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Abstract

Facing the very high-resolution (VHR) image classification problem, a feature extraction and
fusion framework is presented for VHR panchromatic and multispectral image classification based on
deep learning techniques. The proposed approach combines spectral and spatial information based on
the fusion of features extracted from panchromatic ( PAN) and multispectral ( MS) images using
sparse autoencoder and its deep version. There are three steps in the proposed method, the first one
is to extract spatial information of PAN image, and the second one is to describe spectral information
of MS image. Finally, in the third step, the features obtained from PAN and MS images are concate-
nated directly as a simple fusion feature. The classification is performed using the support vector ma-
chine (SVM) and the experiments carried out on two datasets with very high spatial resolution. MS
and PAN images from WorldView-2 satellite indicate that the classifier provides an efficient solution
and demonstrate that the fusion of the features extracted by deep learning techniques from PAN and
MS images performs better than that when these techniques are used separately. In addition, this
framework shows that deep learning models can extract and fuse spatial and spectral information
greatly, and have huge potential to achieve higher accuracy for classification of multispectral and
panchromatic images.

Key words: image classification, feature extraction( FE) , feature fusion, sparse autoencoder,
stacked sparse autoencoder, support vector machine (SVM ) , multispectral (MS) image, panchro-

matic( PAN) image

0 Introduction

The development of earth observation ( EOQ) sen-
sors technology allows the development of new and fas-
tidious methods for feature extraction and fusion of re-
mote sensing images with the aim of obtaining more rel-
evant classification maps. Remote sensing image classi-
fication has become a challenging task because of the
importance of great realization of land cover and land
use maps for many multi-temporal studies in different
fields as agriculture, urban, geology, security, etc.
Satellites have been frequently employed to get land-
cover information on the earth surface. Most of the re-
cent works in remote sensing classification topic are re-
alized based on images from optic satellites. These
types of satellites can be divided into two categories;
hyperspectral ( HYP) sensors and multispectral sen-
sors, where the second category can obtain panchro-
matic (PAN) and multispectral (MS) images.

The advanced classification methods are based on
spatial-spectral feature extraction and fusion techniques
which improve their efficiency particularly those based
on deep learning models. In last decade, feature extrac-
tion (FE) and fusion methods are considered as robust
techniques in remote sensing image processing topics.

Traditional feature extraction methods usually have
limited performance in feature learning. However, in

"'} motivated by the hierarchical

the last twenty years
organization of the human brain, deep learning has
been proposed to exiract the features in a hierarchical
manner, which also provides a promising direction for

. The feature extraction

deep feature-based fusion
and fusion techniques based deep learning is used re-
cently in many frameworks like a fusion of hyperspec-
tral (HYP) and LIDAR data, pan-sharpening, hyper-
spectral and multispectral data fusion, etc.

The purpose of the work is to develop a new

framework based on deep feature extraction and fusion
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of spectral and spatial information for accurate classifi-
cation of multispectral (MS) and panchromatic ( PAN)
images. To obtain an accurate land cover and land use
map, details of both fine spatial information from PAN
image and the rich spectral information of MS image
should be simultaneously taken into account to solve
the classification problem to get a good land-cover
map. The target of pansharpening technique is to in-
tegrate the information with different spatial and spec-
tral resolution from a variety of earth observation plat-

forms'?’

. In order to get satisfactory results for the im-
age classification task, many image fusion techniques
have been proposed to merge PAN and MS images to
obtain high spatial resolution and wide spectral infor-
mation. Usually, the multiresolution image classifica-
tion process is divided into two parts. The first one is
to generate a common resolution image by means of
downsampling or upsampling>*' | unmixing"®’ or pan-
sharpening'®’’ algorithms. The second one is to classi-
fy the fused data by supervised methods. However, the
artifacts or distortions from the geometric corrections
7 affect the classifi-

cation results. There are also some other techniques

and pixel-level fusion procedures

proposed for multiresolution classification without the
procedure of image fusion'®*’.

