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Abstract

Aiming at improving the estimation accuracy and real-time of nonlinear system with linear
Gaussian sub-structure, a novel marginalized cubature Kalman filter is proposed in Bayesian estima-
tion framework. Firstly, the marginalized technique is adopted to model the target system dynamics
with nonlinear state and linear state separately, and the two parts are estimated by cubature Kalman
filter and standard Kalman filter respectively. Therefore, the linear part avoids the generation and
propagation process of cubature points. Accordingly, the computational complexity is reduced.
Meanwhile, the accuracy of state estimation is improved by taking the difference of nonlinear state
estimation as the measurement of linear state. Furthermore, the computational complexity of margin-
alized cubature Kalman filter is discussed by calculating the number of floating-point operation. Fi-
nally, simulation experiments and analysis show that the proposed algorithm can improve the per-

formance of filtering precision and real-time effectively in target tracking system.

Key words: state estimation, marginalized modeling, mixed-Gaussian model, cubature Kal-

man filter

0 Introduction

State estimation is widely used in military and de-
fense fields such as aerial reconnaissance and early
warning, ballistic missile defense and battlefield sur-
veillance, civilian fields such as air traffic control, in-
telligent vehicles and robot vision. However, with the
rapidly development of technology of sensors, commu-
nication and computing ability, the higher requirements
of accuracy and real-time in practical target system ap-
plication are needed. State estimation methods are of-
ten accompanied with nonlinear problems. Unfortunate-
ly, endless parameters are needed to describe posterior
probability density function for nonlinear system esti-
mation, which can be hardly applied in practice. Only
some specific problems can obtain the optimal solu-
tion''*'. For this reason, many domestic and foreign
scholars have carried on the approximations of the pos-
terior, and proposed massive suboptimal methods.
Among them, the random sampling filter represented
by particle filter (PF)"**! and the determination sam-

pling filter represented by unscented Kalman filter
(UKF) "7 cubature Kalman filter ( CKF) ™" are
widely used for nonlinear estimation.

Particle filter uses a set of random weighted parti-
cles in the state space to approximate the probability
density function. It is not constrained by the model as-
sumption of linear and Gaussian and suitable for most
nonlinear non-Gaussian dynamic system. However, the
random sampling nonlinear filter is computationally in-
tensive and requires a large number of particles to en-
sure the accuracy and convergence. For such prob-
lems, the theoretical derivation of marginalized particle
filter ( MPF) for three types of models is given in
Ref. [ 11] according to the system modeling from spe-
cial to general. It provided an effective filtering method
for nonlinear system with linear Gaussian sub-struc-
ture. Subsequently, Schén et al'*'. applied this meth-
od to the felids of submarine topographic location and
target tracking to estimate the submarine’s own posi-
tion. It was pointed out that it is difficult to obtain

more accurate linear measurement of map database dur-
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ing terrain-assisted location. But the use of multi-sen-
sor measurement in MPF can effectively avoid the error

caused by linearization'*’ .

Karlsson et al. !'>"

analyzes the computational
complexity of MPF in theory and simulation by calcu-
lating the number of floating-point operation and the
equivalent floating-point operations, proving that MPF
has better real-time performance. Hu and Liu'"*' opti-
mizes the consistency of particle weights by construc-
ting consistency distance and the consistency matrix to
improve particle filter accuracy in nonlinear system.
However, due to the inherent defect of random sam-
pling filter, the computation of marginalized particle
filter is still large. Compared with the random sampling
filter, UKF generates a set of points through determin-
istic sampling and nonlinearly transform strategy to
characterize the distribution of system state variable. It
is proved that UKF performs an effectively weighted ap-
proximation to nonlinear posterior distribution, and is
strongly universal for nonlinear Gaussian system'”"'*’.
To improve the filtering accuracy, an alternative frame-
work for iterated unscented Kalman filter is presented
in Ref. [7].

tion of UKF is reasonable directly influences the posi-

However, whether the parameter selec-

tive define of filter covariance and the state estimation
accuracy. Similaritily, CKF uses the third-order cuba-
ture rule to approximate weighted Gaussian integral ,
and the nonlinear state posterior probability density
function is approximated by a set of weighted determin-
istic sampling points. In the process of sampling and
filtering the weight of CKF is always positive, ensuring
the filtering covariance positive definite''”’. In addi-
tion, because the number of samples of deterministic
sampling method is smaller than random sampling,
CKF has better real-time than PF'''.

