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Abstract

With high computational capacity, e. g. many-core and wide floating point SIMD units, Intel
Xeon Phi shows promising prospect to accelerate high-performance computing ( HPC) applications.
But the application of Intel Xeon Phi on data analytics workloads in data center is still an open ques-
tion. Phibench 2. 0 is built for the latest generation of Intel Xeon Phi ( KNL, Knights Landing) ,
based on the prior work PhiBench (also named BigDataBench-Phi) , which is designed for the former
generation of Intel Xeon Phi ( KNC, Knights Corner). Workloads of PhiBench 2.0 are delicately
chosen based on BigdataBench 4.0 and PhiBench 1. 0. Other than that, these workloads are well
optimized on KNL, and run on real-world datasets to evaluate their performance and scalability. Fur-
ther, the microarchitecture-level characteristics including CPI, cache behavior, vectorization intensi-
ty, and branch prediction efficiency are analyzed and the impact of affinity and scheduling policy on
performance are investigated. It is believed that the observations would help other researchers work-
ing on Intel Xeon Phi and data analytics workloads.
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0 Introduction

.
', there are new

As the volume of data explodes'"
challenges emerging for the speed of data processing of
many data analytics workloads, like graph compu-
ting®’ and machine learning*’. On one side, these
data analytics workloads show much different character-
istics from each other. On the other side, many new
architectures have been proposed to accelerate work-
loads from different perspectives, such as APU"”',

GPGPU'® and Intel Xeon Phi‘"’.

Xeon Phi is well known for its high parallelization and

Among them, Intel

vectorization potential, as well as the backward com-
patibility with the traditional x86 platforms.

Some prior work has shown that Intel Xeon Phi is
very useful for high-performance computing ( HPC) ap-

8/ But is it suitable to the data analytics

plications
workloads too? Considering the difference between the
HPC applications and data analytics applications >’

the answer is not straightforward. Characterization of

data analytics workloads on Intel Xeon Phi is motivated.

Current benchmarks, for example, BigDataBench'"
and DCBench'? | which consist of many big data work-
loads, are popularly used for benchmarking data ana-
lytics workloads. But, their workloads are built upon
many big data frameworks, like Hadoop, Spark, etc.
These frameworks affect the architecture behavior of
these workloads a lot and prohibit us from understand-
ing the intrinsic characteristics of these workloads.
There is also some benchmark work targeting heteroge-
neous platforms based on openCL, but it is believed
that these openCL workloads cannot exploit the best po-
tential of the platform.

Though there is already some work that optimizes
or evaluates some data analytics workloads on Intel Xe-
on Phi, to the best of our knowledge, there is still no
systematic work to fill this gap. The prior work PhiB-
ench'”’ performs the characterization of data analytics
workloads on the former generation of Intel Xeon Phi
(KNC, Knights Corner) "', But, the latest generation
of Intel Xeon Phi (KNL, Knights Landing) is much dif-
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ferent from KNC on many different perspectives, e.g.
core architecture, ISA, and MCDRAM"". PhiBench
needs improvement and should be extended to KNL to
satisfy new research requirements. In this work, PhiB-
ench 2.0 is built based on PhiBench"® and a compre-
hensive characterization of data analytics workloads on
Knights Landing is performed.

The following contributions are claimed.

1) PhiBench 2.0 is built on KNL, the latest gen-
eration of Intel Xeon Phi. PhiBench 2.0 covers seven
workloads from six application domains and is fully op-
timized to take good advantage of KNL.

2) A comprehensive analysis of architectural be-
haviors of data analytics workloads on KNL, including
CPI, cache behavior, vectorization intensity, and
branch prediction efficiency are conducted.

3) PhiBench 2. 0 is evaluated to investigate the
impact of affinities and scheduling policies on perform-
ance and scalability.

Many-core processors were evolved from multi-
core CPU designs to provide applications with higher
parallel power. Intel Xeon Phi is one of the widely
used many-core processors. The rationale for Xeon Phi
is to allow certain applications that run well on existing
multi-core CPUs, like Xeon, could gain performance
directly with little or no modification. But the unique
architecture of Xeon Phi determines that it still takes
much effort to optimize the code to take the full advan-
tage of this many-core processor.

