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Abstract

The integrated berth-crane allocation problem at container terminals is addressed under the un-

certainty of vessel arrival time at operational level. To ensure both robustness and flexibility of the 2-

stage decision processes,a dynamic decision framework is proposed based on the dynamic analysis of

information and operation at container terminal. A mixed integer programming model is established

aiming at minimizing total cost of all vessels, including the cost of fixed to-be-executed decisions in

the 1 stage and expected cost of the adjustable stochastic-scenario-based decisions of all scenarios in

the 2" stage. A multi-layer nested Tabu search is proposed for each epoch dynamically. Finally nu-

merical experiments have been conducted to testify the effectiveness and efficiency of the proposed

model and algorithm.

Key words: container terminal, berth and crane, uncertainty, Tabu search

0 Introduction

Berth and quay cranes are both key resources of
the seaside operations at container terminals. As high-
lighted by Refs[1,2], it’ s necessary and important to
integrate both berth and crane resources to optimize
seaside operations. Such berth-crane allocation problem
can be viewed as an extension to the resource-con-
strained project scheduling problem, and it is compli-
cated due to the practical constraints involved, e. g.
the contiguity of berth segments assigned to each ves-
sel, the amount of intervals of crane-to-vessel assign-
ment, the interference relationships between cranes,
etc. Refs[3-8] have solved such problem from differ-
ent aspects in certain circumstances.

During practical operations at container terminals,
the influence of uncertainties is inevitable. Possible
uncertainties include variation of vessel arrival time,
fluctuation of vessel processing time, reliability of
cranes and weather condition, etc. , among which the
vessel arrival time is usually the most common and in-
evitable one'®’. This parameter reveals vessel by vessel
as time elapsing. The closer to a vessel’ s expected ar-
rival time, the more accurate information about its ac-
tual arrival time can be obtained.

However, as a practical and realistic issue, how
to effectively deal with the impacts of uncertain factors

becomes the focus of recent researches. Considering
the uncertainty of vessel arrival time, Ref.[9] ad-
dressed the berth template from the tactic perspective.
The problem was modeled as a rectangle packing prob-
lem on a cylinder and a sequence pair based on simula-
ted annealing algorithm which is adopted. Under the
uncertainty of vessel operation time, Ref. [10] regar-
ded the berth allocation problem as a bi-objective prob-
lem with the objectives of minimizing the risk and total
service time. An evolutionary algorithm based heuristic
and simulation-based Pareto front pruning algorithm was
proposed to solve this problem effectively. Ref. [11] in-
vestigated the berth allocation problem at tactical-level
with the uncertainty of vessel’ s operation time. A ro-
bust berth allocation schedule was developed to cope
with such stochastic formulation. With the uncertainty
of vessels arrival and operation times, Ref. [12] pro-
posed a bi-objective robust berth allocation model con-
sidering the balance between cost and customer satis-
faction, and an adaptive grey wolf optimizer algorithm
was developed to solve this model, while Ref. [13]
developed a conceptual model of ship-to-berth alloca-
tion problem with collaborative approach to reduce the
total handing time and improve resources utility. Since
the initial data obtained could be changed, Ref. [14]
proposed a multi-objective optimization model to mini-
mize the total service time and maximize the robustness

or buffer time coping with the deviation between actual
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information and initial data. While considering the
quay crane setup time of shifting along quay,
Ref. [ 15] established two robust optimization models to
deal with data uncertainties. A genetic algorithm
(GA) and an insertion heuristic algorithm were pro-
posed to solve these models respectively. Since the
marginal productivity of quay cranes was decreased and
the handing time was increased due to the deviation
from the desired position, Ref. [16] proposed a novel
valid inequality and variable fixing methods with an
adaptive large neighborhood sarch ( ALNS) heuristic.
When facing disruptions, Ref. [17] used quay
crane rescheduling and berth reallocation strategy to
handle the disruptions. Ref. [18] focused on the dis-
ruption of quay crane breakdowns during the execution
of scheduling; the behavior perception-based disruption
models was developed to minimize the negative devia-
tion from the originally planning. Considering the objec-
tive of minimizing the total realized cost of modified
berth scheduling with a given baseline scheduling,
Ref. [19] developed the optimization based algorithm
and alternate heuristic approach to solve the hybrid
berth allocation problem ( BAP) for bulk ports under
uncertainty of vessels arrival time, while Ref. [20]
studied the BAP on a rolling horizon under the uncer-
tainty of vessels arrival time and handing time.
Generally, the typical strategies coping with the
uncertainties include proactive planning with reactive