Considering the nonlinear system with linear
Gaussian sub-structure and the superiority of CKF, the
nonlinear state and linear state of target tracking system
are modeled separately by marginalized theory. As a
result, a novel marginalized cubature Kalman filter
(MCKF) algorithm is proposed to improve tracking ac-
curacy and real-time. The MCKF has two advantages.

1) In the standard CKF, both non-linear state
and linear state need to calculate and propagate cuba-
ture points, while this process can be avoided in the
linear state estimation in MCKF, and its real-time per-
formance can be improved.

2) Since the linear state and nonlinear state are
filtered by CKF and KF respectively, the optimal esti-
mation condition is satisfied in the linear estimate
process, which improves the accuracy of global state
estimation.

1 Marginalized modeling

Considering a class of nonlinear systems with line-
ar Gaussian sub-structure, the system is modeled as
follows according to marginalized principle

Xyp = f}\*,k(va,k—l ) +f‘2w,k(xl‘,k—l ) + WDy (1)

Xk = Fi,kx/\’,k—l + Fi.kxl,,kfl T (2)
where, x, , and x, , denote the nonlinear and linear
states respectively, f\k( ) and F i,k denote the transfer
function matrices of nonlinear state and linear state re-
spectively. Nonlinear system noise @, , and linear sys-
tem noise @, , are independent, and with respect to

2
Wy ~ (0,0,

w‘\‘./;) and @, , ~ GM(O,O'iL.k) , respec-
tively. The system nonlinear state measurement and
linear state measurement are given as follows.
Zyy = b (xy,) + vy, (3)
2 = Cxpy + v, (4)
Among them, k( +) is measurement matrix, deno-
ting the mapping relationship from x , to z, , function,
C, is linear measurement matrix. The measurement
noise vy, and v, , are independently Gaussian white
noise, and v, , ~ c/\"(O,a'j\’k) SV ™ 44’(0,0'314.]{). In
particular, when the linear state only contains velocity ;
Z = (Xy, =Xy ,)/T +v, (5)
where, 7 denotes the sampling interval.

2 Marginalized cubature Kalman Filter

According to Bayesian method, the system state
estimation can be realized by calculating posterior
probability density function ( PDF). However, the an-
alytical solution PDF can’t be obtained in nonlinear
systems. MCKF filtering for nonlinear state and linear
state separately, that is, the posterior distribution of
the nonlinear state is calculated by cubature point ap-
proximation, and the analytical solution of PDF is re-
presented by mean and variance in linear part. To a-
chieve the overall system estimates, the steps are given
as follows.

1) Nonlinear state prediction

® (alculating cubature points

P/\",k—llk—l = Sk—llk—] (Sk—llk—l )T (6)

Nietiier = S + By (7)
where, n denotes the number of nonlinear state dimen-
sion, L = 2n and & = /L/2[8],,i = 1,2,-,L,
[86], € " denotes the ith column element in [ 1",
I e

e (Calculating propagation

cubature  points

X;,}flk—l , state one-step prediction £ ,,_, and state pre-
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diction error covariance Py ¢ (Calculating state prediction x, ,,,_, and its co-

X;,}rﬁk—l = f;f(Xi Nok-11ko1) +ﬁ(xL,k—Hk—1) (8) variance P ;.