The latest generation of Intel Xeon Phi ( code-
named KNL, or Knights Landing) evolves from KNC.
KNL includes 681. 4 GHz cores connected by a 2D
mesh. It has a small cache hierarchy, which consists
of only L1 and L2. Every two cores share the same
1MB L2 cache. Each KNL core has one 512-bit wide
vector processing unit ( VPU ) and four hardware
threads with up to 32 registers per thread context.
There are two types of memory on KNL: multi-channel
DRAM (MCDRAM) and DDR4 memory. MCDRAM
can be configured to three modes: cache mode, flat
mode and hybrid mode. KNL introduces AVX-512,
which provides 512-bit-wide vector instructions. More-
over, it supports non-continuous memory read/write
with gather/scatter instructions. The large number of
hardware threads and wide SIMD unit is the main
source of high computational power of KNL.

1 Related work

In this section, some related characterization work
is investigated, and existing benchmark suites are com-
pared with PhiBench in Table 1. Some benchmarks
have been proposed targeting big data workloads, for
example, BigDataBench and DCBench. But they are
built upon complicated frameworks, such as Hadoop
and Spark , which would prohibit us from understanding
the intrinsic characteristics of these workloads.

Table 1  Benchmark comparison
Benchmark Effort Workload Variety Optimized on Phi Software Stack Platform
BigDataBench CloudSuite Data center workloads No Hadoop Spark Cluster
DCBech Data analytics workloads No Hadoop Spark Cluster
MineBench Data mining algorithms No openMP CMP
Parsec Mainly HPC workloads No Pthreads and openMP CMP
Rodinia SHOC Parboil Valar ~ Mainly HPC workloads No openCL and CUDA GPGPU
SHOC-MIC Mainly HPC workloads Yes openMP Xeon Phi( KNC)
PhiBench Data analytics workloads Yes, on KNC openMP Xeon Phi( KNC)

PhiBench 2.0 Data analytics workloads

Yes, KNC & KNL

openMP Xeon Phi( KNL)

7Pgrsec[]2] and NAS Parallel
(NPB) " are designed for CMP systems without com-
plicated software stack. But they mainly cover HPC

Benchmark

workloads instead of data analytics workloads, and they
can not take the good advantage of Xeon Phi, due to
the lack of appropriate optimization on Intel Xeon Phi.
Motivated by research of heterogeneous systems, some
benchmark suites have been proposed based on
OpenCL and CUDA, such as Parboil ™', Rodinia'"’,
Valar'® | and SHOC'7'.

These benchmarks also

can not represent data analytics workloads and exploit
the best potential of Xeon Phi.

There are many other efforts to optimize and eval-
uate specific systems or applications on KNL. The
work pays particular attention on a specific prob-
lem'”*" and optimize them in details to exploit the
best potential of Xeon Phi (KNL). To the best knowl-
edge, there is still no suitable benchmark for charac-
terizing data analytics workloads on KNL. A new
benchmark suite that can represent data analytics work-



HIGH TECHNOLOGY LETTERSIVol. 25 No. 2 ]June 2019

123

loads and fully optimized on KNL is motivated.
2 Benchmark methodology

PhiBench 2. 0 is built based on the prior work,
PhiBench, and also the well-known benchmark Big-
dataBench'"' is referred to choose the workloads,
which cover six application domains; Graph Calcula-
tion, Clustering, Classification, Recommendation,
Sorting and Irregular Kernel. The main difference be-
tween PhiBench 2. 0 and PhiBench is the platform,
where PhiBench 2. 0 works on KNL and PhiBench
works on KNC. Given the architecture difference of
KNL and KNC, the optimization method and according
workload implementation are quite different. Addition-
ally, the latest version of BigdataBench is referred and
SpMV is added in PhiBench 2.0

Moreover, to get the real-world characteristics of
these workloads, real-world dataset is used as long as
possible. For some workloads, MovieLens"'" | Google
Web Graph'?', livejournal '
workloads, the real-world dataset is enlarged to fulfill

, are used. For other

their requirements.

2.1 Chosen workloads
In this section, a brief introduction of the work-
loads included in the PhiBench 2.0 will be given.
Graph Algorithms
tive graph algorithm, which is widely adopted as

PageRank is a representa-

benchmark workloads in much graph computing work.
Based on iterative computation, PageRank converges
only when the PageRank value of the current iteration
is less than a specific threshold.

Clustering Clustering algorithm, like K-means,
is widely used in image analysis, bioinformatics, and
pattern recognition. K-means iteratively calculates the

distance between the object and the centroids and al-
ways makes sure that the object is clustered to the nea-
rest centroid. When the cluster of the points becomes
stable, K-means converges.

Classification
important algorithm domains in machine learning and

Classification is one of the most

pattern recognition. Naive Bayes and support vector
machine (SVM) are widely adopted in real world ap-
plications. SVM is a supervised learning model that
can map its inputs into high-dimensional feature
spaces, while Naive Bayes is a simple probabilistic
classifier using naive independence assumptions based
on the conditional probability model.

