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Abstract
Group key management technique is a fundamental building block for secure and reliable group
communication systems. In order to successfully achieve this goal, group session key needs to be
generated and distributed to all group members in a secure and authenticated manner. The most com-
monly used method is based on Lagrange interpolating polynomial over the prime field F , = {0,1,2,
e p=1}.
try code is presented over the infinite field GF(2™). The attractive advantages are obvious. Espe-

A novel approach to group key transfer protocol based on a category of algebraic-geome-

cially, the non-repeatability, confidentiality, and authentication of group key transfer protocols are
obtained easily. Besides, a more generalized and simple mathematical construction model is pro-

posed which also can be applied perfectly to related fields of information security.

Key words: group key transfer protocol, erasure code, AG codes, non-repeatability, confiden-

tiality, authentication

0 Introduction

With the development of group-oriented and col-
laborative applications, group communication is in-
creasingly becoming an attractive research subject in
network and communication fields. A critical challenge
in designing group communication systems is how to
provide confidentiality and authentication. Therefore,
group session key needs to be employed and shared
with communication parties for meeting the fundamental
requirements. The most widely used protocol is Diffie-
Hellman (DH) key agreement protocol ' Tt is merely
applied to two communication entities, however, a
group key transfer protocol is needed when a communi-
cation involves more than two entities. Under this
background, several approaches have been proposed
which can be divided into three main categories.

(1) Centralized group key management protocols.
A controlling entity is responsible for managing the
whole group members independently including the
group key management, without any auxiliary entity.

(2) Decentralized group key management proto-
cols. A large group is usually split into some small
subgroups, which can be regarded as a hybrid group
key management protocol.

(3) Distributed group key management protocols.
There is no specified group key management center in
distributed group key management protocols, each
member of the group is a peer-to-peer entity. All of
them are engaged in the management of the group key.

The most commonly used protocol is the central-
ized group key management protocol. For example,
Ref. [2] proposed an authenticated group key transfer
protocol using secret sharing scheme. However, this
scheme is based on the Lagrange interpolating polyno-
mial, which needs high computation overhead with
communication entities size increase.

Generally, erasure codes have been widely used
for error detection and correction in communication and
storage fields, which includes Reed-Solomon ( RS)
codes’™ | BCH codes™**, low-density parity-check
codes'®’ | etc. Algebraic-geometry (AG) codes'” can
be regarded as a class of more generalized RS codes.
Consequently , a new family of group key transfer proto-
col based on AG codes has been put forward. Our
analysis shows that the proposed protocol has attractive
advantages over many previously existing group key
transfer protocols for secure group communication sys-
tems

(1) Non-repeatability of group key generation is
achieved, which basically means that forward and
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backward secrecy is provided against information leak-
age of group communication systems.

(2) The confidentiality of group key distribution
is information-theoretically secure, without any de-
pendence on computational complexity of mathematical
assumptions.

(3) The authentication of group key reconstruc-
tion is also obtained by computing and broadcasting a
single authentication message to all group members.

(4) A more generalized and simple mathematical
construction model is proposed in contrast to Lagrange
interpolating polynomial.

This paper is organized as follows. In Section 1,
some relevant terminologies, group communication
model, and security goals will be firstly introduced.
Related work is introduced in Section 2. In Section 3,
the detailed preliminaries used in the construction of
authenticated group key transfer protocol will be pro-
posed. Section 4 describes the proposed scheme via
AG codes. Section 5 provides the performance and se-
curity analysis of the proposed scheme. Finally, con-

clusions are given in Section 6.
1 Coding model and terminologies

1.1 Terminologies

The key generation center ( KGC) is a mutually
trusted entity responsible for initialization and user reg-
istration including generation and distribution of the
group key initially.

All participated users are required to register at
KGC for subscribing the group key distribution service.
Once registered, participated users will be considered
as group members having the permission to receive the
group key.

The inside attackers are group members who col-
lude with other group members to recover the private
secret k; of one group member shared with the KGC.

The outside attackers are unregistered users who
impersonate group members for requesting a group key

service.