Xy = z X,\ -t /L (9) Xy = Fixy o + Fixg (20)
T Zyer = Hixp o (21)

Py = \klkl(XNklkl /L P _F4PLkl\A1(F )T +0w1k1 (22)

- xN,k\ pet (B )+ 0'3,3\‘,1,, (10)

¢ Calculating measurement cubature points
Py = S X (S )" (11)
Syiag + &y i (12)

e Calculating propagation cubature points Z}, ,,_,

¢ Calculating filtering gain K, ,
KL,k = PL,ka—lHI,k(HL,kPL,ka—lHI,k + O'fw) -
(23)

NHE-T = 4) Linear state update

Considering the difference between current estima-
and measurement prediction Z ,,_,

va,klk-l = h<X§\’,ka—l)
n L
LN k-1 = 2 L-ZIZN,ka—l/L

e Calculating covariance Py ,,_, and the mutual

tion and the previous one in nonlinear state estimation
(13) as the measurement of linear state
(14) L = (-’ew’,klk - xAN,lr—Hk—l )/T (24)
o = Xpo + Kz —Hy® ) (25)

S e NN . Py =Py + K H Py (26)
interaction covariance between estimation and measure- . . . .
Xz 5) Merging state estimation and covariance
ment Py, | X A A T
. Lo, ; v L= (X Byl (27)
Nk k-1 = Zizlzw,m-l(zw,m-]) /L P,,. 0. (28)
2 2 T 2 P, = [ ’ " ]
- z\’ wiet Bvpe) -+ (LI (15) HE 0w Prus
P, = z XA wiet (Zy ) /L Considering the marginalized theory and the supe-
5 16 riority of CKF, the nonlinear state and linear state of
= Xy i1 (B ) (16) . .
L . target tracking system are modeled separately. To illus-
e (alculating filtering gain K, , > .
a0 trate the realization mechanism of MCKF, the frame-
Ky, = Py (P5 o) (17)

On

we propose a novel marginalized cubature

work of the proposed algorithm is given in Fig. 1.
this basis,
Kalman filter algorithm to improve filtering perform-

2) Nonlinear state update

e = Byao + Ky 2y = Zyiier)
22 T

Py i :Pe‘\",klk-l 'Ks\’,kPN.k\k-] (ka>

3) Linear state generalized prediction

(18)
(19)

ance, the implementation is summarized in Algorithm 1.

Li

b |

Nonlinear state Nonlinear state

Nonlinear state

(position) prediction estimation
Marginalized ¥ Global | Output
model S e L S 2 state —
estimation

Linear state Linear state

prediction % estimation

i |
Fig. 1 The framework of MCKF

Linear state
(velocity)

Algorithm 1 The Realization of MCKF

a) Initialize the linear and nonlinear states separately.
x:‘\“,l = I:xl(ly]) xl(zyl)]T
X1 = [x,(3,1) x1(4s1)]T

b) Fork =1,2,---,n

¢) According to equations from Eq. (6) to Eq. (17) for non-
linear state prediction to obtain £, ,, ,, Py, and
K, ,.

d) According to Eq. (18) and Eq. (19) for nonlinear state
update to obtain £, , and P ;.

e) According to equations from Eq. (20) to Eq. (23) for lin-
ear state generalized prediction to obtain x, ;.\, P, ,,_,
and K ,.

f) According to equations from Eq. (24) to Eq. (26) for lin-
ear state update to obtain £, ,, and P ;.

g) According to Eq. (27) and Eq. (28) for linear state gen-
eralized prediction to amalgamate,
Py,.

h)k=Fk+1

and obtain £,, and

,return to the second step.




HIGH TECHNOLOGY LETTERSIVol.24 No.4|Dec. 2018

365

3 Computational complexity analysis

We derive computational complexity to further
analyze the proposed algorithm. For time £, it is as-
sumed that system state and measurement satisfy x, e
K" and z, € K", respectively. In MCKF imple-

mentation process, nonlinear state and linear state are

x1 x1
Xy, € K andx, , € K™

tational complexity of matrix Cholesky factorization with

. The equivalent compu-

n, xn, and n x n dimension are ¢, = n,/3 +2n} and ¢’,
= n’/3 +2n°, respectively. The equivalent computa-
tional complexity of m X m matrix inversion is ¢, = m’.
The computations for standard CKF'”' and MCKF are
given in Table 1 and Table 2.