Recommendation In electronic business and
social network , recommendation algorithm, like collab-
orative filtering is often used to recommend items to
customs according to the purchase history and favorite
items of a large number of users. The kernel of collab-
orative filtering is to compute the similarity of different
items or users, and sort them to get the top-k favorite
items for a specific user.

Sorting Sorting is a basic operation of many ap-
plications in data center. It is generally 170 intensive.
As too many sort algorithms exist, the well-known
merge-sort is chosen in our benchmark.

Irregular Kernel Sparse matrix-vector multipli-
cation (SpMV)'®' is an important computational ker-
nel in sparse linear system solvers and real-world appli-
cations from both data center and HPC area. The char-
acteristics of SpMV represent many other real-world ap-
plications. There is many existing work on SpMV based
on different storage formats. CSR5'**! based SpMV al-
gorithm is used for characterization.

In total, seven workloads are chosen to build Phi-
Bench 2.0. these workloads and their respective data-
sets are summarized in Table 2.

Table 2 Chosen Workloads of PhiBench 2.0

Workload Application Domain Application Scenario Datasets Data Size
Size; 87TM
PageRank Graph Computing Search Engine Web-Google 8;Z5€I‘( nodes, 5. 1M Edges
Data Mini
K-means Clustering ata Wining ) Generated Size: 2.2G
Image Processing
SVM i Size: 1.2G
) Classification Image Processm,g ] Generated Tze
Naive Bayes Pattern Recorgnition Size: 1.8G
Collaborative filtering Electronic Commerce Size: 17TM
R lati MovielLens-100K ’
(CF) ccommendation Social Network ovietens 1k users, 1.7k movies
Sort Sorting Basic Operation Randomized Size: 1G
Size: 1.1G
SpMV Data Center and HPC ~ Basic Kernel LiveJournal e

4.8M nodes, 69M edges
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2.2 Optimization

Intel Xeon Phi is a quite different architecture.
KNL has up to 272 hardware threads, much more than
the existing x86 based platform and 512-bit-wide SIMD
unit. Workloads in PhiBench 2. 0 need to be well opti-
mized on KNL, so that they can exploit good advantage
of the platform.

Some of the workloads are obtained from the exist-
SVM™' and SpMV'*! | or
open-source projects, like CF and PageRank. Others

ing work, like Sort' >,

are parallelized with openMP and vectorized with SIMD
intrinsic statements. Considering the poor serial pro-
cessing capability of KNL, delicate efforts are dedica-
ted to improve the parallel performance as much as
possible. Moreover, the memory region is aligned for

better memory reference efficiency.
3 Experiment setup

PhiBench2. 0 is characterized on the latest Intel
Xeon Phi platform, Knights Landing ( KNL)7250. Ta-
ble 3 summarizes the detail configurations of KNL.
There are two kinds of memory on KNL: MCDRAM
and DDR4, supporting three modes to configure them:
flat mode, cache mode, and hybrid mode. In the ex-
periments, flat mode and ‘ numactl-membind =1’ are
used to bind the workload to MCDRAM. ‘-03-
qopenmp’ is used to compile the workloads. Thread
numbers are set through “OMP _ NUM _ THREADS” ,
and “KMP _ AFFINITY, OMP _ SCHEDULE” are
used to set the affinities ( scatter, compact and scatter)
and schedule policies ( dynamic, static and guided).

Table 3  Description of hardware platform

CPU Type

Knights Landing 7250

Number of cores
Number of threads/core
Basic frequency ( GHz)
Vector instruction set
SIMD vector width

L1 cache size/core

L2 cache size

Memory type

Memory size

Peak bandwidth

0S

Compiler

68
4
1.40
AVX2 and AVX512
512
32 kB(I) +32 kB (D)

1 024 kB( shared by two cores)
MCDRAM and DDR4
96GB and 16GB
400GB/s and 115GB/s
CentOS 7.2 (Kernel 3.10.0)
Intel 1ICC 17.0

To collect the running time, the wall-time is used

to run the workloads multiple times to take the average

value. The profiling tool used is Intel VTune ( Ampli-
fier XE 2017 ). All the metrics used in the experiments
are inspired from the developer’ s manual of Xeon Phi

listed in Table 4.