In this paper, the potential of a new framework
based on deep learning models for feature extraction
and fusion of panchromatic (PAN) and multispectral
(MS) images is investigated. The purpose is to present
new successful classification results and prove that the
fused features extracted from PAN and MS images are
more robust and deep for classification than the features
extracted from PAN and MS images separately. In the
stacked
(SSAE) is used for extracting spectral features of MS

proposed framework sparse autoencoder
images, then the sparse autoencoder ( SAE) is em-
ployed for extracting the spatial features of PAN ima-
ges. Finally, deep features obtained from PAN and MS
images are concatenated directly as a simple fusion fea-
ture. The final step is the integration of the fused fea-
tures into SVM for classification.

The rest of the paper is organized as follows. Sec-
tion 1 presents the description of the proposed method.
Section 2 exposes the experimental results and com-
pares the results with some feature extraction and fu-
sion methods. Section 3 is the conclusion.

1 Methodology

1.1 Sparse autoencoder ( SAE) and stacked
sparse autoencoders ( SSAE)
Hinton and his collaborators proposed the first

deep learmning (DL) network. One of the major bran-
ches of deep learning models is sparse autoencoder
which is a bioinspired hierarchical neural network and
has an intrinsic ability to extract more abstract fea-
tures' .

Chen et al. """ introduced the first work of deep
learning in remote sensing field in 2013. They used a
deep learning model named stacked autoencoders based
feature extraction for spatial-spectral classification of
hyperspectral data'""’.

A standard SAE contains three layers: one input
layer, one hidden layer, and one reconstruction layer.
Commonly, the previous layer neurons are connected to
the next layer neurons, but no connections among the

o according to

same layer neurons However,
Refs[ 11-15], sparse autoencoder is exposed as fol-
lows.

The input data ( original image) is defined as
fx(1), x(2) -, x(n),~, x(N) |, wherex' € R".
To be convenient in the following, x is used for the in-
put and & for the hidden when explaining SAE. In the
training of SAE, there are two steps: encoding and de-
coding.

During the encoding step, the input vectorx € R”
is processed by applying a linear mapping and a non-
linear activation function to the network ;

h = f(W,x +b,) ()
where, W, e R ""is a weight matrix with K features,
b, € R"is the encoding bias, and fis the logistic sig-
moid function as

f(x) =1 +exp(—x)” (2)

A vector is decoded using a separate linear deco-
ding matrix ;

2= f(Wh+b.) (3)
where, W. € R ™" is a weight matrix and b, € R "is
the decoding bias. W, and W, denote the input-to-hid-
den and the hidden-to-output weights, respectively.
For rendering the parameterizations identical, W = W,
= W is restrained and b, , b, denote the bias of hidden
and output units respectively. By employing the back-
propagation algorithm, features in the data are extrac-
ted by minimizing the difference between input and its
reconstruction, and the objective function of autoen-
coder is

Arg miny, [ L(x, z) ] (4)

The reconstruction error can be measured in many
ways depending on the appropriate distributional as-
sumptions on the input given the code'”'. The tradi-
tional squared error can be used:

Lx,2) = [x-z 1" +2 | WI|* (5)

However, the objective function of SAE architec-
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ture with a weight decay term and a sparsity constraint
term is defined as
L(x,2) = |a-z " +a | WI*+BKL(x | 2)
(6)
The first term on the right side of Eq. (6) is an
average sum-of-squares error term which represents the
gap between x and z. The second term denotes the
weight decay term, which is employed to reduce the
autoencoder from overfitting by controlling the ampli-
tude of the weights, A is a weight decay parameter.
The third term denotes a sparsity penalty term, 8 con-
trols the weight of the term, and KL is a Kullback-
Leibler divergence;

KL(x [2) = 3 [xlogs + (1 =% log(1 =) ]
(7)

where , K is the number of neurons in the hidden layer,
and index j is summing over the hidden units in the
proposed network. For the minimization process of ob-
jective function L(x, z), the stochastic gradient de-
scent (SGD) and backpropagation algorithm are used
to update parameters W and b in each iteration.
Afterward, L(x, z) is expected to produce a con-
siderably small value which prompts SA to learn ab-
stract features from original data. Stacked sparse au-

toencoder (SSAE) is a layer-wise encoding neural net-
work in which multiple layers of sparse autoencoders
are stacked and pre-trained via greedy methods layer

