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Abstract

Mobile crowdsensing ( MCS) has become an emerging paradigm to solve urban sensing prob-
lems by leveraging the ubiquitous sensing capabilities of the crowd. One critical issue in MCS is how
to recruit users to fulfill more sensing tasks with budget restriction, while sharing data among tasks
can be a credible way to improve the efficiency. The data-sharing based user recruitment problem
under budget constraint in a realistic scenario is studied, where multiple tasks require homogeneous
data but have various spatio-temporal execution ranges, meanwhile users suffer from uncertain future
positions. The problem is formulated in a manner of probability by predicting user mobility, then a
dynamic user recruitment algorithm is proposed to solve it. In the algorithm a greedy-adding-and-
substitution (GAS) heuristic is repeatedly implemented by updating user mobility prediction in each
time slot to gradually achieve the final solution. Extensive simulations are conducted using a real-
world taxi trace dataset, and the results demonstrate that the approach can fulfill more tasks than ex-

isting methods.

Key words: mobile crowdsensing ( MCS), data sharing, user recruitment, mobility predic-
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0 Introduction

Benefiting from the growing number of sensor-rich
mobile devices (e. g. smartphones, smart vehicles,
wearable devices) in urban areas, mobile crowdsensing
(MCS) """ has become an emerging paradigm to solve
urban sensing problems. A typical MCS application
can gather sensing requests from multiple requesters
and publish them as sensing tasks, meanwhile recruit
mobile users with sensing capabilities to perform tasks
and pay for the sensing costs. So far, MCS has been
applied in various fields, e. g. traffic monitoring'*’,
parking space search’’, and environment monito-
ring“' .

One critical issue for MCS applications is how to
recruit appropriate users among the crowd to fulfill
more tasks under budget constraint. Given that tasks
usually have special spatial and temporal constraints, a
common strategy is to recruit the nearest users to sense
certain data for each task. But it is claimed that it is
more economical to recruit users by implementing data

sharing. That means that actually multiple tasks can

reuse the same pieces of data to simultaneously satisfy
their requirements by carefully selecting the sensing
points. There exist many scenarios in practice where
data sharing is feasible. For example, in many MCS
applications such as air quality monitoring™*! or traffic
monitoring >’ | the sensed data usually has continuity or
correlation in both spatial and temporal domains,
meanwhile data requesters such as citizens may also
stand reasonable data deviations in their daily lives. So
requesters usually allow their tasks to be executed with-
in a certain spatio-temporal range and consider all data
sensed within the range acceptable. To this end, in
case requesters require homogeneous data and the exe-
cution ranges of their tasks overlap, users can be inten-
tionally recruited to sense data in the overlapping do-
mains to fulfill multiple tasks simultaneously, by which
the recruited users are fewer and the overall costs are
undoubtedly reduced.

However, implementing efficient data sharing in
user recruitment is not trivial. On one hand, various
execution ranges of different tasks cause complex spa-
tio-temporal overlapping situations, which makes dif-
ferent recruitment decisions deeply affect each other.
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So more comprehensive and fine-grained scheduling
over the whole spatio-temporal domain is needed. But
on the other hand, the users’ future locations are un-
certain due to the natural attribute of user mobility,
which makes it difficult to judge the effectiveness of ad-
vance scheduling, thus credible data sharing becomes
more challenging.

Most existing papers >’ either consider that the

tasks are executed at abstract space-time points’’ or

within non-overlapping spatio-temporal ranges'®’’ | or

consider that the required data is heterogeneous'®"
all of which directly ignore the data sharing opportuni-
ty. A few papers only involve data sharing based on
overlap of task execution ranges either in time dimen-

sion“()'m [15]

or in space dimension ', which also greatly
restricts the ways to achieve data sharing. Only
Ref. [16] concerns data sharing based on overlap of
task execution ranges in both space and time dimen-
sions, but it fails to consider the uncertain but valuable
future mobility information of users to achieve brighter
recruitment decisions.

