR RN
b y ! R 7,(f) Theoretical value
A0 e s
'\ _’ i — * = F_(f) Dynamic external force
2200 . 1 i i Vs i AL
0 2 4 6 8
Time (s) X107

(b) Variation curve of f; () versus time
Fig. 6 Variation curve of theoretical calculation and

simulation results

6 Conclusion

This paper conducts the dynamic analysis of a
double-layer and pre-stressed multiple limb six-axis
force sensor. Firstly, the structure of the double-layer
and pre-stressed multiple limb six-axis force sensor is

introduced. The number of measuring limb is con-
firmed according to the related definitions of convex
analysis, and at least seven and at most twelve measur-
ing limbs can be available in order to restrict the meas-
uring platform to be staticly balanced. Then, based on
the vibration of multiple-degree-of-freedom system, vi-
bration mechanics equation of a single limb is built.
Based on this, the vibration mechanics equation of sen-
sor system is deduced, and the solving process of
movement differential equation is deduced. Finally,
taking the double-layer and pre-stressed seven limbs
six-axis force sensor as an example, the numerical so-
lution of inherent frequency and response of applied ex-
ternal force are calculated, and simulation analysis
using ADAMS software is carried out. The simulation
result is consistent with the numerical calculation which
demonstrates the correctness of the theoretical analysis.
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