. . [2123]
policies

[20, 24]

, and dynamic planning under rolling ho-
rizon . Generally, the former strategy emphasizes
on the robustness of planning by taking account of and
hedging against the possible scenarios of uncertainties
ahead of time. While the latter strategy emphasizes on
the flexibility of planning by utilizing the latest informa-
tion on uncertainties, and delaying the decisions is till
indeed required.

In this paper, the dynamic decision framework is
proposed to integrate the robustness and flexibility
mentioned above, which adopts a 2-stage approximate-
model of the

25
process[

2-stage  stochastic  optimization
', On one hand, at each epoch, the robust-
ness of 1% stage to-be-executed plan is enhanced by
proactively preparing contingent plans for stochastic
scenarios of 2™ stage. On the other hand, the flexibil-
ity of 2" stage decision is retained by reserving its right
to be modified at later epochs, so that the continuously
updated information can be better used. Since the pro-
active plans of the 2" stage are the extended decisions
of the 1" stage, it can be modified at later epochs.
Considering the accuracy of processing time, instead of
using the average quay crane value, the operation of a

single vessel is based on quay crane scheduling prob-

lem (QCSP) formulation'®’ .

The rest of this paper is organized as follows; Sec-
tion 1 describes the problem as a 2-stage approximate
scheme, a dynamic decision framework is proposed. A
multi-layer nested Tabu search for the decision making
at each consecutive epoch is proposed in Section 2.
The numerical experiments are conducted in Section 3.
Finally, Section 4 concludes the whole paper.

1 Decision mechanism and modeling

1.1 Dynamic description

For building a dynamic decision-making frame-
work based on 2-stage approximate optimization model ,
the following illustration is done.

1) Decisions are made at the beginning of each
epoch, although some uncertainties are revealed during
an epoch, new decisions won’ t be made until next ep-
och begins.

2) The vessel arrival time is the only stochastic
parameter, and it is revealed at least during the previ-
ous epoch of its actual arrival. In other words:

i) When an epoch begins, all the uncertain infor-
mation in this epoch has already been revealed, i.e. ,
the arriving vessels and their actual arrival time.

ii) When an epoch ends ( the begin of the next
epoch) , all the uncertain information of next epoch
will be revealed.

iii) Note that some information may be revealed
ahead of time by more than one epochs, but it’s not
necessary to make final decisions for it at once, i.e. ,
even if making right now, decisions can be changed till
its actual arriving epoch.

3) The distribution of each vessel arrival time is
independent, and the stochastic information of each
vessel is given by scenarios.

4) For the convenience of yard operation, each
vessel’ s berth position should be determined at least
one epoch ahead of its arrival time.

A simple example is provided in Fig. 1 to illustrate
the seaside resources allocation plan. Based on the dy-
namic description above, at & (the beginning of epoch
k), three types of vessels can be confirmed, as shown
in Fig. 1, including.

® Vessels that are started at k& but unfinished.
Some arrived before epoch k£ -1, some during epoch k
-1 (Vessel 1, 2).

® Vessels that are un-started at k& but will arrive
during epoch k ( before epoch k +1). Some arrived
before k& ( Vessel 3), some will arrive during epoch £
(Vessel 4-6). Some will be started in epoch & ( Vessel
3-5), some planned to be delayed after epoch k& ( Ves-
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sel 6).

® Vessels that are stochastically arriving during
epoch k£ +1 through epoch k +s (Vessel 7-13, s =3).

Label these three types of vessels A, B and C re-
spectively, and the known parameters and decisions in-
clude;

® For type-A vessels: known parameters include
arrival time (A") , berthing position (b") , crane num-
ber (¢"), start time (s" = k).

At epoch k, complete the remaining operation
with the crane number already distributed.