Table 4  List of metrics

Metrics Fomula

IPC CPU _ CLK _ UNHALTED. THREAD/
INST _ RETIRED. ANY

L1 miss ratio MEM _ UOPS _ RETIRED. L1 _ MISS _ LOADS
/MEM _ UOPS _ RETIRED. ALL _ LOADS

12 miss ratio  MEM _UOPS _RETIRED.12 HIT _LOADS
/(MEM _UOPS _RETIRED.I2 HIT _LOADS
+MEM _ UOPS _ RETIRED. 12 _ MISS _

LOADS)

Vectorization UOPS _RETIRED. PACKED _ SIMD /
(UOPS _ RETIRED. PACKED _ SIMD +
UOPS _ RETIRED. SCALAR _ SIMD)

Intensity

Branch miss BR _ MISP _ RETIRED. ALL._ BRANCHES/
ratio BR _INST _ RETIRED. ALL _ BRANCHESs

4 Experiment results

In this section, performance and the architectural
characteristics of data analytics workloads on Intel Xe-
on Phi are presented in detail. Impact of SMT on per-
formance is analyzed firstly. Then, the CPI, cache be-
havior, vectorization efficiency and branch prediction
efficiency are characterized. At last, PhiBench 2. 0
under different openMP configurations is evaluated
(thread numbers, affinities, and schedule policies) to

see their impact on the performance.

4.1 SMT

The thread of each core to 1,2,3 and 4 respec-
tively is set to evaluate the impact of SMT on perform-
ance. In Fig. 1, it can be seen that most workloads
could gain good scalability on more hardware threads,

25
% SMT1 g SMT2 # SMT3 #® SMT4
2
15 B
=
2
3
a 11
v
0.5 N
0 - % Zi: :
Q'
A
L O S
B R

Fig.1 SMT performance (normalized to 1HT)
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especially CF, Naive Bayes and SVM. Some others
show modest performance gain, like K-means, PageR-
ank, Sort and SpMV. So turning on the SMT on Intel

Xeon Phi ( KNL) would benefit the workloads effec-
tively.

4.2 CPI

Cycles per instruction (CPI) is an important met-
ric to measure the utilization of hardware. Fig.?2 shows
the CPI of each workload in Phi Bench 2.0. CF. Pag-
eRank and SpMV has high CPI, while K-means, Naive
Bayes, Sort and SVM shows much lower CPI. For all
workloads, the CPI is higher when number of threads is
larger. The higher CPI could be caused by the high
memory access latency. Section 4. 3 shows that the
workloads with high CPI also shows high 1.2 cache miss
ratio, which means that these worklaods need to load
data from memory frequently.

7 68 & 136

204 & 272

Fig.2 CPI (cycles per instruction)

4.3 Cache locality

To characterize the data reference efficiency of
these workloads, their behaviors on L1 and L2 cache
are collected. Fig.3 figures out that, most workloads
achieve quite good L1 cache locality, with less than
5% L1 cache miss ratio.

15%

7 68 # 136 204 ® 272
12% +

9% A

6%

L1 cache miss ratio

3% 1

0% -

Fig.3 Ll cache miss ratios

LLC cache miss is more expensive than L1 cache
miss, since it needs to be filled by loading data from

memory, which has much higher latency. So here the
cache miss ratio of L2 cache is considered which is also
the last level cache (LLC) on Intel Xeon Phi ( KNL).
Fig. 4 shows that CF, PageRank, and SpMV have large
12 cache miss ratio, which makes the memory latency
bound. On the other hand, the high memory access
latency is the main reason of higher CPI, for more cy-
cles are needed to prepare the data. The reason of the
poor L2 cache locality of CF, PageRank and SpMV is
that they need to deal with sparse matrices. More effi-
cient data layout may improve their performance pro-

foundly.
100%

7% 68 # 136 i« 204 @ 272

80%

60%

40% -

L2 cache miss ratio

20% -

0%

Fig.4 12 cache miss ratio

4.4 Vectorization

Vectorization is the main power of KNL, which
introuduces AVX512 for better vectorization support.
The vectorization intensity of these workloads is charac-
terized to see whether they could take good utilization
of the vectorization processing units.

As Fig.5 shows, K-means, Naive Bayes, Sort
and SpMV achieve nearly ideal vectorization intensity.
It is found out that these workloads are well optimized
by intrinsic statements manually or auto-vectorized by
the compiler. As for other workloads, like CF and Pag-
erank, some reduction statements prohibit them from
better vectorization. SpMV has similar algorithm pat-
tern to CF and Pagerank, but has much higher vector-
ization intensity. Because the SpMV workload ( CSR5)

100% o -
2 80%-
g
2 60%
=]
2
g 40%
5
Q
S 20% -
0% Z

& o

s
%0 %’Q

Fig.5 Vectorization intensity
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used is delicately optimized for vectorization. SVM has
the lowest vectorization intensity. Though it is well op-
timized , there is still lots of scalar instructions exist-
ing. Further investigation is made to the workloads with
high vectorization intensity, like Naive Bayes, Sort,
and SpMV | to find that they are well auto-optimized by
the compiler or hand-optimized.