To this end, the data-sharing based user recruit-
ment problem under budget constraint in a realistic sce-
nario is studied, where tasks require homogeneous data
but need to be executed in various spatio-temporal ran-
ges which may overlap, meanwhile users’ future loca-
tions are uncertain. This problem is formulated in a
manner of probability by predicting users’ future loca-
tion distributions, then a dynamic user recruitment al-
gorithm is proposed to solve it. In the algorithm first an
effective heuristic is developed to obtain a temporary
solution for the problem at the beginning, then the
heuristic is repeatedly applied to continually improve
the solution by solving a smaller-scale problem in each
following time slot. The contributions of this paper are
as follows.

® The data-sharing based user recruitment prob-
lem in MCS is proposed and formalized by first consid-
ering both the spatio-temporal overlapping execution
ranges of tasks and the uncertain mobility of users.

e A dynamic algorithm is proposed which repeat-
edly implements a greedy-adding-and-substitution heu-
ristic by updating user mobility prediction in each time
slot to continuously improve the recruitment strategy
and gradually achieve the final solution.

® The algorithm with extensive simulations is
evaluated using a real-world taxi trace dataset, the re-
sults prove that the approach can fulfill more tasks than
existing methods.

The rest of the paper is organized as follows. In
Section 1, related work is reviewed. In Section 2, the
model is introduced to formulate the problem. In Sec-

tion 3, the algorithm details are elaborated. The simu-
lation results are showed in Section 4 and the paper is
concluded in Section 5.

1 Related work

A number of papers have studied user recruitment
or task assignment problems in MCS. A majority of
these papers ** do consider the spatial and temporal
constraints of tasks. But they either assume that tasks

[5]

are executed at abstract space-time points ™’ or within

6.7
7 or focus on heterogeneous

spatio-temporal ranges
data requirements for different tasks'®*" | all of which
do not involve data sharing at all.

Only a few papers involve data sharing in MCS by
considering that task execution ranges overlap either in

. . . 10-14 . 15
time dlmensmn[ ] or 1n [15] .

space dimension
Ref. [10] designed the optimal transmission schedule
for a mobile user in MCS to make a tradeoff between
the amount of data transmitted and the energy con-
sumption by sharing data among requests with different
durations. Ref. [ 11] studied the optimal sampling time
for multiple time-sensitive tasks in a smartphone by re-
using data to minimize the energy consumption while
ensuring sensing quality. But Refs[ 10,11 ] considered
task scheduling on a single device where only temporal
overlapping execution ranges were concerned and data
was shared in time dimension. Ref. [12] presented a
task allocation approach for multiple users by sharing
sensing services with different tasks to achieve both
fairness and energy efficiency, but it only utilized the
overlapping sensing intervals of tasks while assuming
the sensing areas are the same. Ref. [ 13] considered a
dynamic participant recruitment problem to minimize
the sensing cost while maintaining certain level of prob-
abilistic coverage. Ref.[14] proposed an participant
selection scheme by introducing caching into MCS to
store data for future tasks. But in Refs[ 13,14 ], the
tasks were restricted to be executed in non-overlapping
Points of Interest ( Pols), thus data could only be
shared among tasks in the same location. Besides,
Ref. [ 15] studied the quality aware sensing coverage
problem under budget constraint by dealing with the o-
verlapping execution areas of tasks, but it assumed that
the temporal requirements were irrelevant. All these
papers simplify the overlapping scenarios and limit the
possible ways to achieve data sharing.