1.2 Model

The group key transfer protocol consists of two
types of entities: the KGC and users. The former entity
is primarily used to generate and distribute the group
key, and the latter is to subscribe the key distribution
service. Moreover, the KGC also takes the charge of
tracing all group members in case of their dynamic
joining and leaving. The proposed protocol uses era-
sure codes to replace the commonly used secret sharing
scheme and cryptosystem.

1.3 Security goals
Non-repeatability The

should be random and unpredictable, and has never

generated group key
been repeated before. Thus, forward and backward se-
crecy is provided to prevent a previously leaved group
member from continuing obtaining any information of
this current group communication and a newly joined
group member from accessing any information of the
previous group communication before it joined the
group.

Confidentiality It ensures that the generated
group key should only be reconstructed by registered
group members rather than by any unregistered member.

Authentication It ensures that the group key is
sent by the KGC without any tampering and forging by
attackers during the transmission. Thus, authentication
mechanism can effectively prevent attackers from imper-
sonating the KGC for generating and distributing the
fake group key.

2 Related work

According to Ref. [8], a brief overview of three
kinds of commonly used group key management proto-
cols will be discussed.

Centralized group key management protocols;
Ref. [9] introduced new theoretical measures for the
qualitative and quantitative assessment of encryption
schemes designed for broadcast transmissions. A set of
secret sharing-based group key transfer protocols have
been proposed in Refs[ 10-12]. Ref.[2] proposed an
authenticated group key transfer protocol using secret
sharing scheme. Ref. [13] proposed an improved au-
thenticated group key transfer protocol that resists
against both insider and outside attacks based on
Ref. [2].

group key transfer protocol based on securely outsourc-

Ref. [14] designed a secure and efficient

ing interpolation computation method in cloud compu-
ting. Ref. [15] proposed a new group key transfer pro-
tocol in wireless sensor networks using a linear secret
sharing scheme and factoring assumption.

Decentralized group key management protocols:
Ref. [16] proposed a framework for scalable secure
multicasting with a hierarchy of agents that splits the
large group into small subgroups. Ref. [17] proposed a
dual encryption protocol that suggests splitting the whole
group into hierarchical subgroups where a subgroup
manager controls each subgroup. Ref. [ 18] proposed an
intra region group key management protocol composed of
many local area groups. In this protocol, there is a do-
main key distributor and many area key distributors re-
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sponsible for each local area group. Ref. [19] proposed
Hydra, a decentralized group key management scheme,
which divides the large group into smaller subgroups and
a Hydra server that controls each subgroup. Ref.[20]
proposed a novel decentralized group key management
scheme that solves the trusted third party problem of se-
cret data leakage to the intermediate proxies.
Distributed group key management protocols ; Most
distributed group key management protocols can be ei-
ther divided into the natural generation of DH key
agreement protocol, where the group members use DH
protocol to generate group key, or non-DH key agree-
ment protocols. In the former case, Ref. [21] proposed
the group DH key exchange that supports group opera-
tions instead of DH key exchange protocol. Ref. [22]
proposed a provably secure authenticated group DH key
exchange with a formal model and security definitions,
as well as methods. In the latter case, Ref. [23] pro-
posed a conference key agreement protocol based on a

k Data Blocks
r A N

l Encoding

The ¢ Blocks

combining function and a one-way Hash function.
Ref. [24] investigated a distributed protocol based on
logical key hierarchy tree. Ref. [25] proposed a secure
fault-tolerance conference key agreement protocol based
on discrete logarithm against malicious participants.
Ref. [26] revised the definitions of security for group
key exchange protocols.

3 Preliminaries

3.1 A brief introduction to erasure codes

The fundamental concept of erasure codes is to en-
code the k original data blocks into n encoded data
blocks. When ¢ pieces of them are lost, the original da-
ta blocks can be reconstructed from the rest of any n — ¢
pieces, such kind of erasure code is called the (n, k)
coding model. If ¢ = n -k, this means that it can pro-
vide optimal storage efficiency as shown in Fig. 1.

k Data Blocks

T Decoding

k Data Blocks

n—k Pa}ity Blocks

The Rest of n—t Blocks

Fig.1 The (n, k) coding model

3.2 AG codes

The generator matrix and the parity-check matrix
will be given. Next, definitions and proposition of the
two specific matrices will be given.

