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Abstract
The extremely limited bandwidth in underwater acoustic communication makes channel estima-

tion using fewer pilot symbols more challenging. lIterative channel estimation (ICE) can be used to

refine channel estimation with limited number of pilots, by coupling the channel estimator with chan-

nel decoder. In this paper, various feedback strategies in ICE are discussed. The performance of a

decision feedback based on the cost function is improved by modifying the design and another four

feedback strategies are summarized, including hard/soft decision feedback and their threshold-con-

trolled versions. Simulation results show that ICE can achieve impressive gains over the non-iterative

receiver and the gains are more significant with fewer pilots. Furthermore, soft decision feedback

outperforms hard decision feedback ; while the feedback based on the cost function and soft decision

feedback have quite close performance.
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0 Introduction

Communication through acoustic channel is the
most intricate among all wireless communication chan-
nels because of its extremely limited bandwidth, selec-
tive frequency fading, large propagation attenuation
and severe multi-path spread''’. The channel estima-
tion for underwater acoustic channels is quite challeng-
ing and usually requires pilot symbol assisted modula-
tion ( PSAM). Acoustic channel estimation methods
mainly include least squares (LS) estimation, mini-
mum mean square error ( MMSE) estimation, adaptive

2 , etc. In fact, underwater acous-

channel estimation
tic channels have sparse structures, which means the
channel response can be modeled by several dominant
paths"*’.

proved suitable especially for sparse channels and have

Compressed sensing-based approaches are
been widely used in underwater acoustic channel esti-

The performance of channel estimation can be im-
proved by more pilots, however that will reduce the
communication rate. Compared to the traditional chan-
nel estimation, Iterative channel estimation (ICE) has an
additional iteration loop from the decoder to the channel

estimator for updating the channel state information. ICE
is equivalent to obtain an extra part of the data informa-
tion as pilots to re-perform channel estimation. There-
fore, more accurate channel estimation results can be
obtained without increasing the number of pilots.

ICE has been extensively studied in wireless com-
munications. In Refs[7-9], different hard/soft deci-
sion feedback methods with PSAM over flat-fading
channels were investigated. Ref. [ 10] proposed a new
threshold setting method, using a cost function compar-
ison as the test threshold to choose between current it-
eration and previous channel estimation results. For
underwater acoustic communication, hard decision
feedback was studied and tested for OFDM with experi-
mental data in Ref. [11], a turbo-detection scheme
using soft decision feedback was proposed for single-
carrier MIMO UWA communications in Ref. [ 12].
Furthermore,, for MIMO-OFDM systems, various feed-
back strategies were considered in Ref. [ 13].

In this paper, four feedback strategies are summa-
rized and more detailed simulations are given, inclu-
ding full hard/soft decision feedback and their thresh-
old-controlled versions, meanwhile the feedback strate-
gy proposed in Ref. [10] is improved, named as deci-
sion feedback based on the cost function.
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This paper is organized as follow. Section 1 de-
fines a system model and explains several channel esti-
mation methods. Section 2 compares these methods and
provides numerical simulation results. Section 3 con-

cludes the work.
1 System model

1.1 System and channel model
Considering an OFDM system with K subcarriers,
its OFDM symbol duration is T, the cyclic prefix inter-
,,» S0 the total OFDM block duration is 7" = T
+ T,. The system bandwidth is B and the subcarrier

spacing is Af = 1/T = B/K. The frequency of mth sub-

carrier 1is

m

val is T

, which can be represented by the system

center frequencyf,, f. = f. + m/T, wherem = - K/2,
-, K2 - 1.

Let s(m) donates the transmitted information on

the kth subcarrier, and the passband signal can be ex-

pressed as
K/2-1

x(t) =2Rel Y s(m) exp(2af,t)},
m=-K/2
te[0,7] (1)
The acoustic channel is a multipath channel, as-
suming that the channel is time-invariant within an

OFDM symbol ,
given by

the channel impulse response can be

gaaw 1) (2)

where , N_is the number of channel multipath, 7, and &,

h(T) =

are the delay and amplitude of the /th path, respective-

ly.
The recelved signal can be obtained as

y(1) = ZfMt—T,) +w(t) (3)

where w(t) is the additive noise.