Ref. [ 16 ] considered data sharing based on over-
lap of task execution ranges in both space and time di-
mensions. It proposed task assignment methods in two
scenarios of fixed budget constraint in each time slot
and total budget constraint over the entire campaign,
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but it only applied local heuristics without leveraging
users’ future mobility information. However, this in-
formation is vital for intelligent data-sharing based user

recruitment.
2 Model and problem formation

2.1 System model

A typical MCS system is considered consisting of a
platform, multiple data requesters and multiple mobile
users. The platform receives sensing tasks from data
requesters, and recruits mobile users to perform tasks
with certain costs. A homogeneous MCS process in are-
a £ and period T is focused. Without loss of generali-
ty, the target area is equally divided into L grids and
the whole period is divided into T time slots to generate
L x T spatio-temporal grid cells. The precision depends
on specific application requirement. It is denoted the
set of tasks as S = {1, 2,---, S| .

SR, is denoted as the spatial execution range, which is

For each task i,

formalized as

SR, = {1ICo(l) = Co(L;) I, <R} (1)
where Co (1) is the coordinate of location [. Eq. (1)
means S=¢; is a circle centered on location /; and with a
radius of R; . TR, is also denoted as the temporal exe-
cution range, which is formalized as

TR, = {t10<t —t,<D,} (2)
which means T-£, starts in time slot ¢; and lasts a
duration of D,. Note that based on personalized
precision requirements, R; and D, can be diverse for
different tasks. It is considered that all users are
reliable and can update qualified data, which can be

]

achieved by applying reputation system''” or truth

! to identify and screen out

estimation technology''®
reliable users beforehand, and the details are omit
here for simplicity. Then a task can be fulfilled if at
least one user is recruited to collect data within its
both spatial and temporal execution ranges.
Besides, it is also considered all task requirements
are known at the beginning of the MCS process,
which is rational when the sensing period is not too
long and task reservation is available.

The set of users are denoted as 1 = {1,2, -,
U}, who can move in and out the target area. The
users’ future locations are uncertain due to
mobility. Note that many applications can record
users’ historical trajectories such as by periodically
reading the GPS information, one can leverage the
historical trajectories to predict users’ future locations
to some extent. For simplicity, it is assumed that a
user stays at a single location in each time slot and it

is considered he stays at location L + 1 if he is

outside the target area. In order to generally
characterize the uncertainty of users’ locations, it is
considered any user j in any time slot ¢ follows a
distribution of ,(¢) = (6,(1,1),6,(2,t),... ,6,(L+
1,2) ), which means userj will appear in location / in
time slot ¢ with a probability of 6, (1,¢) . It is also
denoted (t) = (0,(t),0,(t),...,0,(t)) . Next,
the widely used one-order Markov model is adopted
to make the prediction similar to Refs[8,19]. Note
that more complex prediction methods such as

%) can be easily extended and they

Bayesian learning'”
are omit here. The probability p,, is calculated that
users move from location m to location n within
adjacent time slots based on historical trajectories,

then form the location transition matrix as

P P12 Pi,r+1
pP-= Pz.,l Pz',z Pz,fﬂ (3)
Prstg Pr+r2 Prst,L+1

It is assumed that users’ exact locations can be
obtained at the beginning of each time slot, then the
location distribution of userj for any future time slot ¢
can be predicted as

0(1) =0(1,) P, (4)
where, t, is the current time slot and 0 (1¢,)
represents users’ newly arrived locations in time slot
to- 0,(1,t,) =1 if userjdoes stay at location [ in time
slot t; and 0;(1, t,) = 0 if not. In this way, in
current time slot #,, users’ location distributions for
all future time slots can be expressed as

0" =(0(1,),0(1,+1),...,0(T)) (5)

From Eq. (4) and Eq. (5) it can be seen,
location prediction @(t,) for future time slot ¢ is more
accurate if ¢ is closer to current time slot ¢, and vice
versa. This property will be exploited in subsequent
algorithm design.