1) SSAE yields a deep representation of in-

by layer!
put data at the output of the last layer. After finishing
training a former layer of parameters, the subsequent
layer is trained according to the output of its previous
layer. Stacking these input-to-hidden layers sequential-
ly constructs a stacked autoencoder' '’

The learning process of SSAE is equivalent to the
SAE architecture, with the objective function is to min-
imize the reconstruction error. In this work, stacked
sparse autoencoder is used to compute deep representa-
tions of spectral data for extracting high-level features
from the original MS data. In another part, sparse au-
toencoder is employed for extracting spatial information

from PAN data.

1.2 General framework

In this section, the structure of the proposed ap-
proach is exposed. Before the beginning of the image
processing step, pre-processing should be made for the
datasets. The general framework of the approach is
shown in Fig. 1.

— g— Deep spectral
"""" X features
Georeferenced \y
multispectral image pixels vector SSAE (2 SAE)
Pre-processing:
Geometric
Corrections | ~
/
i Feature fusion by
| concatenation
Spatial
| features
Panchromatic image: i
reference image 1
1

Pixels vector

SAE

Fig.1 The general framework

1.2.1

Before starting the image processing step, it is

Image pre-processing

necessary to make pre-treatment. The satellite images
downloaded from the Digital Globe website are images
that have been radiometrically corrected. The multi-
spectral MS image was georeferenced using the pan-

chromatic (PAN) image as a reference. This process
of geometric corrections has been realized using the
ERDAS software. In addition, the PAN image is re-
sized to MS resolution and dimension.

1.2.2

The framework of the proposed method is shown in

Image processing
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Fig. 1. The first step is to extract deep spectral features
from the MS images after the pre-processing level,
using stacked sparse autoencoder and only two SAE are
used. Then the high spatial information is extracted
from the original PAN image using one sparse autoen-
coder. The third step is the feature fusion and classifi-
cation. The spatial and spectral features obtained from
PAN image, MS image respectively, are concatenated
directly as a simple fusion in one fused data, and final-
ly, classification is performed using the SVM classifi-
er.

2 Experiments and discussion

In order to study the potential of the proposed
framework for PAN and MS image classification, two
datasets of different areas are adopted. The experi-
ments are carried out using datasets of WorldView-2

(c) Ground Truth date
Fig.2 (a) MS-Washington DC image with true colors, (b) PAN-Washington DC image and (¢) Ground Truth date

satellite and ground truth files there. The first one is
Washington DC data and the second one is Stockholm
data used for the first time in Ref.[14] and
Ref. [15].

2.1 Datasets

The first data set Washington DC, USA, was ac-
quired with the WorldView-2 satellite on February 9th,
2016. As shown in Fig.2, the dataset analyzed is
available with 8 spectral bands and spatial resolution
0.4 m for panchromatic and 1.6 m for multispectral.
The dimension of the MS and PAN images used for the
processing is 2 438 x 896 pixels. The ground reference
data constructed by visual inspection ( photointerpreta-
tion), GIS tools and helped by Open Street Map
(OSM) , consist of 8 classes of interest as described in

Table 1.

(b) PAN-Washington DC image

Unlabeled
Vegetation-Grass
Trees
Water 1

Building 1

Pond Water
Building 2-roof
Building 3

Building 4

Table 1  Eight ground reference classes of Washington DC data'"’
Class number 1 2 3 4 5 6 7 8
Class name Grass Trees Water 1~ Building I ~ Pond water Building 2 —roof Building 3 Building 4
Total Samples 14550 12846 148872 18 153 22 859 19 229 3 545 12 468

The second data set Stockholm, Sweden, was ac-
quired with the WorldView-2 satellite on August 27th,

2016. As shown in Fig.3, The dataset analyzed is

available with 8 spectral bands and spatial resolution
0.4 m for panchromatic and 1.6 m for multispectral.