1.2 Orthogonal matching pursuit based on com-
pressive sensing

Compressive sensing can reconstruct sparse signals
by matching the received signals with suitable elements
from the dictionary which is composed of parameterized
signals'"*! . Exploiting the sparsity of underwater acous-
tic channel, channel estimation can be transformed into
the reconstruction of sparse signals. At present, there
are two main methods for estimating the underwater
acoustic channel under the theory of compressive sens-
ing, orthogonal matching pursuit (OMP) algorithm and
basis pursuit ( BP) algorithm. In general, the OMP al-
gorithm can recover highly sparse signals efficiently and

has less computational complexity than BP algorithm,

thus it is more suitable for real-time processing sys-

""" In this paper, OMP algorithm is used to esti-

tem
mate sparse channel. The processing steps of the OMP
algorithm applied to underwater acoustic channel esti-
mation are as follows.

Firstly, define the path delay parameter set as

T, € {)\l[{’)z\i[];"”’Tg} (4)
where, A is time oversampling factor, and the total
number of candidate paths is N, = AKT,/T.

A linear model is usually used for sparse signals

y =Ax + 9 (5)

For channel estimation, y is the received pilot in-
formation, 1 is the noise vector, x € R"is the channel
information to be estimated, and A is the dictionary
constructed which can be written as

=la, ay,-,a, ] (6)
where a,(i = 1,2,--+,N_) is a K, x 1 vector.

Assume r, is the signal residual after p iterations
with the initial value r, = y. For the searching of the
element in dictionary, which has the largest inner prod-
uct of residual, the index of the element could be got:

| alr,  1?

s, = ar max — L 7
R SRR A PN E (7
where, I, = {s,,s,,***,s,_, | is the index set ob-

tained from the previous p — 1 iterations.
After Schmidt orthogonalization, the selected ele-

ment 1s

o la,, >
u, =a, - e 8
PTG ®
where , u, is the ith selected element after orthogonaliza-

tion. Then the estimation of signal x can be obtained :

PR/ (9)

2
TN

The residual signal is

xpa, (10)

the iter-

r,=r,, -

when | r, |5 <& (&is the preset threshold) ,
ations stop.

Multi-path delay estimation 7, can be obtained ac-

cording to the final index set and Eq. (5). Then cou-

pled with multi-path gain x, the matrix of channel fre-

P

quency response can be written as

N
H=YAA (1)
p=1
where A, is a diagonal matrix with

[A :Imm — —ﬂ'rrme/’I' (12>
1.3 Iterative channel estimation

The structure of receiver with ICE is shown in
Fig. 1. Here, low-density parity check (LDPC) codes
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are used, which have superior error-correcting perform-
ance that can achieve performance close to capacity
limit predicted by Shannon theory'"”’. In recent years,
more LDPC codes have been applied in underwater

acoustic communications''*"*'. In Fig. 1, received sig-
nal z is sent to the channel estimator to obtain the ini-

tial channel estimation. Then the output of the estima-

tor is passed through the channel equalizer, the de-in-
terleaver and finally to the LDPC decoder. In the feed-
back loop, the LDPC decoder yields log-likelihood rati-
o (LLR) of the code information symbols to update the
expectation of each symbol, which will be fed back to
channel estimator. The computation of LLR for ICE
can refer to Ref. [19].