2.2 Problem formulation

Given the set of tasks S with spatia-temporal
execution ranges and the set of users U with future
location prediction, the data-sharing based user
recruitment problem aims at maximizing the total
number of fulfilled tasks under budget constraint. It
is considered that a user is recruited once if he is
selected to sense a regular amount of data in a time
slot at the location he stays. A user can be recruited
many times in different time slots. So the solution
space of the user recruitment problem is the set of all
user-time combinations ¢ = {(j,t) |j e u,t € T} .
The final solution is to select a subset of user-time
combinations ¢, € ¢. A user-time combination (j,)
is e¢, if userj is selected in time slot ¢ . As the sce-



HIGH TECHNOLOGY LETTERSIVol.25 No. 1[Mar. 2019

11

nario is focused on where the sensed data is homogene-
ous, and it is considered the recruitment cost is fixed
for all users, so budget B represents the maximum re-
cruitment times, which satisfies;
lel<B (6)
On the other hand, as users’ future locations are
uncertain, investigating task fulfillment in a probabilis-
tic way is aimed. The fulfillment probability FP,(j,t)
of task i generated by a single user-time combination
(j,t) can be expressed as

FP.(j,t) = %, 6, T (1 egwx) (7)
where, T (t € 8,) = 1ift € R, and T (1 € TX,)
=0ift ¢ 7,. FP,(j,t) is actually the probability
that user j appears in the spatial execution range S=r; of

leS=x;

task 7 in time slot ¢, in case that ¢ is within the temporal
execution range J=R; of task i. Thus, given the entire
recruitment solution ¢,, the fulfillment probability of
task ¢ can be calculated as

R(c) =1-]] (L-FP(j,t))  (8)

which is the joint probability contributed by all user-

(st) e,

time combinations in ¢, . So the expected total number
of fulfilled tasks for task set S can be calculated as

Ry(z) = Y, Ri(c) (9)

Finally, the probabilistic data-sharing based user
recruitment optimization problem is formulized with the
object of maximizing the expected total number of ful-
filled tasks under budget constraint as follows.

max Ry(¢,) (10)
s.t. |l l<B

This problem is NP-hard. Eq. (10) can be de-
generated to a special case where the total sensing peri-
od is one time slot and all users’ locations are deter-
mined, then the problem directly becomes the maxi-
mum coverage problem, which is well known as NP-
complete. In the next section, it is aimed to seek alter-
native heuristics to solve this problem.

3 Algorithm details
3.1 Algorithm description

In order to solve the probabilistic data-sharing
based user recruitment optimization problem, the main
idea is to develop polynomial time heuristics while fully
leverage users’ future location information. To this
end, a dynamic user-time combination selection algo-
rithm is proposed. In this algorithm, a greedy-adding-
and-substitution ( GAS) heuristic is first developed to
obtain a temporary solution for the complete problem in
the initial time slot, then this heuristic is repeatedly
implemented to solve a smaller-scale problem to im-
prove the solution in each following time slot with the

help of updating user location prediction. Below the
GAS heuristic will be elaborated first, which is the
building block of our algorithm, then the complete dy-
namic algorithm is given.
3.1.1 GAS heuristic

The greedy-adding-and-substitution ( GAS) heu-
ristic is a general method for a wide class of covering
problems'?" | which is modified to apply into the prob-
lem, the details are showed in Algorithm 1. Without
loss of generality, time slot ¢ is taken as an example. In
which, given the unfulfilled task set s residual
budget B and newly updated user location prediction
0", the GAS heuristic aims to solve a smaller-scare
probabilistic user recruitment problem by selecting a
subset of user-time combinations ¢!" from current can-
didate combination set 2" to maximize the expected to-
tal number of fulfilled tasks. The current candidate
combination set ¢! contains all combinations that can
be selected from current time slot ¢ to the last time slot,
which is

A =G e ut =t (11)

The GAS heuristic solves the problem in an itera-
tive way. In each iteration, a greedy adding phase is
implemented followed by a substitution phase. In the
greedy adding phase, an unselected user-time combi-
nation is chosen which maximizes the marginal contri-
bution to the expected total number of fulfilled tasks
and is added into the selected user-time combination
set 2" in line 5-10. According to Eq. (9), the mar-
ginal contribution of adding a user-time combination
(Jo »t) into the selected combination set ¢, given task
set S can be calculated as

ARS,C,(jo,to) = R(¢, N (Jy,ty)) - R
= ziEJH(j,t)EE.(l _Fpi(j’t))FPi<jo,lo) (12)

Algorithm 1 GAS heuristic

Input; current unfulfilled task set s, current candidate us-

er-time combination set ¢ with location prediction 8,
residual budget B .

