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Abstract
Generative adversarial networks ( GANs) have become a competitive method among computer

vision tasks. There have been many studies devoted to utilizing generative network to do generative

tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated

with generative adversarial network on image classification tasks to improve the image classification

accuracy. Two applications of GANs are mainly focused on; semi-supervised learning and generation

of images which can be as real as possible. The whole process is divided into two sections. First,

only a small part of the dataset is utilized as labeled training data. And then a huge amount of sam-

ples generated from the generator is added into the training samples to improve the generalization of

the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is

made which may contain potential information. Thus, the classification accuracy of the discriminator

can be improved. Experimental results demonstrate the improvement of the classification accuracy of
discriminator among different datasets, such as MNIST, CIFAR-10.

Key words: generative adversarial network (GAN) , semi-supervised, image classification

0 Introduction

Generative adversarial networks ( GANs) are a
class of methods which are based on game theory to
learn generative models. The aim of GANs is to train
generator G to produce samples from the data distribu-
tion. The generator’ s input is a noise vector. With re-
al data distribution, the noise vector can be trans-
formed as generated samples, which are similar to real
data samples. Then the generated samples are input in-
to discriminator D which usually attempts to distinguish
generated distribution p,_ ., (x) from real samples. Tt
transmits feedback signal to the generator, then the
generator’ s weights are updated. And generator G in
turn is trained to deceive the discriminator to recognize
the fake data as real.

Recently, the applications of GANs have made
great progress. Many applications have shown that they

can produce excellent samples''’.

However, the train-
ing process of GANs requires balance between the gen-
erator and the discriminator. Utilizing gradient descent
techniques is typically trained where the techniques are

devoted to finding the lowest value of the cost function.

However, this value does not satisfy the demand of the
GANs, it is hard to find the Nash equilibrium of the
game. Usually, the game between the generator and
the discriminator may fail to converge and the gradient
may descend continuously until vanish.

Image classification tasks have become a hard and
time-consuming task. There remains a problem, the
data is huge, while useful data is becoming less and
less. Most of the data are unknown to us. Therefore,
the full use of the unknown data is of vital importance.
In this work, the semi-supervised learning is incorpo-
rated with generative adversarial networks to improve
the sample generation and classification accuracy.

The rest of the paper is structured as follows. In
Section 1, related work of image classification and gen-
erative adversarial networks are discussed. In Section
2, the proposed method is elaborated. In Section 3,
experiments are conducted to demonstrate the effective-
ness of the proposed method. In Section 4, conclusions
are drawn.

1 Related work

There has been so much work having been carried
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out to design suitable classifiers to deal with the classi-

231 Generally, those

fication problems in last decades
methods can be classified into three types,i. e. , unsu-
pervised, supervised and semi-supervised methods.
Unsupervised methods focus on training models from
large unlabeled samples. For the unsupervised methods
do not need any labeled data, it can be easily applied
in the classification tasks. Many unsupervised meth-
ods, such as clustering'®’, graph-based method'”’
have demonstrated impressive results in classification
tasks. However, without the priori knowledge, one
cannot ensure the relationship between clusters and
classes.

Supervised classifiers, which are widely used in
classification tasks, can also be utilized to improve the
performance by utilizing the prior information of the
class labels. Typical supervised classifiers include sup-
port vector machine (SVM) 890 artificial neural net-
works (ANN) " and sparse representation-based clas-
sification (SRC) "' etc. SVM is a kind of kernel-
based method that aims at exploring the optimal separa-
ting hyperplane between different classes. ANN is mo-
tivated by the biological learning process of human
brain, while the SRC stems from the rapid development
of compressed sensing in recent years. Although the
supervised classifiers are of different use, the classifi-
ers’ performance is heavily decided by the number of
labeled samples. Therefore, in the supervised learning
method, the unlabeled data is of no use. However, un-
labeled data is huge in modern society. Making full use
of the unlabeled data to do the classification tasks is of
vital urgent.

Semi-supervised learning is designed to relax the
small sample problems, when it comes to the condition
that the labeled samples are not enough. Thus, wealth
of unlabeled samples is significant. The semi-super-
vised methods can be roughly divided into four types:

® Generative models'”’ estimate the conditional
probability density to obtain labels of unlabeled sam-
ples.

e Graph-based methods'"*'. This kind of method
utilizes labeled and unlabeled samples to construct
graphs. And at the same time, it minimizes the energy
function, which is aimed to assign labels to unlabeled-
samples.