&, Channel ff; Channel LE("’)

: s Interleaver Decoder
estimator equalizer
A
D
Hard/soft . L7(m)
decisi De-interleaver
ecision

Fig.1 Receiver with ICE

The followings are four main and an improved
feedback strategies.
Method 1. Soft decision feedback

i(m) = gP<s<m> = a)a (13)

where P is the probability of symbol.
Method 2. Hard decision feedback
s(m) =¢q,., 1" = argmaxP(s(m) = q,)

(14)

This feedback strategy selects the symbol with the
maximum probability from the decoding results.

Method 3. Threshold-controlled hard decision
feedback

iomy = [i(m) HGG) <L

0 otherwise

where H(s[m]) is the information entropy calculated
by the probability of symbol. The hard threshold I, lies
in [0,1]. Threshold-controlled feedback utilizes the
probabilities of decoded symbols as thresholds. The se-
lected threshold has an influence on system perform-
ance. If the threshold is too high, symbols fed back to
channel estimator are few, while if it is too low, the in-
formation fed back may not be reliable. We will dis-
cuss this question in the simulation section below.

Method 4 ; Threshold-controlled soft decision feed-
back

i(m) = {g(m) | s(m) | > T,

0 otherwise

where the soft threshold I, lies in [0,1]. Only when
the expectation of a symbol is higher than I", it will be

(16)

fed back to channel estimator.

Besides the above four feedback strategies, a new
feedback using cost function as the threshold is pro-
posed in Ref. [10]. The threshold is tested by compa-
ring the cost function of current ICE and initial channel
estimation. We propose an improved method based on

Eq. (5) in Ref.[10]. In the improved method, for

threshold test, the cost function of current ICE is com-
pared with previous ICE, instead of the initial channel
estimation. The benefit of this improvement is that the
cost function can be updated utilizing the result of the
previous iteration. Besides, pilot-aided channel esti-
mation with linear interpolation in Ref. [10] is re-
placed by OMP channel estimation in this paper. The
improved feedback is referred to as Method 5.
Method 5 Feedback based on cost function

Ym Ym (-1
HY = {Xf,{) f(@)$ JCHTY) (17)
HU™V otherwise
where, j donates the jth iteration, ([ ( ;/(';’ ) and

m
C(HU™V) are the cost function of the current and pre-

vious ICE on the mth subcarrier, respectively.
2 Simulation analysis

2.1 Performances comparison between hard/soft
feedback decision

An OFDM system with the simulation parameters

is shown in Table 1. The transmitted data is encoded

by a rate 1/2 LDPC code and modulated using QPSK.

Table 1  Parameters of OFDM system

Parameter Value
Sampling rate 48 kHz
System bandwidth 6 kHz - 12 kHz
Total number of subcarriers 1024
Number of data subcarriers 851
Number of pilot subcarriers 125
Number of null subcarriers 48
OFDM symbol duration 171 ms
Cyclic prefix interval 35 ms
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Ray acoustics model Bellhop'® is used to gener- Table 2 Parameters for Bellhop model
ate a shallow sea channel impulse response. The main Parameter Value
parameters that Bellhop model requires are shown in Water depth 69 m
Table 2, in which the sound speed profile is measured Sound speed profile in water measured
from a depth of 69m shallow water area in the South Sound speed in sea bottom 1 546 m/s
China Sea. Fig.2 shows the channel speed profile and Sea-bottom density 1 469 kg/m’
impulse response in simulations. Transmitter depth 20 m
Hydrophone depth 25 m
Range 800 m
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Fig.2 Channel speed profile and impulse response

The performance is compared between hard and
soft feedbacks at SNR =9.5 dB with different thresh-
olds, as shown in Fig.3. Both the hard and the soft
feedbacks have significant gains over the non-iterative

When the threshold value is lower than 0.7,

receiver .

10!

4

—+— Hard decision feedback
—6— Soft decision feedback
—— Non-iterative

0.6

1078

0.2

0.4
Threshold

Fig.3 BER performance for different feedback methods
with varying threshold

0.8

the performances of the two feedbacks are relatively
close, while when the threshold value is higher than
0.7, soft feedback performs better. It can be concluded
that soft decision feedback outperforms hard decision
feedback. This is because, in general, soft decision
feedback can make full use of statistics information.