Output: temporary recruitment solution ‘" .

1. E(I) ‘*BU) , 27(%) (;C(f);

2. V0

3. while B > 0and ¢ #¢ do

4. // Greedy adding phase

5. for all (j,1) e ¢ do

6. Calculate AR () o) (j, t) based on Eq. (12) as-
suming adding (j,¢) into 2 ;

7. end for

8. Select (j*,t*) e ¢ which leads to the maximum

ARy w0 (U, )
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9. UG ), G )

10. BY «BY -1;

11. /7 Substitution phase;

12. forall (j, 1) e ¢ do

13. for all (j, 1) e ¢ do

14. Caleulate vy, (¢ U (j, t)/(j, t)) based on

Eq. (9) assuming replacing (j, t) with (j5,¢) ;

15. end for

16.  Select (j*, t*) e ¢ which leads to the maximum
Ry (" U (5, 0)/G, 1) 5

17. if Ry (€7 U (7ot ) /() > Ry ()
then

18. Record (j* ,t" ) as substitution object of (j, ) ;

19. end if

20.  end for

21.  Select (j* ,t™ ) among all substitution objects which
leads to the maximum R (,, (¢! U (7, t)/(j, 1)) ;

22, ey G ), d e G )

23, Vel 1), VeV U, 1)

24.  end while

35.  return Cf') ;

Greedy adding is a simple myopic method, and
the decision is irreversible once a combination is se-
lected even if finding it unsuitable later, which can not
guarantee the optimization. So a substitution phase is
also implemented to further improve the result by prop-
erly adjusting previous selected combinations.
Elaborately speaking, a selected user-time combination
is replaced with an unselected candidate, in case the
substitution can improve the result to the most extent.
For each selected user-time combination (j,t) , first the
corresponding expected number of fulfilled tasks
AR ., (2" U (', t')/(j,t)) is calculated by assum-
ing (j,t) is replaced with any unselected candidate
(j', t') in line 13-15. Next the unselected candidate
is selected which leads to the maximum expected num-
ber of fulfilled tasks in Line 16, and this candidate is
recorded as the substitution object of (j,z) if it can
achieve a better result compared with (j,¢) in line 17-
19. Finally the unselected candidate among all the
substitution objects of selected combinations is selected
which leads to the best result and does make the sub-
stitution in line 21-23. Note that at most one selected
combination in each iteration of the GAS heuristic is
replaced only for the sake of algorithm complexity. In
an exireme case, if all selected combinations are al-
lowed to be replaced, it just becomes the exhaustive
search, which should be avoided. The GAS heuristic
ends when the residual budget becomes zero or the cur-
rent candidate combination set becomes empty, then

outputs the temporary solution ¢'” in line 25.
3.1.2 Complete dynamic algorithm

The complete dynamic algorithm is displayed in
Algorithm 2. Note that if the GAS heuristic is only im-
plemented once in the initial time slot, the solution
may not be good enough, as users’ location prediction
may not be accurate for distant time slots. According to
Eq. (4) and Eq. (5), the accuracy of future location
prediction 8 can be gradually improved based on us-
ers’ newly arrived locations as the process goes on. So
the solution of the GAS heuristic in the initial time slot
is a temporary one, and the GAS heuristic is repeatedly
called in each following slot with the help of updated
user location prediction 8" to improve the solution in
line 4-5. For the temporary solution in each time slot ¢,
user-time combinations of A" is only recruited that
can execute tasks exactly in that time slot in line 6,
then they are added into the final recruitment solution
¢ in line 7. A" is denoted as

Ag? =G () e a1 =i

(13)

After tasks are executed, the residual budget and
user location prediction for the next time slot in line 8-
9 are updated. The complete dynamic algorithm contin-
uously runs until the MCS process goes to the end, or
all tasks are fulfilled, or the budget is exhausted. Fi-
nally the recruitment solution ¢, is outputted in line 12,

which consists of A" in all time slots.