Definition 1 letn + 1 < g < 2", GF(q) be a
subfield of GF(2"). A (n — k) X n parity-check matrix
H,_, ., is defined by

1 1 1 1

h, h, h, e h,

H(n—k) xn = h? h; hé e hi
hrlz,—kfl h; -k-1 h;sz—] h:i—kfl

(1)
where g is a primitive element of GF(q), and h, = g',
for i = 1,2,--:n are n distinct nonzero elements of
GF(q). Obviously, H

matrix. Generally, the corresponding generator matrix

ntty xn 18 defined by Vendermonde
can be easily constructed based on H, ;.

Definition 2 The k x n generator matrix G,,, is
defined by

kan =
1 0 0 0 dl,k+] d],k+2 dl,n
0 1 0 0 dz,k+1 d2,k+2 dz,n
0 0 1 0 d},k+] d},k+2 d3,n
0 0 0 1 dk,k+1 dk,k+2 dk,n
(2)
where G, consists of two submatrices, a k x k identity
matrix on the left, and another &k x (n — k) submatrix on
the right.

Proposition 1
check matrix H

For a given (n — k) X n parity-
there exists a corresponding k& X n
such that G . H<Tn_k> n

T .
O,..t), where H . is the transpose of H , , ., and

n—k)xn

generator matrix G

kxn kxn

O,y is ak x (n = k) zero matrix.

Proof Apparently, the rank of H , _,,, isn -k for
being the Vandermonde matrix. In this case, the n - k
row vectors of H, . . are linearly independent, and
they can make an — k dimensional liner subspace R, _,
of n dimensional linearapace over GF(q) accordingly.
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Therefore , there exists a linear subspace R, with dimen-
sional k£, called orthogonal complement subspace, in
such a way that R,_, 1 R, holds over GF(q). It is obvi-
ous that the orthogonal relation of R,_, L R, holds over
GF(2™) as well. Let’s choose k basis vectors, «, ,a,,
-+, a,, from R, , and regard them as the k£ row vectors of

amatrixA, , = (a,,0,,a;,)". It follows that A

kxn kxn
H{, . =0, - Then, the elementary row transfor-
will be carried out gradually until it be-

with the first £ columns of G, be-

kxn kxn

mation of A,
comes a matrix G
ing an identity submatrix on the left. The transformed
are in the subspace R, due to the ele-

T
“H,_,
O, is true over GF(2"). The proof is completed,

row vectors of G

kxn

mentary row transformation. Thus, G

kxn xn =
and please see Ref. [27 ] for more details.

Letu = (u,,u,, -,u,) be the message to be en-
coded as input over GF(2™). Then the output of u is a
longer sequence v = (v, ,v,,**,v, ), called codeword of
u and v can be defined by the matrix product of u and
G

xn as follows

v =u-G,, (3)
Clearly, v is linearly combined by the rows of gen-
erator matrix G,,,. It can be easily found from Proposi-
tion 1 that G, * H(Tn—k)xn
sponding recovery of u from v is given as below:
veH(, ), =0 (4)
where 0 is an all-zero (n — k) -tuple. Consequently, v
=u-G

H{,_, ., = ois called decoding. For more details about

= O,y (i) > then the corre-

is called encoding, and solving u from v -

kxn

arithmetic operations of elements of GF(2") , please see

Ref. [28].
4 Scheme based on AG codes

The proposed scheme consists of four phases: ini-
tialization of KGC, user registration, the generation and
distribution of group key and the reconstruction and au-
thentication of group key.

4.1 The initialization of KGC

Suppose that there are n users, denoted by U =
{u,,U,,---,U, |, participating in the group communi-
cation. KGC needs to initialize the generator matrix
G (,.1)x(2ms1) and parity-check matrix H,

nx(2n+1) based on

the rules of AG codes. Furthermore, the one-variable
one-way Hash function H,(x) and multi-variable one-
way Hash function H,(x) are also expected to be in-
cluded. All of them should be made known to the pub-

lic, and their computations are performed over GF(2™).