The dimension of the MS and PAN images used for the
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processing is 832 x 416 pixels. The ground reference
data constructed by visual inspection ( photointerpreta-

(a) MS-Stockholm image with true colors

tion), GIS tools and helped by Open Street Map
(OSM) , consist of 7 classes of interest ( Table 2).

Unlabeled
Building 1-roof |
Building 2
Building 3
Building 4
Water
Grass

Trees

(c) Ground Truth data
Fig.3 (a) MS-Stockholm image with true colors, (b) PAN-Stockholm image and (¢) Ground Truth data

Table 2 Ground reference classes of Stockholm data

[15]

Class number 1 2 3 4 5 6 7
Class name Building 1-roof Building 2 Building 3 Building 4 Water  Grass Trees
Total Samples 3720 2295 1387 2582 24162 2929 3073

2.2 Experiments and analyses

In the experiments, sparse autoencoder (SAE) is
used for extracting spatial features from the original
PAN images to make full use of the spatial information
around each pixel’ s neighborhood and keep the spatial
information. For each pixel of PAN image, there are w
x w neighbor pixels with a region size of w = 28. Since
PAN image has only one channel, a pixel can be re-
presented as a box with w X w X 1 members.

The SSAE architecture has shown high potential to
learn a representation of remote sensing data with mul-
tiple levels of abstraction. In the proposed framework,
SAE is employed to extract deep spectral features from
the original MS image ( georeferenced).

In the two datasets, the labeled parts of the ima-
ges are divided into two sets; training samples and tes-
ting samples. R = 0.01 is chosen randomly as the

training-rate (1% ) from the labeled samples from each
class and the rest is defined as the testing and valida-
ting set.

The MS image contains 8 bands, a single pixel
can be represented as an 8-dimensional vector. Win-
dow structure can increase the discriminant informa-
tion. Therefore, a pixel can be represented by a box
with w X w X 8 pixels (w = 28).

The ground truth map of ‘ Washington DC’ and
¢ Stockholm ’
beled scene, the black area represents the unlabeled
area. Different values of the SSAE and SAE parameters
were experimented, and Tables 3, 4, 5, 6 list the
classification accuracy of (SSAE + SVM) and (SAE +
SVM) for MS and PAN images of Washington DC and

Stockholm data respectively, versus the number of neu-

data'™ were constructed. In each la-

rons in a hidden layer.
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Table 3  Classification accuracies from different of hidden sizes for MS-Washington DC data

Washington DC Measurement h =50 h =100 h =200 h =300 h =400 h =500
OA (%) 98.3949 98. 8054 99.0122 99.0822 99.1099 99. 0690
MS - SSAE Kappa 0.9743 0.9808 0.9842 0.9853 0.9857 0.9851
AA 0.9685 0.9753 0.9774 0.9796 0.9811 0.9805
Table 4  Classification accuracies from different of hidden sizes for PAN-Washington DC data
Washington DC Measurement 50 100 200 300 400 500
OA (%) 87.4328 87.48 87.6053 87.8099 87.5511 87.5071
PAN - SAE Kappa 0.7989 0.7997 0. 8000 0. 8049 0.80 0. 8000
AA 0.6492 0. 6495 0.6616 0.7265 0.6568 0. 6496
Table 5 Classification accuracies from different of hidden sizes for MS-Stockholm data
Stockholm Measurement h =50 h =100 h =200 h =300 h =400 h =500
OA (%) 98. 6659 98.7877 98. 8348 99.0534 99. 0562 98.9842
MS - SSAE Kappa 0.9780 0.9801 0.9808 0.9844 0.9845 0.9833
AA 0.9692 0.9738 0.9746 0.9803 0.9805 0.9782
Table 6 Classification accuracies from different of hidden sizes for PAN-Stockholm data
Stockholm Measurement 50 100 200 300 400 500
OA (%) 81.4392 81.4725 81.7575 81.8572 81.9374 81.2981
PAN - SAE Kappa 0.6919 0.6922 0.6976 0.6993 0.7009 0.6892
AA 0.5572 0.5614 0.5638 0.5658 0.5711 0.5533

The fusion of each instance of MS-SSAE with each
instance of PAN-SAE is used, meaning that each in-
stance of MS-SSAE ( according to Table 3) is fused
with six instances of PAN-SAE (Table 4).