Algorithm 2 Complete dynamic algorithm

Input: total task set 5, total user-time combination set , total
budget B, users’ historical trajectories.

Output: final recruitment solution ¢,.

t =1 H

sV «— s, BY B,

whilet < T'and 5 # @ and B > 0 do
Update § according to Eq. (5);

Run GAS Heuristic to get 2" ;

AU AW =

Recruit A¢'” based on Eq. (13) to execute tasks in
time slot 7 and update """ ;
0, =0, UAc"
8. Ao (G ) e =t
] ’ .] ’ b
9 BV« BY -] AcV 1

’

=

10, t«—t+1;
11.  end while

12. return ¢,;

3.2 Complexity analysis

For the GAS heuristic, the computational com-
plexity is dominated by line 14, which runs at most B
x B x UT times due to the iterations in line 3, 12 and
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13. Besides, the calculation in line 14 requires at most
S x B x| s | operations according to Eqs(7-9), |
SR | is the upper number of locations that are within
the spatial execution range of a task, which is based on
Eq. (1). So the computational complexity of the GAS
heuristic is O(B’TUS | s—¢1) . Finally, the complete
dynamic algorithm runs the GAS heuristic for at most T
times, thus the total computational complexity is
O(B’T°US | s—¢1), which is polynomial time.

4 Simulation results

4.1 Simulation setup
In the simulations, the widely used real-world ro-
ma/taxi dataset' >’

The roma/taxi dataset contains periodically collected

is adopted as user mobility traces.

GPS coordinates of approximately 320 taxi cabs in
Rome, Italy over 30 days in 2014. An 11. 1km x
16. 6km rectangle area in (12.4° - 12.6°E, 41. 85°
—41.95°N) is chosen as the target area, which is in
downtown and has the highest taxi density. The target
area is divided into 20 x30 grids, and a time slot as 5
minutes is considered. The sensing period of each MCS
process is to begin at 8:00 a. m. in any random day
from the second week to the last day of traces. Taxis
staying the longest in the target area are selected as us-
ers, and transition matrix P based on users’ trajectories
is calculated in the same period of time as the sensing
period during the past week. Tasks are generated with
spatial execution range S-¢;, and temporal execution
range J=R, . For simplicity, the radius R, of SR, is set
as well as the duration D, of 78, for each task be the
same. Besides, S, and T8, of all tasks are consid-
ered independently and uniformly to be distributed
within the target spatio-temporal domain. The default
parameters are listed in Table 1.

Table 1  default parameters
Number Number . . .
of Users  of Tasks Budget  Radius  Duration  Period
100 200 50 3 3 30

Several existing methods are also implemented for
comparison. As mentioned above only Ref.[16] in-
volves data sharing based on overlap of task execution
ranges in both spatial and temporal dimensions, be-
sides it also studies the user recruitment problem with
budget constraint. Thus, three existing methods devel-
oped in Ref. [16] are chosen called AdaptB, AdaptT
and AdaptS for comparison. Briefly speaking, AdaptB
tries to decide whether to recruit an arriving user or not
in real time using an g -greedy algorithm based on the

user’ s priority index and the residual budget. The us-
er’ s priority index is the number of tasks that the user
can newly fulfill at current time. AdaptS and AdaptT
modify the priority index by further taking the area
popularity and task urgency into consideration respec-
tively. A random algorithm is also employed as the
benchmark , which chooses B random user-time combi-
nations. The total number of fulfilled tasks is the key
metric for the performance.