") It is aimed to place

® [ow density separation
boundaries in regions where few labeled or unlabeled
data exist. The transductive support vector machine
(TSVM) "' is one of the state-of-the-art algorithms.

® Wrapper-based methods. This kind of method
applies the supervised method and labels the unlabeled

data iteratively. Self-training''"""*’ and co-training' "’

algorithms are the commonly used wrapper-based meth-
ods.

The traditional semi-supervised learning methods
have shown better performance. However, with the de-
velopment of deep learning, the neural networks can
hierarchically obtain high level abstract representa-

tion 202!

, which has recently become the main stream
in the image processing area, especially in classifica-
tion tasks. The typical deep architecture includes deep
brief network ( DBN)'*!  convolutional neural net-
works (CNN)'*! | etc. What is mentioned above are
all supervised learning frameworks, which require a
large number of labeled samples for training.

Recently, generative adversarial networks ( GANs)
have been applied to the image generation tasks with
generative and discriminative convolutional networks
successfully. Goodfellow et al. "****' proposed the theo-
retical framework of generative adversarial networks.
And this framework can generate images without any
supervised information. Later, Radford et al. ™' pro-
posed deep convolutional generative adversarial net-
works ( DCGANs) for unsupervised representation. To
solve the situation of gradient vanishing, WGAN'?"/ is
proposed to use the Wasserstein distance instead of the
Jensen-Shannon divergence, to make the data set dis-
tribution compared with the distribution learned by the
generator. Obviously, they show that the sample quali-
ty is closely related to the network’ s convergence and
the training rate is really improved. Another direction
of image synthesis with GANs is to synthesize images
by conditioning on supervised information, such as text
or class labels. Conditional GAN'™' is one of the work
that develop a conditional version of GANs by addition-
ally feeding class labels into both generator and dis-
criminator of GANs. Info-GAN'?

concept, which divides input noise z into two parts,

introduces a new

one is the continuous noise signal that cannot be ex-
plained , and the other is called C. Where C represents
a potential attribute that can be interpreted as a facial
expression. In addition, the concept of information
theory is added to GAN. Recently, Reed et al. "' uti-
lize GANs for image synthesis using given text descrip-
tions, enabling translation from character level to pixel
level.

2 The general image classification method
with semi-supervised GANs

2.1 Adversarial learning

The adversarial learning adopts the idea of game
theory and is combined with the unsupervised learning
to jointly train the model. The training is formalized as
a game in which the generative model is trained to gen-
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erate outputs to fool the discriminator. Reasonably def-
inition, the models of adversarial learning are trained
to compete with each other and can continually improve
the output of each model. In generative adversarial net-
works, the generative model tries to generate images
from noise as real as possible, and the discriminative
model is equivalent to a binary classifier, which is uti-
lized to differentiate the generated samples and real
samples. Based on concealing the discriminator, the
generator updates its own weights, and updates the
weights of the discriminator by distinguishing real and
fake samples at the same time. The adversarial model
can be described as the following competition game ;
mgn m[:)jlx](D, G) =E,_, . log(D(x))
+E._, o log(l -D(6G(z2)))
(D
where D(x) representing the probability of recognizing
is a real image rather than a generated image. G(z) re-
presents the generated images after inputting the noise.
In this process, G and D are trained simultaneously ;

® The input of the generator is the noise in the
distribution of p,,;. Through training, the noise distri-
bution can be transformed into the data distribution
Puu » Which can be guided to generate the samples as
real as possible.

® The discriminator’ s input consists of two
parts: the real data and the generated data. The dis-
criminator is devoted to distinguishing the real data and
generated data.

In order to solve the minimum and maximum game
problem. The gradient of the discriminator network is
optimized first in a manner of gradient ascent in each
iteration and the parameters of the generated network
are updated in gradient descent. Let w, represent the
neural network NV, and the optimization process can be
written as follows.

® Let discriminator D fixed, to update the gener-
ator G by the following;

we g — YA (2)

Ad =-2E log(1 - D(G(z, wg) , wy))
ow
(3)

® [Let generator G fixed, to update discriminator
D by
wp <—wp +7, (4)

J
Ayl = @{Eppl,m(x) log(D(x, wn))

+ Ezw.m-,(z) log(l - D(G(z, a),;) , (UD)) |
(5)

The above equations are the parameter updating

2~ Pnoise(2)

rules of generator and discriminator. Generally, the

both networks obey the principle of stochastic gradient
descent, which is used to minimize the empirical loss

function.