The best classification performance for Washington

highest overall accuracy is estimated at 99.84% for
Washington DC data and 99.33% for Stockholm data
(Table 7, Fig.4).

Table 7  Classification accuracies of the proposed method

for the two datasets

DC data can be obtained (h, = h, =400, for MS-

SSAE) fused with features of PAN-SAE with hidden Data O0A(% ) Kappa AA
size (h =300). On the other hand, the best classifi- Washington DC 99.84 99.63 0.9938
cation performance for Stockholm data can be obtained Stockholm 99.33 98.91 0.9860

with h, = h, =400, for MS-SSAE and fused with fea-
tures of PAN-SAE with hidden size (A =400). The

' fa 0.9
. 038 08
s 0.7 0.7
4 0.6 0.6

05 0.5
: 04 04
6 03 03
. 0.2 0.2
8 0.1 0.1

1 2 3 4 5 6 1 8 0 1 2 3 4 5 6 7 '

(a) Confusion matrix of Washington DC data

(b) Confusion matrix of Stockholm data

Fig.4 Confusion matrix
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For these two datasets, the proposed method was
trained by stochastic gradient descent, with a batch
size of 64, the maximum number of iteration is 1 000
for both SAE and SSAE, and sparsity penalty value is
0.001 for both MS-SSAE and PAN-SAE. In addition,
there is no important change in the classification accu-
racy using a big number of neurons for the same train-
ing rate.

The SVM classification accuracy after feature fu-
sion ( MS-SSAE + PAN-SAE = feature fusion fed into
SVM) is exposed in Table 7 such as, in SVM, the
kernel function is radial basis function ( RBF), the

semi-radius of the kernel function g =1 and penalized

parameters ¢ = 100. The accuracy assessment of the
proposed approach is demonstrated by the overall accu-
racy (OA), average accuracy ( AA) and the kappa
coefficient. In addition, the individual class accuracies
were evaluated by the producer’s accuracy (PA) and
the user’ s accuracy (UA) measures (Table 8, 9).
The results are compared with different frameworks ap-
plied to the same datasets (Table 10). These compar-
ative methods are exposed with their best parameters
such as SVM is employed for all the comparative meth-
ods for classification with the same parameters like in
the approach where the overall classification accuracies
are shown in Table 10.

Table 8 Individual class accuracies by PA and UA for Washington DC data
Washington DC Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
PA 0.9861 0.9878 0.9959 0.9989 0.9958 0.9984 0.9961 0.9973
UA 0.9973 0.9880 0.9976 0.9996 0.9917 0.9973 0.9981 0.9968
Table 9  Individual class accuracies by PA and UA for Stockholm data
Stockholm Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
PA 0.9992 0.9903 0.9905 0.9994 0.9850 0.9775 0.9801
UA 0.9970 0.9927 0.9850 0.9999 0.9800 0.9788 0.9790
Table 10 Comparison of the overall classification accuracies (OA)
Proposed ) M2 M3 M4 M5 M6 M7 M8
method
Washington DC (% ) 99. 84 99.10 87.80 99.56 99.64 98.80 98.58 98.79  99.01
Stockholm (% ) 99.33 99.05 81.93 98.70 99.13 98.27 98.43 98.12 98.77

The comparative methods are presented as fol-
lows.
Method 1 (M1) ; Stacked sparse autoencoder for the
multispectral images ( MS-SSAE) using two SAE where
the hidden size is h, = h, =400 for both Washington
DC and Stockholm data (Table 3, 5).
Method 2 (M2) : Sparse autoencoder for the panchro-
matic images ( PAN-SAE) with hidden size A =300 for
Washington DC data and h =400 for Stockholm data
(Table 4, 6).
Method 3 (M3)'/. (MS-EMAP) + SAE such as
EMAP + SAE applied to MS image consists of two
steps. The first step is to construct EMAP = [ EAP,
EAP,], where A, =[100 500], N, =[25 125], ex-
ploiting the spatial information. The second step is to
use sparse autoencoder on the obtained features to re-
duce the high dimensionality of EMAP and extract the
robust spatial features (with h =10 for Washington DC
data and h =25 for Stockholm data). Classification is

performed on the reconstruction layer of SAE by using
a multiclass SVM.