4.5 Branch prediction efficiency
Further look is taken into the branch prediction

efficiency by examining the branch miss ratio. Fig. 6
shows that PageRank and SpMV suffer from high branch

10%
% 68 # 136
o 8%
B
g
3 6%
g
g 4%
g
m
2%
ove | M %EI
& &@9"
& &

‘é‘b}

Fig.6 Branch miss ratio

miss ratio. It is worth noting that branch prediction de-
sign on KNL is much different from KNC. On KNC,
Naive Bayes and K-means both suffer from high branch
misses ”’. But on KNL, these two workloads work

well.

4.6 Parallel policies

To further analyze the impact of affnity and sched-
ule policy on perfomance and scalability, experiments
with different parallel policies are conducted. The
thread counts are set to 68, 136, 204 and 272, and
three schedule polices: dynamic, guided and static.
As for the affinity, only balanced and scatter are used,
since compact is not so suitable in the proposed expeir-
ments (with ¢ compact’ , all threads would be compac-
ted into a small set of cores, while other cores are
idle) .

The execution time of these workloads with differ-
ent thread counts, affinities, and schedule polices is
listed in Table 5. It can be figured out that affinities
and scheudle polices do not affact the performance
heavily on KNL,
Ref. [9].

workloads with optimal configuration. It is an open

a similar conclusion is got in

But it is still recommanded to run these

problem to find the best configuration automatically,

without running them one by one.

Table 5 Execution time( in seconds) with different affinities and scheduling policies (Entries in read show the best

performance for each workload. B stands for balanced, while S stands for scatter)

Workload Thread Counts ~ B-Dynamic ~ B-Guided B-Static S-Dynamic ~ S-Guided S-Static
68 252.18 249.40 251.54 258.57 248.98 249.99
CF 136 190. 11 191.39 192.92 192.19 195. 68 191.71
204 160. 96 160.47 162.02 161.67 161.72 161.59
272 147.87 148.33 146.21 146. 61 147. 66 148.24
68 7.70 7.81 7.73 8.57 7.66 7.71
136 7.02 7.08 7.12 7.06 7.07 7.02
K-means
204 6.81 6.80 6.82 6.78 6.76 6.81
272 6.89 6.77 6.82 6.74 6.85 6.83
68 13.60 13.68 13.68 13.64 13.66 13.93
136 8.82 8.82 8.77 8.79 8.78 8.81
Naive Bayes
204 7.61 7.59 7.60 7.55 7.66 7.65
272 7.15 7.24 7.19 7.18 7.22 7.30
68 5.60 5.45 5.58 5.49 5.46 5.26
136 4.61 4.69 4.83 4.46 4.36 4.74
PageRank
204 3.94 4.09 4.02 4.17 4.48 4.15
272 4.23 4.34 4.17 4.63 4.24 4.47
68 168. 15 168. 35 169. 00 168. 44 168.46 168. 09
Sort 136 130.79 131.10 130.77 131.85 131.33 131.86
? 204 168. 69 167.63 168. 39 146.51 147. 68 149.26
272 151.17 151.32 150.51 130.21 130. 60 126.36
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Table 5 Contiuned

68 22.28 22.12

136 17.83 17.79
SpMV

204 16.67 16.54

272 18.65 17.97

68 115.12 115.15

136 75.52 75.76
SVM

204 72.41 72.54

272 74.79 75.79

21.95 22.11 22.34 22.02
17.97 17.90 17.97 18.19
16.69 17.21 17.03 17.26
18.41 19.22 18.99 19.10
115.15 115.35 115.35 115.21
75.20 74.98 75.30 75.20
72.55 72.59 72.66 72.66
74.53 72.33 74.76 74.60

5 Conclusions

This paper presents a new benchmark on KNL,
PhiBench 2.0, based on PhiBench, which is designed
for KNC, the former generation of Intel Xeon Phi.
Workloads in PhiBench 2.0 are optimized to take good
advange of the parallelizaton and vectorization power on
KNL. Moreover, a comprehensive characterization of
workloads in PhiBench 2.0 is conducted to investigate
their performance and micro-achitecture behaviors,
e.g. CPI,

branch prediction efficiency, and the impact of parallel

cache locality, vectorization intensity,
policies on performance. The expeirment results and
according observations will help researchers to under-
stand the characteristics of data analytics workloads on

KNL.
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