4.2 User registration
Each user U, e U is required to register at KGC at

i

the beginning of the group communication. Once regis-
tered successfully, user U, will be considered as a legiti-
mate group member for requesting group session key
services. KGC shares a mutually different private secret
k; with each user U, in a secure channel, where k;, e
GF(2™). Moreover, KGC also needs to supervise all
users, for example, trace legitimate group members and

remove illegal users.

4.3 The generation and distribution of group key

KGC needs to randomly select a group session key
and transfer it to all group members safely after receiv-
ing a group key generation request from any initiator.
All communications between KGC and group members
are in broadcast channel. However, KGC must distrib-
ute the generated group session key to all group mem-
bers securely, and the group members can also recon-
struct and authenticate the group session key likewise.
The generation and distribution of group key contains
the following four steps.

(1) The initiator sends a key generation request of
the group communication to KGC with a list of n group
members U = {U,,U,,---,U, 1.

(2) KGC broadcasts a random number R to the n
group members U = {U,,U,,--, U, }.

(3) Each group member U, e U also needs to send
a random challenge R, € GF(2") , fori =1,2,---,n, to
the KGC as a response.

(4) With n private secret k; shared with n group
members , KGC computes the n Hash values H, (k;) , for
i = 1,2,---,n and randomly selects an unused group
session key k € GF(2™), and then regard (k,H, (k,),
H, (k) ,--,H (k,)) as the encoded message u of AG
codes. Message u will be used to generate codeword v
with generator matrix G ,.,), (2,1, , defined by v = u -
G .1y x(men)- Since the left part of G, ), (5., 15 a (n +
1) x (n + 1) identity matrix, the n + 1 components in
the left of v are identical to u, so codeword v can be de-
noted by v = (k,H,(k,), H,(k,),---, H (k,) v, ,0,,

-,v,). KGC computes authentication message AM =
H,(k,H, (k) , H (ky),-, H(k,), R, Ry,"",R,),
and then deletes the same n + 1 components, k,
H (k), H(ky), - H (k,). Finally, KGC broadcasts

the remaining n components, v, ,v,,***,v

»¥n

and authen-
tication message AM as public information to all group
members U.
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4.4  The reconstruction and authentication of
group key
After receiving the broadcasted n components, v, ,
vy,**,v,, and the authentication message AM from
KGC, all of the group members U = {U,,U,,---,U, !
need to reconstruct and authenticate the group session
key with the received public information and shared pri-
vate secrets. For each group member U,, possessing the
Hash value H, (k,) with private secret k; and broadcasted
n components, v, ,v,,**,v, , the group session key k can
be reconstructed easily.
For the convenience of better description, let v =
(k" H' (k) H'\ (ky) - H (k) JH (K)o 0,
--,v,), where H,(k;) ,v,,v0,,*-,v, are n + 1 known
components, and the other n components k', H', (k,) ,
H', (k2> oo, HY (ki—l) JH (km) oo, HY (kn) are un-
known. By the generation of group key, it holds that v
=u * G, (21 According to the proposition given
in Section 4, every row vector of the parity-check matrix

H

nx(2n+l1

the row vectors of the generator matrix G, ), (2,.1) » that

, is orthogonal to the linear subspace spanned by

is, equation v - H,,,.,,, = 0 holds. Hence, a group of
following equations can be got:
K +H/'(k)+H (k) ++v, =0
hik" + hyH (k) + hsH,'(ky) + -+ + by, =0
Wik + by, (k) + B3 H,'(ky) + - + B0, = 0

n-1

(5)
where H, (k,) ,v,,v,,*+,v, are n + 1 known terms, and
the other n terms k', H,'(k,), H, (k,),--,
H/'(k_), H'(k, ), ,H'(k,) are unknown. By
simplifying, a group of n linear equations with n un-
known terms can be got, denoted by v’ - H', = o',
where v’ = (k' ,H,"(k,), H,'(ky),---,H'(k_),
H/'(k,,),,H/'(k,)) is an unknown vector with n

components, 0 is known, and

HILXII’ =
1 1 1 1 1 1
hl hZ h? hi,—l hi,+| n+l
R R R
R T

(6)
is an n X n Vandermonde matrix with n different ele-

‘H =

nxn

ments. Therefore, the group of equations v’
0’ has a unique solution, and the n terms which in-
clude the group key &’ can be recovered.