2.2 Performances under different number of iter-
ations
The soft decision feedback performances under
different iterations are shown in Fig.4 and Fig.5. The
BER and the normalized mean square error (NMSE) of
channel estimation are compared respectively. NMSE
is defined as
NMSE = E{ |H-H|*/ | H|"! (18)
In Fig.4, ICE improves the performance signifi-
cantly over the non-iterative receiver. And the gain of
the first iteration is more obvious, which is about 1dB.
As the number of iterations increases, the performance
of the system improves continuously and tends to con-
verge after 4 times. Fig.5 shows the corresponding
NMSE of ICE. It can be seen that as the iteration in-
creases, the NMSE gradually decreases, which means
that the channel estimation result becomes more accu-
rate.
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Fig.4 BER performance with different iterations ( Method 1)
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Fig.5 NMSE performance with different iterations ( Method 1)

2.3 Performances of ICE with different pilot in-
tervals

Fig. 6 compares the performance of ICE at differ-
ent pilot intervals 4, 8 and 12. Method 1 is used and
the number of iterations is 4. It shows that as the pilot
interval increases, ICE performance decreases and the
gain between iterative and non-iterative channel estima-
tion is more significant. Because in the case of fewer
pilots, the additional pilots fed back are more valuable
for channel estimation. In addition, the performances
of the two cases (pilot interval =4, 8 ) have a signifi-
cant difference with non-iterative channel estimation,
while becoming very close after ICE, which further
shows that iterative strategy can save the number of pi-
lots.

2.4 Performances comparison between soft deci-
sion feedback and the decision feedback
based on cost function

Fig.7 and Fig.8 show the performance of BER

and NMSE, respectively, using the decision feedback
based on the cost function. A similar conclusion with
Method 1 can be drawn, Both BER and NMSE of ICE

perform better than the non-iterative receiver. Besides,
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& ; - \
5 pilot interval s
- pilot interval=4 \
107 ¢ v E
—4— non-iterative(pilot interval=12) X
— -4~ iterative(pilot interval=12) “A
107 —%— non-iterative(pilot interval=8) | \ 4
— - - iterative(pilot interval=8) ‘\ 3
—— non-iterative(pilot interval=4) | ¢
= -0~ - iterative(pilot interval=4)
10° T T T L L L
6 7 8 9 10 11 12 13

SNR(dB)
Fig.6 Performance of ICE with different pilot interval ( Method 1)

10° . . . 7 . , . : .

—+— non-iterative

—E— iter=1

—— iter=2

—— iter=3

—O— iter=4

6 6.5 7 7.5 8 85 9 95 10
SNR(dB)

Fig.7 BER performance with different iterations ( Method 5)
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Fig.8 NMSE performance with different iterations ( Method 5)
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as the iteration progresses, the system performance
gradually promotes until it reaches stability.

Finally, the two feedback Methods 1 and 5 are
compared when the system performance achieves stabil-
ity (the number of iterations is 4) , as shown in Fig. 9.
It can be seen that the performances of the two methods
are quite close.

10° ,
10" E
107}
[~4
53}
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—6&— Methodl Y
—#— Method5
10 -5 | | | L I I L

6 65 7 75 8 85 9 95 10 105 11

SNR(dB)
Fig.9 Performance between Method 1 and Method 5 when

iteration reaches a steady state
3 Conclusion

This paper investigates ICE that couples channel
estimator and decoder for underwater acoustic OFDM.
Five feedback strategies are considered to improve per-
formance and are compared through numerical simula-
tions. It is found that ICE has pronounced gains over
the non-iterative receiver and the gains are more signif-
icant when pilots are fewer. Among these feedback
strategies, soft decision feedback outperforms hard de-
cision feedback generally. The performances of soft de-
cision feedback and feedback based on cost function
are quite close.
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