® For type-B vessels; known parameters include
arrival time (A”) , berthing position (5”).

Firstly, decide the value of delay indicator (u) , if
the vessel is planned to be delayed after epoch &, then
setu = 1, otherwise u = 0. As a decision parameter u

T Berth position

k-1 k k+1

divides V* into V* and V*'. For (V*) (u = 0), fixed
to-be-executed decisions will be made in the 1% stage,
including start time (s™) and crane number (¢”),
while other vessels (u = 1) will make the adjustable
stochastic-scenario-based decisions in the 2" stage,
their schedule plans can be adjusted in the subsequent
decision-making epoch.

® For type-C vessels: known parameters include
arrive time (A°) in all possible scenarios.

Unique berthing location (6“) is determined in
the 1" stage, while other stochastic-scenario-based de-
cisions, e. g. start time (s°) and crane number (c°)
will be determined in the 2" stage. All the stochastic-
scenario-based decisions can be revised in the following

epochs.

k+2 k+3 time

Fig.1 An illustration of seaside resource allocation plan

In general, the parameters can be divided into two
parts; determined parameters of the 1 stage and the
stochastic-scenarios-based parameters of the 2™ stage,
opposite to the fixed to-be-executed decisions of the 1*
stage and the adjustable stochastic-scenario-based deci-
sions of the 2" stage. The fixed decisions in the 1
stage is used for actual execution, while the adjustable
decisions in the 2™ stage of all scenarios are tempora-
ry, and are used to estimate the former one. At epoch
k, the 2-stage decision structure is showed in Table 1.

At each decision time k, the objective is to mini-
mize the sum of fixed and expected of adjusted costs,
measured by total dwell times. Mathematically written

as:
minf(x,) + E,[f(x,,, 1 x,) ] (D)
where, x, = {u, s”, ™, b°},
Bl Bl € C
X1 = %Sm ’ Cm ’ Swy Ca,}

Table 1  The 2-stage decision-making structure in epoch k
1 stage Parameter Decision
A A bt et S -
B AP b° u, s™, ™
C - b*
2" stage Parameter Decision
Bl AP bE o, s, ™ el
C Ag , b si s cf)

1.2 Mathematical model

Evaluate the effectiveness and efficiency of the
fixed decisions made in the 1™ stage through the sto-
chastic-scenario-based decisions in the 2" stage under
uncertain circumstances. Making full use of the certain
and uncertain information obtained, taking into account
of both robustness and feasibility during decision-mak-
ing process, a scenario-based 2-stage approximate opti-
mization model is proposed. In epoch k, the model is
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formulated as follows.
Parameters
eV =
L{ le’ R Set of vessels
qge Q=
Set of quay cranes
1,01 ey
teTl = Set of discretized time period, regard k
{1,---,T} as relative 0 point
c{ul’e 0’5} Set of scenarios
The relative time of decision point £ + 1
T° .
to the point k, T°<T
L Length of the quay (discrete segment)
L; Length of vessel i
A, Arrival time of vessel i in scenario @
R Minimum allowed QC number assigned to
i vessel i
R Maximum allowed QC number assigned to
: vessel i
Cy Task time of vessel ¢ by ¢ QCs
viovE Subset of three kinds of vessels
b Actual berth position and assigned QC
o number of type-A vessels i
b? Actual berth location of type-B vessels i

Decision variables

Berthing position of vessel

Start processing time of vessel i in scenario @
End processing time of vessel i in scenario w
Number of assigned QCs of vessel i in scenario w
=1, ifb, + L; < b;; =0, otherwise

=1, ife,, <s;

03 =0 in scenario @, otherwise
=1, if vessel i is being served at time ¢ in scenar-
iow; = 0, otherwise

QC number assigned to vessel ¢ at time ¢ in sce-
nario w

=1, if vessel i assigned ¢ quay cranes in scenario
o = 0, otherwise
=1, ifi e V® and vessel i is delayed after epoch

k; =0, otherwise

Objective function ;

Minimize Z (6,;,(,, -4,,)/Q
lo

(2)

Subject to:

b, =bl,VieV', o
=c, VieV, o
=0, VieV', o

=e,, YieV', o
=0, VieV, o

(3)
(4)
(5)
(6)
(7)