2.2 Semi-supervised learning

The semi-supervised learning needs label informa-
tion when dealing with the classification tasks. It is
halfway between supervised and unsupervised learning.
In addition to unlabeled data, the semi-supervised
learning is provided with some supervision information
but not necessarily for all examples. To formalize the
semi-supervised learning to a more mathematical for-
mulation, a knowledge on p(x) is given that the varia-
ble gains through the unlabeled data has to carry infor-
mation that is useful in the inference of p(y | x). Obvi-
ously, if this is not the case, semi-supervised learning
will not yield an improvement over supervised learning.
Semi-supervised learning scheme makes full use of the
unlabeled data, in which there are an abundance of
structural information to learn. A more formal descrip-
which
can be divided into two parts, X, = (x,, x,, ", x,)
labeled ¥, = (y,, ¥,, -, ¥,) and the other set X, =
(%,01» %pi2,""» %4.n), whose label is not known.
Then the data can be trained to learn the distribution to

tion can be given that is a data set X = «x

i(ien)

do the classification tasks.

Learning from the formal description, it is consid-
ered that a standard classifier for classifying data point
x into one of N possible classes, the main idea of the
model is training a network playing both the roles of a
classifier performing image classification task as well as
a discriminator trained to distinguish generated samples
produced by a generator from the real data. To be more
specific, the discriminator takes images as input and
classifies them into N + 1 classes. And the true samples
are classified into the first V classes and generated sam-
ples are classified into the (N + 1)th class, as is shown

@ -
! Real or Fake

Fig.1 The architecture of semi-supervised GANs

in Fig. 1.

z~p,(2)

The discriminator is not only utilized to distinguish
real images from generated images, but also to classify
images into different classes.
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2.3 Model design
2.3.1

In generative adversarial networks, the generator

Generator

network is a density network whose job is to produce
realistic-looking samples. The generator accepts ran-
dom noise vectors as inputs. Besides noise vector z, the
generator also needs to learn the distribution of real im-
ages to fit noise distribution, which is the process of
generation tasks. The network learns pixel features of

128

the real images to fit noise and generate images as real
as possible. For the model design of generator, four
fractionally-strided convolutional layers and a fully con-
nected layer are used. The fractionally-strided convolu-
tional layer is utilized to extract the object’ s shape
through the learned features. The fully connected layer
is utilized to map the learned distributed feature repre-
sentation to the sample space. The architecture is

shown as Fig. 2.
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Fig.2 The architecture of generator

2.3.2 Discriminator

The discriminator tries to figure out whether an
image come from the training set or the generator net-
work. Different from the generator, this process is a
down-sampling process. The purpose is to extract fea-
tures from a certain model and then classify the images
based on the features. In this process, the most impor-
tant step is feature extraction, whose aim is to find the

o4 128

Real data
samples

Generated
samples

Conv3
Conv2

Convl

suitable features that can distinguish images most. For
the model design of discriminator, it is not only utilized
to distinguish the real images from the generated ima-
ges, but also to perform the multi-classification tasks.
A fully connected layer and four convolutional layers
are used. Finally, a classifier layer is used to perform

the classification tasks. The architecture is shown in
Fig. 3.
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Fig.3 The architecture of discriminator

2.3.3  Design of loss function

As mentioned in Section 2. 2, samples from the
generated images are simply added to the training data-
set, labeling them with the class “N + 1”. Thus, the
dimension of our classifier can be extended to “N +
17. Therefore, the probability can be expressed as
fake as p, 4 (N + 11 x), equal to G(z) in the original
GANs. It can be also learnt from the unlabeled data by
N} | x). Then the

loss function can be represented as follows:

maximizing the p .. (y € {1,

L

-ak ¥ ~Pdatal %, ¥) I:logpmodel (y!lx) ]
=BE, [ logpaa(y =N +11x)]

= aLsupervise(l + BLunsupervise(l (6>
where, L, . ics and L, oniceq 18 calculated as follows
Lsupervised =

- aE)c,y~pdala(x,y) [logpmodel<y| X, Y <N+ 1)1
(7)
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unsupervised

_,B%Epp,,m(x) log(1 = ppaa(y = N+11x))

E ¢l 1ogpga(y = N+ 11 x) ]} (8)
where o and B are the weight coefficients, which need
to satisfy constraint @ + 8 = 1.