Table 1 MCKF computational complexity

Reality multiplication Reality plus Other
Step ¢) 4n] +50] + (m’ +3m + 1)n, +3m” +m 6n + (3 +3m)nl + (2m> +m - 1)n, +m> —m  2¢, +¢,
Step d) mn} + (m’ + m)n, mn} + (m” + 1)n, 0
Step e) 4ny + (1 +2m)nj +2m’n, 4nd + (2m =2)n) + (2m* = 3m)n, - m’ 0
Step £)  ny + (m + 1)n + mn, ny + mn; + mn, c,

Reality multiplication; M, = 4n] + (m +5)n} + (2m> +4m + Dn, +3m> + m + 50 + 3m +2)n5 + 2m* + m)n,

In total  Reality plus: A, = 61 + (4m +3)n] + (3m> + m)n, —m + 503 + (3m = 2)nl + (2m* - 2m)n,

Other: E ey = 2(c, +¢,) =2n/3 +4n} +2m’

Table 2 Standard CKF computational complexity

Reality multiplication: M, = 6n° + (m +3)n> + (2m* +4m + 1)n +3m> + m

Reality plus: Ay, = 90’ + (2m +1)n” + (2m* +3m - )n +2m’ - m

Other; E e =2¢', +¢, =2n°/3 +4n> +m’

From the known conditions, n, = n —n,, nis an
integer, then the following formulae are workable.
The difference between M i, and M ;cxp is given:
= My = 6(ny + n2)3 +(m+3)(n, + n2)2
+(2m* +4m +1)(n, +n,) +3m’
+m - (4n], + (m +5)n}

M(,'KI"

+(2m* +4m + 1)n, +3m”)
—(m +5n, + (3m +2)n;
+(2m* + m)n,)
= 2n, + 18n,n; + 18n7n, +2n;
+ (1 =2m)n;
+2(m +3)nn, + 3m +1)n,
> 2n) + 18n,n; + 18n7n, + 2n;
+(B3m+1)n, >0 (29)
The difference between A . and Ak is given:
(3n} =2(m +1)n}) + (27n,n;
+ (3 -m)n))
+ (27nin, — (m = 1)%n,)
+4n +2(2m + 1)n,n,
+ (5m -1)n,
(3n, =2(m +1))n]
+(27n, +3 = m)n]

Ackr = Ayexr =

+ (27n,n, — (m = 1)*)n, +4n}
+2(2m + 1)nn, + (5m - 1)n,
(30)
Eq. (30) is reduced to:
Aer = Ayexe = 301 + (270, = m +3)n;
+ (27n,n, — (m = 1)*)n,
+ (4ng -2(m + l)n?)
+2(2m + 1)nn, + (5m - 1)n,
(31)
The difference between E . and E ;4 is given:
= Eyer = 2(ny + n2)3/3 +4(n, + nz)z
+m’ -2n,/3 —4n] -2m’
= 2nin, +2n,n; +2n/3 + 8n,n,

2 3
+4n;, - m

ECKI"

(32)

According to physical measurement characteris-
tics, the number of sensor measurement dimension is
smaller than state’s. The difference between A, and
Ayexr 18 discussed for two cases.

Case 1 Assuming that the number of nonlinear
state dimension n, is larger than linear state dimension
n,, n >n; >n, =m =1, the following formula is ob-
tained according to Eq. (30).
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3n, - 2(m+1) =2(n, -m) +n, -2=0
27n, +3 -m >0
27n,n, — (m =1)> >27n} = (m -1)* >0
S5m-1>0
(33)
Accordingly , A > Ayexr-

Case 2 Assuming that the number of nonlinear
state dimension n, is less than the linear state dimen-
sionn,, n >n, >n, =m =1, the following formula
is obtained according to Eq. (31).