Method 4 (M4) ). [ ( MS-Spectral + EMAP) +
SAE] such as ( Spectral + EMAP) + SAE applied to
MS image consists of ; the first step is to build EMAP =
[EAP, EAP, ] with A, = [100500], X, = [25125].
After that, the spectral information of the original im-
age is combined with spatial information. Then, SAE
is used (with hidden size h =10 for Washington DC
data and h =25 for Stockholm data) for feature extrac-
tion and dimensionality reduction. Finally, the classifi-
cation is performed on the reconstruction layer of SAE
by using SVM.

Method 5 (M5): Fusion of MS-SSAE and ( PAN-
EAP) + SAE using two SAE where the hidden size for
both Washington DC and Stockholm data is h, = h, =
400. The used EAP is EAP, with A, = 500. The hid-
den size of SAE is h =5 for Washington DC data and h
=15 for Stockholm data. The spectral (MS) and spa-
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tial (PAN) features are simply concatenated and the
classification is performed by SVM on the fused vector.
Method 6 (M6 ). Fusion of MS-SSAE and ( PAN-
Spectral + EAP) where for MS-SSAE two SAE with the
hidden size h; = h, =400 are used for both Washington
DC and Stockholm data. For ( PAN-Spectral + EAP)
+ SAE, The used EAP is EAP, with N\, = 500 and the
hidden size of SAE is h =5 for Washington DC data
and h =15 for Stockholm data. The classification is
performed using the concatenated spatial and spectral
features as the input of the SVM classifier.

Method 7 (M7) ;. SVM for MS image where the kernel
function is radial basis function ( RBF) , the semi-radi-
us of the kernel function g =1 and penalized parame-
ters ¢ = 100.

Method 8 (M8) . MS @ PAN fed into SSAE using
two SAE where the hidden size for both Washington DC
and Stockholm data is A, =h, =600. In addition, SVM
is used for performing the classification where the ker-
nel function is radial basis function (RBF) , the semi-
radius of the kernel function g =1 and penalized pa-
rameters ¢ = 100.

As it is shown in Table 7, classification results u-
sing feature extraction and techniques present high ac-
curacies and the proposed method has the best accura-
cy.

In addition to the high accuracy obtained by the
proposed approach, the UA and PA individual accura-
cies demonstrate ( Table 8, 9 ) that the proposed
framework can extract greatly features from the built
classes ( buildings ). Thus, this approach operated
with small training rate in urban areas gave satisfactory
results for classification problem.

3 Conclusion

In this paper, a new feature extraction and fusion
strategy are proposed for remote sensing image classifi-
cation based on the spatial-spectral information. The
purpose of the work (D-SS Frame) is to develop a new
framework based on deep feature extraction and fusion
of spectral and spatial information for accurate classifi-
cation of multispectral (MS) and panchromatic ( PAN)
imagery.

Firstly, spectral features are extracted from MS
image by stacked sparse autoencoder (SSAE) network
and get spatial features from PAN image by sparse au-
toencoder ( SAE ), respectively. Secondly, two kinds
of features are concatenated, as a simple feature fusion
manner. Finally, the SVM classifier is used to identify
the high features.

The proposed method obtains satisfactory results

where the classification results are very close to the
ground truth map. D-SS Frame proves its robustness
compared to others frameworks based on feature extrac-
tion and fusion or only feature extraction for MS and
PAN image classification. In addition, the efficiency
and the robustness of the algorithm on other optical re-
mote sensing images with different spatial resolutions is
a very important factor, which will be researched in the
future work.
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