_Q.uigci,m_ci,l$0.uvieVByw (8)
~Teu <s,,-s,<T-u¥YieV,0o (9)
T (u-1)<s,,-T"<T-uVielV, o
(10)
—T-ui<eiw—eiql$T-uVieVR,a) (11)
(t+1) "ry,<e,, Vi, t,» (12)
t.rii,m+T'(1_ri1,w>BSi,u)’ vl, t,(,()(13>
Zril,a} =€ o " Siws VZ,(U (14)
Zviq‘w =1, Vi, o (15)
q
Zq-viq,w =¢,, Vi, w (16)
q
ZCiq-viq,m =€, S, Vi, (17)

q
Q.<_rit,w) Sxit,wso'riz,w’ Vi,t,o (18)
Q.(rit,m_l)sxit,w_qi,w$0.<1_ril,m),

Vi, t, (19)
DN, <0, Vi (20)
by +L-(1-y;) =b +L, Yi#j (21)

s +T-(1 -7

J,@

) =e ,+L, Vi#jo0

ij,®

(22)
Yi T Vi v, t25i, =1, ViFjo (23)
b, e {1,-,L-L, +1}, Vi (24)
Siws iy € §Ai,w7.“?T} , Vi,o (25)
Ciw € {R™ - R™}, Vi, (26)
Yis Zij> Tiws Vigw € {0 (27)
x,, € 101 U {R™ -+ R™}, Vi,w (28)
u, e (0,11, YielV (29)

The objective function Eq. (2) minimizes expec-
ted cost of all scenarios at epoch k, which is measured
by the vessels total dwell time. Since the constrained
relationships are expressed by scenarios, for the fixed
decisions of type-A and type-B vessels, adding func-
tions Eqs(3) — (11) as fixed constrains to reconcile
the decisions in all scenarios, make sure function
Eq. (1) is equal to function Eq. (2) in essence. Con-
straint Eqs(12) - (13) define r,, , based onss, ,, e

Constraint Eq. (14) ensures that each vessel can be
processed without interrupting. Constraint Eqs (15) -
(16) define v,, , based on ¢, ,. Constraint Eq. (17)
ensures the processing time is based on the QCSP opti-
mization. Note that C;, in constraint Eq. (17) is calcu-
lated by the QCSP formulation. Constraint Eqs(18) -
(19) define « Constraint Eq. (20)
confines the upper and lower bound of QC available for
terminal. Constraint Eqs (21) — (22) are the defini-

Constraint Eq. (23) makes sure that

i.o based on r; .

tion of y; and z; .
one berth location can’t be occupied by different ves-
sels at one time. Constraint Eqs (24) — (29) are the

domains of definitions for decision variables.
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Notice that all the certain information revealed
during epoch % is about the vessels which are going to
arrive in epoch k£ +1, and would not have influence on
the resource assignment and actual execution in the
current epoch, thus no reactive strategy needs to be
prepared in operation process under such dynamic
framework proposed above. Actually reactive policy of
uncertainty exists in the stochastic-scenario-based deci-
sions of the 2™ stage, which keeps its adjustment op-
portunities in the following epochs.

2 Tabu search

2.1 Framework
Based on the modeled 2-stage decision sequence,

a multi-layer nested Tabu search is proposed, whose
framework is shown in Fig.2.

TS, is based on a given initial priority list L.
searching for space {L} ; for each L, decode to its ini-
tial 1"-stage decision &, , and call TS2.

TS, is based on &), given from initial 1™-stage de-
cision by TS, : move on ¢” and re-decode to search for
space {£, | ; for each given £, supply its initial 2"'-stage
decision &, , then call TS,.

TS, is based on &, made in TS, : searching space
{L,} in all scenarios re-supple to get more 2"'-stage
decisions &, ,,.

The Tabu search procedure is provided in Table 2.