27n, —-m +3 >0
27n,n, — (m =1)> >0
4n) =2(m +1)n] >2(2n, —-m —1)n} =0
S5m-1>0
(34)
Accordingly, Axr > Ayep-

On the known conditions n;, = m, n, = m and
Eq. (32), 2n,n; = m> > 0 can be got. Accordingly,
ECKI" > EM(,'KI"'

According to analysis above, the sum computa-
tional complexity of reality multiplication, reality plus,

Cholesky and matrix inversion in MCKF are lower than

that of standard CKF.
4 Simulations and analysis

To verify the feasibility and effectiveness of pro-
posed algorithm, Monte Carlo simulations are per-
formed, and the number of Monte Carlo is 200. Taking
root-mean-square ( RMSE) as the performance evalua-

tion.

RMSE = |3 (x, - x,0*/M (35)

In Cartesian coordinate system, assuming that
state transition matrix in Eq. (1) are F, = I,,, and F;
= diag([7,7]). State transition matrix in Eq. (2)
are F; = 0,, and F} = I, ,. Nonlinear measurement
matrix and linear measurement matrix in Eq. (3) are
given as b, (xy,) = (/2" +” atan(y/x))" and C,
= I,,,, respectively. System noise variance is sel as
Q, = diag([0.3° 0.3> 0.05° 0.05°]), and
measurement noise variance is O'fk = diag([ 0.3’
(0. 17/180)%]). The initial system state is given as
%9 = [15km 25km 0.3 km/s 0.5 km/s].

Fig. 2 shows RMSE comparison of MCKF and oth-
er three algorithms. In MCKF, velocity is modeled
separately to construct measurement to provide the in-
novation in update process. At the same time, MCKF
has higher precision compared with CKF in linear esti-
mation process. It can be verified by the real-time

RMSE in Fig.1 and RMSE means values in Table 3,
MCKF is superior to the other three algorithms in esti-

mation accuracy.
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Fig. 2 Comparison of position estimation RMSE

Table 3 shows the comparison of RMSE means
and time consumption for one operation of MCKF and
CKF. MCKEF avoids the process of cubature points cal-
culation in the linear state. Meanwhile, the amount of
inversion calculation is reduced by decomposing larger
dimension matrix into two smaller parts according to
marginalized modeling mechanism. The values in
Table 4 illustrate that MCKF has lower time consump-
tion, which verifies the correctness of calculation com-

plexity derivation.

Table 3 Time and RMSE means of MCKF and CKF
Algorithm CKF  MCKF
0.0048 0.0032
0.1164 0.1079
0.1809 0.1163

Consumption for one operation (s)
Horizontal direction RMSE (km)
Vertical direction RMSE (km)

In order to verify the superiority of MCKF under
the condition of noises, the RMSE means comparison
of the four algorithms under different radial distance er-
ror levels are given in Fig.3. As shown in the figure,
RMSE means increase along with the increase of radial
distances error from 0.1 km to 1.0 km, however the
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accuracy of MCKF is higher than that of UKF, CKF

and PF in overall. The phenomenon is more obvious
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Fig. 4 presents the comparison of RMSE means of
the four algorithms under different azimuth error levels.
Similar to Fig. 3, the RMSE means increase along with
azimuth measurement noise from 0. 01° to 1. 0°, but
the increase of MCKF is minimum. Both Fig. 3 and
Fig. 4 show that MCKF has better ability to suppress
measurement noise and improve the accuracy of state
estimation. The reason is that velocity is directly in-
volved in state update process. At the same time, the
condition of optimal estimation is satisfied in linear es-

timation process.

5 Conclusion

Based on the characteristics of nonlinear system
with linear Gaussian sub-structure, the system model
with the nonlinear part and linear part separately by
marginalized method is established, and nonlinear esti-
mation and linear estimation are carried out by combi-
ning with cubature Kalman filter and Kalman filter re-
spectively. Note that in the process of linear state up-
date, the measurement is obtained by solving the func-
tion of state estimation and step interval. Then, in or-

der to show the proposed algorithm has the improved
performance of estimation accuracy and real-time, it is
deduced theoretically that the MCKF has lower compu-
tational complexity than standard CKF. Finally, simu-
lation experiments and analysis show that the proposed
algorithm outperforms the compared algorithms in per-
formance of accuracy and real-time.
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