Simulations are conducted under a wide range of
settings by varying each parameter. In simulation of
varying the number of users, as there are basically no
more than 150 taxis in the target area during the sens-
ing period, more traces are simply added in the same
period of time as the sensing period in following days to
achieve up to 300 users. All results are averaged by
running simulations multiple times in various days.
4.2 Performance evaluation

Fig. 1 shows the proposed algorithm always per-
forms the best as the number of users varies, the Ada-
ptT, AdaptS and AdaptB algorithms perform worse in
turn, and the random algorithm performs the worst. As
the number of users increases, the numbers of fulfilled
tasks for all algorithms except the Random rise because
more suitable users are available and more efficient re-
cruitment can be achieved. In Fig. 2, the algorithm al-
so outperforms others by varying the number of tasks.
The number of fulfilled tasks increases almost linearly
for all algorithms as the number of tasks increases, be-
cause adding more tasks in the fixed spatio-temporal
domain brings more overlapping requirements and data
sharing can be better achieved. Fig.3 shows the pro-
posed algorithm is more advantageous when the budget
is tight, which indicates that the algorithm operates in
a more frugal way. The results become closer when the
budget increases as all algorithms can select adequate

180 T T T T T !
160
g |
3 140 + b
,; b
&
= 120 -
E =@= Proposed
% 100 + === AdaptT
5 === AdaptS
"g 80 === AdaptB
Z == Random
60 - ——— ——
40 y . - . .
0 50 100 150 200 250 300

Number of users

Fig. 1 Number of total fulfilled tasks vs. number of users
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Fig. 3 Number of total fulfilled tasks vs. budget

usertime combinations without worrying about budget
shortfalls.

Fig. 4 and Fig. 5 display the effects of different ra-
diuses R; and durations D; of task requirements on the
results. As expected, the results rise when radius and
duration increase because tasks with more relaxed re-
quirements can be satisfied more easily for all algo-
rithms. This algorithm is more advantageous when radi-
us and duration are smaller, indicating that the algo-
rithm can match task requirements more intelligently.
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Fig.6 Number of total fulfilled tasks vs. sensing period

In Fig. 6, the results decrease for all algorithms as the
sensing period extends, because tasks are distributed
more dispersedly and data sharing becomes more diffi-
cult. This algorithm still keeps superior to others, but
it is noticed that the performance is more competitive
when the sensing period is not too long.

To further investigate the effects of sensing period
on the results without interference factors, the period
time is varied in proportion with the number of tasks
and the budget based on the default values. The results
are showed in Fig.7 and Fig. 8, where Fig.8 trans-
forms the number of fulfilled tasks in Fig.7 to the ful-
fillment ratio by dividing the total task number. The re-
sults show that the algorithm performs better with a
considerably long sensing period but the advantage is
gradually diminished as the sensing period extends.
This is rational, because the performance of the pro-
posed algorithm directly relies on the accuracy of us-
ers’ future location prediction. When the sensing peri-
od becomes longer, the overall prediction accuracy will
inevitably decline, yet which can be overcome in prac-
tice, as the length of sensing period of each MCS
process can be controlled and processes are launched
more frequently. Besides, more powerful location pre-
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diction methods such as collecting the speed for vehi-
cles or analysing context information for pedestrians can
also be applied. There should be a tradeoff between the
algorithm performance and practical development diffi-
culty, details is left for future work.
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Fig. 8 Task fulfillment ratio vs. sensing period (in proportion
with number of tasks and budget)

5 Conclusion

This paper studies the data-sharing based user re-
cruitment problem under budget constraint by first con-
sidering both overlapping spatio-temporal requirements
for tasks and the mobility prediction for users. A novel
dynamic user recruitment algorithm is proposed by re-
peatedly applying a GAS heuristic with updated user
mobility prediction to gradually achieve the solution.
Extensive simulations demonstrate that this approach is
superior to existing methods.
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