Pass 1
TS, Decode z‘—b W P00 Q:’ A% 4P
0
Pass 2 —c
> C <\‘:|AB',A
L Pass 1
B B0 BO
S, Re-decode - R =YY
c
| &
l Pass 2 o »C j Am,;lc
¢ A 9 f)? i Bl _Bl
Supplement Pass 2 2kl | 55,6, Bl 4C
c o | Yz A4
fk SasCa
—p TS, Re-supplement L, (®) Pass 2 fiuk 3gCa W AB! A€
& SorCo o

Fig.2 Multi-layer nested Tabu search framework under uncertain vessel arrival time

Table 2 Procedure of nested Tabu search:1-phase, 3-layer, 2-stage

Get initial L°. L* . =1L°.
TS, start

Construct N(L" ) : swap=L[ ]. (L" is included in the 1" iteration)

For Le N(L" ), If [T(L) not tabued
First Fit= &
&= é
TS, start

Construct N(& ) 1L, (C®)" 1 =¢,[]. (& is included in the 1™ iteration)

For&, e N(& ), U II(€,) not tabued
First Fit= &),
f}jﬂ = ﬁn
For scenario w

TS, start

Construct N(&,, ) : 1€, Ly(w) Y =&1.0l 1o (&1, 1s included in the 1™ iteration )
For¢,, ., e N(&. ), UIT(L,(w)™) not tabued
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Continued Table 2

Locate &/,, , € N(&/,, ) with the least cost

gl:;l,w :

TS, end, return sampled cost of &,
Repeat scenario w for expected cost of &,

Locate £ e N(¢, ) with the least expected cost

= £/,1.., update Tabu3. Tterate, repeat to construct N(&/,, )

& . = &, update Tabu2. lterate,repeat to construct N( &, )

TS, end, return cost of L
Locate I € N(L" ) with the least cost

L" . = [, update Tabul. Iterate, repeat to construct N(L" )
TS, end

2.2 TS, :priority list L

Priority list L is used to generate the fixed deci-
sions in the 1st stage (decode to get initial in TS, and
re-decode to more get in TS, ), and then generate the
initial 2nd-stage decision with given (supplement to in-
itial in TS, ), which consists of two segments; vessels
{A} and {B, C}.

priority in any feasibility L since their resumption at

The type-A vessels have the top

epoch k£ is enforced. The type-B and C vessels are
mixed in L, since they have equivalent priorities in de-
cision making process. The initial list L” is generated
empirically ; sort type-A vessels by EDD rule, and sort
type-B and type-C vessels by FCFS rule. According to
the classification of vessels in Section 1.2, vessels’
priority list is generated. An example of priority list is
shown in Fig. 3.

Fig.3 An illustrative example of list

As mentioned above, the type-B vessels will be
divided into two categories;: {BO| (with u =0) is
planned to start in current epoch k&, while {Bl} (with
u=1) is planned to postpone their starting time until
not earlier than the next epoch. Note that such division
of type-B vessels belongs to the 1st-stage decision ¢, it-
self. As a result the type-BO and Bl vessels are mixed
in the L, i. e., no division has to be explicitly speci-
fied in L, instead, given L, the types of BO and Bl
will be naturally revealed once decoding &, ,, into &,.

To search the neighbor of L, make single swap
moves within a randomized neighborhood ””’. Since
type-A vessels are nothing to do with the actual deci-
sion, the swap operation only needs to be done in the
segments of type-B and type-C vessels. The Tabu ob-
ject is the swap operation of upper moves: Tabu num-
ber is randomly generated between Tabu max and Ta-

bu _ min, the Tabu search will be processed till the
maximum cycle number iter _ max.

To decode to &) from given L, add vessels into
partial plan one by one using the first fit ( FF') policy
according to L, considering the remaining resources of
berth and QC available. There are two passes: first
pass decodes for the type-A and B vessels, and the
second pass decodes for the type-C vessels.

For each vessel in L

If type-A: retain b", ¢" and continue processing
from the time k.

If type-B: retain b", and find the minimum s be-
tween time k and k£ +1 with a maximum feasible ¢. Set
u=0,s" =0, " =cif found, setu = 1 otherwise.

Else type-C. skip.

For each vessel in L

If type-B1: retain b”, and find the earliest s after
time k£ +1 with a maximum feasible c.

Else if type-C: find the earliest s after estimated
time of arrival (ETA) with a maximum feasible ¢ and a
minimum feasible b. Set b° = b .