Meanwhile, U, also needs to compute the Hash
value H,(k", H'\(k,), H (k) ,---, H' (k,), R,
R,,

Hash value is identical to AM. If the two values are the

-,R,) with the recovered terms, and check if this

same, then U, can authenticate that the group key is
sent from KGC without any tampering and forging by
attackers during the transmission. Fig.2 gives an out-

W () B ) e

i, =0 line of our proposed scheme.
Phases KGC Users
Initialization . Initialize G\, ;pury> H gy H, (%) and H, (x) .
Registration Share secret key £, U
Group key request U =
1 < b el {UI’UZ’W’U"} Initiator
2 R . W
Generation 3 ) R.R,,....R,
and =
Distribution The KGC computes H, (k), H, (k, ..., H,(k,)
4 and selects group key £, and then generatcs
V,V,5...,V,and AM by v=1u- Gm)x(zm),
Vi, V,5...,V, and AM
> U
Each participated user U, needs to reconstruct
ReconStgu"ﬁ‘m K H (), H{(ky),..... Hi(k, ), H{(K,,), ... H,(k,),
Auth;lii cation and then checks whether AM = H, (k', H,(k,),
H\(k,),....H|(k,),R,R,,....,R,).

Fig.2 The group key transfer protocol based on AG codes
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5 Performance and security analysis

In this section, the performance and security of
our proposed scheme will be discussed. The efficiency
will be evaluated including non-repeatability, confiden-
tiality, and authentication.

5.1 Performance analysis

For evaluating the efficiency of storage, computa-
tion, and communication overhead, the performance
analysis through the qualitative and quantitative ap-
proach will be given. The scheme based on AG codes,
however, provides a more general form and diversified
techniques available that can improve efficiency of stor-
age, computation, and communication overhead.

Storage overhead: In our scheme, the storage of
the received public information based on AG codes
model is usually less than the storage of message based
on traditional Lagrange interpolating polynomial model.
Each group member U, needs to store n broadcasted
components, v,,v,,*:,v, and authentication message
AM from KGC. In addition, each group member U, also
needs to store its shared private secret k;, and KGC al-
so needs to store n shared private secrets, k, ,k,,---,
k.
the total storage cost is n + 2; for KGC, the total stor-
age cost is 2n + 2.

and group key k. Hence, for each group member,

Computation overhead: The basic arithmetic oper-
ation of our scheme is implemented over GF(2™) in-
stead of traditional Lagrange interpolating polynomial
over the prime field F . It is inescapably clear that our
proposed protocol breaks through the limit of prime
field and can be implemented over XOR operations in-
stead of infinite field multiplication operations by con-
verting GF(2™) into an m X m matrix over GF(2) 2,
Besides, a more practical approach is developed in
Ref. [30], where a fast Fourier transform algorithm is
employed to reduce significantly the number of expen-
sive finite field multiplications required which provides
substantially better performance compared with the
standard algorithm. Furthermore, it is also easy to fur-
ther speed up computation of AG codes by adopting the
standard algorithm of a cyclic code and its integrated
circuit, because the parity-check matrix in our scheme
gives a dual code of RS code in broad sense ™' | that
is to say, a cyclic code.

Communication overhead: In our scheme, five
rounds of communication, as shown in Fig.2, are per-
formed between the two parties, KGC and group mem-
bers. Obviously, the total communication cost between
KGC and group members is 4n + 2.

5.2 Security analysis

In this subsection, the specific analysis of security
goals including non-repeatability, confidentiality, and
authentication will be given in detail.

Non-repeatability The non-repeatability of group
key generation is ensured by KGC since the generated
group key is randomly selected by KGC for group ses-
sion key service request. In addition, the parity-check
matrix H,, ,,.,, used to reconstruct the group key and
the corresponding generator matrix G, ), (.., used to
distribute the group key based on the parity-check ma-
trix H,, ,,,,, are securely selected by KGC according to
the rules of AG codes.