The cross-entropy loss consists of two parts:
L peniced and L L
the real data with the negative log probability of the la-
bel, while L
ard GAN loss, considering the loss of noise and real
data.

loss function is given

unsupervised * supervised

loss function seems like the stand-

unsupervised

3 Experiments

3.1 Data preparation

All experiments are performed in Tensor Flow ™"
on a workstation with a Titan X GPU. In the experi-
ments, the MNIST and CIFAR-10 datasets are used.
The MNIST dataset contains 60 000 labeled images of
digits. Its training set consists of numbers written by
250 different people, 50% of whom are high school
students and 50% of the data are from the staff of Cen-
sus Bureau. The test set also has the same proportion
of handwriting digital data.

CIFAR-10 is a small, well studied dataset of 32 x
32 natural images whose number is also 60 000. This
dataset is divided into 10 categories. The class of each
contains 6 000 images. There are 50 000 for training,
and another 10 000 for testing. The ten categories are
independent of each other.

These two datasets are used to study semi-super-
vised learning, as well as to examine the visual quality
of samples that can be achieved. For the discriminator,
besides the convolutional networks, the weight normali-
zation is also used. And the generator is a network with
4 deep convolutional layers and each layer has a batch

normalization.

3.2 Experimental settings

For the number of the two datasets is the same,
same experimental settings are used. 50 000 images as
training set, another 10 000 are utilized as test set. For
the training dataset, it is considered the setups in four
conditions, considering the setups with 0, 1 000,
2000, 3 000, 5000, 8 000 labeled samples. Corre-
spondingly, the remaining training data size is 50 000,
49 000, 48000, 47000, 45000, 42000, composed of
generated images, as unlabeled data.

Through semi-supervised training with the same
epochs, the network can somehow improve the quality
of the generated images, as shown in Fig. 4 and Fig. 5.
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Fig.4 For the MNIST dataset, the left is the generated samples

through semi-supervised training, the right is the gener-

ated samples through unsupervised training

samples through semi-supervised training, the right is

the generated samples through unsupervised training

Experimental results also show that through the
use of semi-supervised learning, the convergence speed
is improved compared with unsupervised learning, as
shown in Table 1.

Table 1

The time-consuming contrast of semi-supervised learn-
ing scheme and unsupervised learning scheme after the

same epochs on MNIST dataset and CIFAR-10 dataset

Methods Datasets Time (mins)
Semi-supervised MNIST 87.7
learning CIFAR-10 103.2
Unsupervised MNIST 96. 1
learning CIFAR-10 115.3

From the results, it can be concluded that for the
same dataset, semi-supervised learning can learn to
converge faster and get higher efficiency, which shows
an advantage among unsupervised learning method.

As for the parameters, RMSProp optimizer is used
to optimize the parameters. The learning rate of the
generator and discriminator is 2 x 107, In each mini-
batch, the parameters of the discriminator is updated
once, and the generator’ s parameters are updated
twice at the same time.

3.3 Experimental results
The proposed method is validated from theory and
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experiment. On one hand, the semi-supervised learn-
ing scheme can enhance the visual quality of the gener-
ated images. On the other hand, through semi-super-
vised learning scheme, the classification accuracy is
improved. The results are shown in Table 2 and Table

3.

Table 2 The contrast of semi-supervised classification accuracy
with different number of labeled images and supervised
classification accuracy on MNIST dataset

Number of labeled images Classification accuracy

0 0.892
1000 0.895
2000 0.904
3000 0.917
5000 0.925
8000 0.930

0.968

Supervised training

Table 3  The contrast of semi-supervised classification accuracy
with different number of labeled imagesand supervised
classification accuracy on CIFAR-10 dataset

Number of labeled images Classification accuracy

0 0.750
1000 0.761
2000 0.785
3000 0.792
5000 0.801
8000 0.813

0. 864

Supervised training

From the results on two datasets, it can be seen
that with the increase of the labeled data, the classifi-
cation accuracy is improved gradually. The semi-super-
vised training scheme performs better than unsuper-
vised training scheme on image classification tasks.
And to some extent, the accuracy can approach to the
supervised classification results, which shows the gen-
eralization of the semi-supervised learning scheme.

4 Conclusions

In this paper, semi-supervised learning scheme is
applied to generative adversarial networks to perform
classification tasks, which perform a better perform-
ance than the normal classifiers. Besides, through
semi-supervised learning scheme, unlabeled data can
be used to enlarge the sampling space. And the gener-
ated image quality is improved, either. The perform-
ance of the model among different datasets is evalua-
ted, such as MNIST and CIFAR-10. Results show the

effectiveness of the proposed model through the classifi-

cation accuracy. It is hopeful to develop and find a
more rigorous theoretical understanding on semi-super-
vised learning scheme in future work.
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