Else skip.

Note that in the first pass, type-B vessels that are
unable to start before time k + 1 are determined to be
type-B1,and no further decisions of the 1° stage have
to be made for them. However in the second pass, de-
termining their provisionary s, ¢ values helps to deter-
mine some decisions (b°) of type-C vessels in the 1"
stage.

2.3 TS,: 1" stage &,

Since the quay crane resource has a decisive role
in the seaside operation, once the allocated quay crane
has changed, the processing time of a vessel will be
changed accordingly. For getting more feasible deci-
sions in the 1" stage, re-decoding has been done to get
more &, in TS,.

To search neighbor of &, which is decoded (or re-
decoded) from some list L, first make moves on ¢ by
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shifting ¢;, ¢; values between selected pairs of vessels
(i, ), and then re-decode L to a neighbor &, based on
the newly fixed ¢;, c]i values.

The vessel pair (i, j) will be selected if both ves-
sel 7 and j are type-BO vessels, and if vessel i and j are
simultaneously under processing for at least one time
segment. Each feasible number of shifted cranes (§)
between vessel ¢ and j will be a possible move, as long
as vessel i and j don’ t break their requirements on the
maximum and minimum crane numbers, i.e. , as long
as

dR™ < ¢ -5 <R™

ler) $ c. — 8 $ R;nax’ an y ] !

The re-decoding procedure is similar to the deco-
ding in TS, , except for the provisional setting of R™" =
R™ =¢ =¢ +8,and R™ = R™ = cj =¢ — 6.

The Tabu object is the swap operation of ¢; and c;.

To supple from given &, to &}, , add type-B1 and
type-C vessels into partial plan of £, one by one using
the FF policy according to priority list L in scenario w
considering remaining available berth and crane re-
sources. For each respective scenario w, there is only
one pass that decides for the type-Bl and C vessels,
which is similar to the 2™ pass of decoding procedure
in TS, , except that b values are already fixed for type-C
vessels.

For each Scenario w
For each vessel in L

If type-B1: retain b”, and find the earliest s, after

time k& + 1 with a maximum feasible c,. Set s’ = s
Bl

c, =c,

w?

If type-C: retain b°, and find the earliest s, after
A® with a maximum feasible ¢,. Sets’ =s,, ¢ = ¢

Else skip.

2.4 TS,: 2" stage &,,,

To search the neighbor of &,,,, &,,, is supplemen-
ted or re-supplemented from some &, which has been
decoded (or re-decoded) from some list L. In scenario
w, first make single swap moves on L, (@) which is a
partial list consisted of type-Bl and C vessels, and
then make re-supplement for &, to get a neighbor &,,,
based on new L, (w).

The single swap moves are similar to those in TS,.
The re-supplement is the same as the supplement pro-
cedure in TS,

The Tabu object in scenario w is the reverse of
swap operation, as in TS,.

3 Numerical experiment

3.1 Experiment environment

Using the parameter distribution provided in
Ref. [ 28 ], information of vessels in two weeks is gen-
erated, including each vessel’ s expected arrival time,
minimum and maximum allowed QC number, predicted
workload and length.

As Ref. [28], the quay length is 1 000 m and
discretized by 10 m, the time horizon is discretized by
1hr, the total quay crane number is 10. The small, me-
dian and large problem scales involved are respectively
20, 30 and 40 vessels per week. The epoch length is
set to be 24 h, and the horizon of 2" stage decision to
be 24 h. The arriving times of 3 latest vessels are mod-
ified to be 0 as the type-A vessels and also pre-specify
berthing locations and cranes allocation for type-A and
B vessels of the 1™ epoch. Furthermore, the processing
time of a single vessel is based on the QCSP optimiza-
tion, and the scenarios of uncertain arriving time of po-
tential type-C vessels are generated following the normal
distribution N(ETA,, ), and ¢ = 3.

At the beginning of each epoch k, information of
tasks to be processed is firstly updated: type-A vessels
are identified and their remained workloads are calcu-
lated based on decisions of epoch k —1; type-B vessels
are renewed based on the 17 stage decisions as well as
the newly reviewed uncertainty during epoch k£ —1; the
scenarios of uncertain arrival time of potential type-C
vessels are re-generated. The scenario pool size is
2 000, and the sample size in TS; is 30. The actual
scenario is randomly selected from the scenario pool,
unrelated to the samples.