Confidentiality The confidentiality of group key
distribution is provided due to the security features of
the proposed AG codes. KGC generates and broadcasts
n components, v, ,v,,***,v,, as public information to
all group members U. For each authorized group mem-
ber, U,, it possesses the Hash value H, (k;) with pri-
vate secret k, and n broadcasted components, v, ,v,,*,
v,. Thus, any authorized group member is able to re-
construct the group session key k. For each unauthor-
ized member, although it accesses the public informa-
tion, it doesn’ t possess the Hash value H, (k;) with
private secret k,. Thus, any unauthorized group mem-
ber can know nothing about the group session key k.
This kind of security property is information-theoreti-
cally secure without relying on any computational com-
plexity of mathematical assumptions.

Authentication The authentication of group key
reconstruction is provided by computing and broadcast-
ing a single authentication message AM to all group
members, where AM is the multi-variable one-way Hash
function output with the group key, the one-variable
one-way Hash function outputs, and all group mem-
bers’ random challenges as inputs. Unauthorized
group members cannot forge the authentication message
AM since the group key is merely available to author-
ized group members and KGC. Any inside group mem-
bers cannot forge a group key without being detected
since the group key is a component of codeword contai-
ning n Hash values H,(k,;), fori = 1,2,--- n, with
the private secret shared with each group members and
KGC.

Theorem 1  The proposed protocol achieves the
following security requirements; 1) forward secrecy,
and 2) backward secrecy.

Proof The group key will be re-newly generated
and distributed as soon as any group member leaves or
joins the group. Therefore forward secrecy is provided
to prevent a previously leaved group member from con-
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tinuing accessing group$ communication messages after
it leaves the group. Meanwhile, backward secrecy is
achieved to prevent a newly joined group member from
accessing messages exchanged before it joins the group
as well.

Theorem 2 The proposed protocol achieves the
following possible attacks: (1) outside attack, and
(2) inside attack.

Proof (1) Assume that an outside attacker can
impersonate a group member for requesting a group key
generation service to KGC without being detected suc-
cessfully. Then KGC will respond by generating and
broadcasting the group key public information accord-
ingly. The group key, however, can only be recon-
structed by any authorized group member who shares
private secret with KGC. Thus, the outside attacker
can know nothing about the group key.

Assume that the outside attacker can reuse a com-
promised group key by replaying the previously broad-
casted group key public information from KGC. But the
authentication message AM is a multi-variable one-way
Hash function H,(x) with each group member’ s ran-
dom challenge as input. Such an attack cannot succeed
in sharing this compromised group key with any group
member. So this compromised group key cannot be re-
used if each group member selects a random challenge
for each group sessions. Thus, the outside attacker can-
not share a group key with any group member.

(2) Assume the applied AG codes are still secure
after the protocol has been used successfully several
times. For a group key generation service request,
KGC generates and broadcasts n components, v, ,v,,
--,v,, as public information to all group members U.
For each authorized group member U,, possessing the
Hash value H, (k;) with private secret k; and broadcas-
ted n components, v, ,v,,-,v,. Thus, any authorized
group member is able to reconstruct the session key k
and n — 1 Hash values H,(k,), H,(k,) ,---,H,(k,_,),
H, (k;,,),-, H (k,) with other n — 1 members’ pri-

vate secret, k,, k, -,k

>""n

successfully. Meanwhile , it
is commonly believed that it is computationally infeasi-
ble to obtain k; for any given H, (k,) , Thus, private se-
cret k; of each authorized group member shared with
KGC still remains unknown to outside attackers.

6 Conclusions

In this paper, an efficient approach to the secure
group key transfer protocol is proposed. In addition, a
way for the group members to authenticate the integrity
of group key and verify whether the sender is really
KGC is also presented. The confidentiality is informa-

tion-theoretically secure which can resist both insider
and outside attacks, and the non-repeatability of group
key generation is also achieved which can provide for-
ward and backward secrecy. Furthermore, a more gen-
eralized and simple mathematical construction model
for group key transfer protocol than traditional Lagrange
interpolating polynomial has been given. This kind of
model can also be applied easily to related fields of in-
formation security perfectly.
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