By the end of the 7" epoch, the arrival time of
finished and in-process vessels are known with certain-
ty. The posterior optimization can be conducted for
these vessels, using Cplex or TS to get the contrast so-
lution from the deterministic model.

The algorithm is coded in C# and run on a PC
with 2.6 GHz CPU and 4 G RAM. Parameters of Tabu

search are set as in Table 3.

Table 3  Parameters for Tabu search

Parameters TS, TS, TS,
o' 5 - 5

B 10 - 10
y 5 - 5
Iter max 10 10 1
Tabu _min [list1/2 2 2
Tabu _ max [list | 5 5
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Based on the parameters and the sets of test, five
kinds of experiment environment tests are made for

comparing. The specific sets are shown in Table 4.

Table 4  Comparison of tested environment in numerical experiment

Test environment Certain Uncertain
Test number 1.1 2 1.2 3 4
Completel Partial Completel
Information type omp e. o ar I? omp e. i Random scenario Expert scenario
posterior posterior posterior
Decision method Single Rolling Single Rolling Rolling
Algorithm Cplex Cplex TS TS Cplex
2-ste
. 1-stage 2-stage ® orge 2-stage 2-stage
Resolution model . approximate . .
(7 epochs) approximate approximate approximate

Directly call

Method set Directly call 1 scenario in

the 2nd stage s

(1 +6epochs)

30 scenarios randoml

6 epochs with Y Directly call
L selected from O
1 scenario in the . . 1 scenario in the
scenario pool in the
2nd stage 2nd stage

2nd stage

Detailed setup is as follows.

Test 1; Certain environment, based on the com-
pletely posterior information.

Test 1. 1; Using Cplex, solving the modified 1-
stage optimization model ( including 7 epochs) in a
single way.

Test 1.2 Using the simplified multi-layer nested
Tabu search, solving the modified 2-stage approximate
optimization model in a single way, including 1 epoch
in the 1" decision stage, and 6 epochs with 1 scenario
in the 2" stage.

Test 2; Certain environment, based on partial
posterior information, at each decision point, only the
uncertainty of the next epoch can be revealed. In each
epoch, solving the 2-stage approximate model by Cplex
with rolling horizon (including 1 epoch in the 1% stage

nd

and 1 epoch with 1 scenario in the 2™ stage).
Test 3; Uncertain environment, based on the cer-
tain information in current epoch and random scenario

based information of the following epoch. In each ep-

och, solving the 2-stage approximate model by multi-
layer nested Tabu search with rolling horizon (inclu-
ding 1 epoch in the 1™ stage and 1 epoch with 30 sce-
narios randomly selected from scenario pool in the 2™
stage ) .

Test 4 ;. Uncertain environment, based on the cer-
tain information in current epoch and expert scenario
information of the next epoch. In each epoch, solving
the 2-stage approximate model by Cplex (including 1
epoch in the 1™ stage and 1 epoch with 1 scenario in
the 2™ decision stage).

3.2 Experiment results

Experiment results are shown in Table 5. The
‘obj’ column reports the object value of each method.
The ‘gap’ column reports the gap between ‘obj’ val-
ue and 1.1 “obj’ values. “ * ” means the low bound
of Cplex, accuracy solution otherwise. And the average

computing time of each scale is shown in Table 6.

Table 5 Results of numerical experiment

Posterior Randomly scenario Expert scenario
V # 1.1Cplex 2 Cplex 1.2TS 3TS 4Cplex
obj obj gap obj gap obj gap obj gap
20 1 194 194 0.00% 194 0.00% 196 1.03% 203 4.64%
2 264 264 0.00% 264 0.00% 264 0.00% 268 1.52%
3 167 167 0.00% 167 0.00% 176 5.39% 176 5.39%
4 243 243 0.00% 243 0.00% 246 1.23% 250 2.88%
5 182 182 0.00% 182 0.00% 185 1.65% 199 9.34%
6 174 174 0.00% 174 0.00% 174 0.00% 178 2.30%
7 196 196 0.00% 196 0.00% 204 4.08% 208 6.12%
8 201 201 0.00% 201 0.00% 201 0.00% 207 2.99%
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Continued Table 5

9 155 155 0.00% 155 0.00% 155 0.00% 155 0.00%

10 197 197 0.00% 197 0.00% 197 0.00% 198 0.51%

Average 0.00% 0.00% 1.34% 3.57%

40 1 248 250 0.81% 250 0.81% 249 0.40% 259 4.44%

2 335 335 0.00% 335 0.00% 336 0.30% 336 0.30%

3 239 239 0.00% 239 0.00% 252 5.44% 253 5.86%

4 335 335 0.00% 335 0.00% 341 1.79% 346 3.28%

5 267 267 0.00% 269 0.75% 269 0.75% 276 3.37%

6 261 261 0.00% 264 1.15% 267 2.30% 273 4.60%

7 278 278 0.00% 283 1.80% 291 4.68% 303 8.99%

8 281 281 0.00% 281 0.00% 281 0.00% 281 0.00v

9 255 255 0.00% 255 0.00% 256 0.39% 263 3. 14%

10 288 288 0.00% 291 1.04% 303 5.21% 325 12.85%

Average 0.08% 0.55% 2.13% 4.68%

60 1 328 331 0.91% 335 2.13% 340 3.66% 350 6.71%

2 430 = 462 7.44% 459 6.74% 467 8.60% 470 9.30%

3 330 * 334 1.21% 336 1.82% 354 7.27% 366 10.91%

4 381 = 424 11.29% 429 12.60% 429 12.60% 443 16.27%

5 356 370 3.93% 380 6.74% 380 6.74% 403 13.20%

6 364 * 364 0.00% 366 0.55% 373 2.47v 404 10.99%

7 365 386 5.75v 390 6.85% 401 9.86% 423 15.80%

8 371 371 0.00% 371 0.00% 374 0.81% 393 5.93%

9 428 433 1.17% 435 1.64% 435 1.6%4 448 4.67%

10 378 402 6.35% 404 6.88% 419 10.85% 458 21.16%

Average 3.81% 4.59% 6.45% 11.50%
Table 6 Average computing time of numerical experiment formation in the 2™ stage during dynamic decision-
v 1.1 Cplex 2Cplex 1.2TS 3TS 4 Cplex making process, and also indicates the necessary of 2-
(min)  (min)  (min)  (min)  (min) stage optimization in each epoch. If the uncertain infor-
20 0.8 0.3 0.1 1.2 0.3 mation of the next epoch can be obtained accurately,
30 9.6 0.6 0.9 14.4 1.6 the 2-stage optimization based decision-making frame-

40 111.1 176.6 5.1 33.9 280.7

In Test 1. 1, the small and median cases can be
effectively solved by Cplex, optimal solutions are found
in average 0. 8 min and 9. 6 min respectively. Other-
wise, only 3 large cases can be solved within 5 h, cos-
ting 111.1 min on average, and the rest of 7 large ca-
ses can’ t be solved in 5 h. It is thus clear that based
on the completely posterior information, large cases
can’ t be solved effectively by Cplex. The optimal solu-
tions and the lower bound in this experiment provide a
reference for further experiments.

Based on the partial posterior information, Test 2
uses Cplex to solve 2-stage approximate model in a roll-
ing horizon. Most of the cases can be solved effective-
ly. Compared with Test 1.1, Test 2 can get the same
or approximate solutions, even much faster, the aver-
age gaps of different scales are 0% , 0.08% , 3.81%
respectively. It shows the importance of uncertain in-

work can have a great performance compared with the
completely posterior information.

Test 1.2 based on the completely posterior which
is the same as Test 1.1, solves the test by the modified
multi-layer nested Tabu search. In small cases, it can
have the same performance as decisions in Test 1.1
and Test 2, even much faster, only 0. 1min on aver-
age. In median cases, the decision quality has no ob-
vious differences from the singe or the rolling Cplex,
the gap is 0.55% on average, and its calculating time
is around 0.9 min, which is less than single Cplex and
approximate to the rolling Cplex. In large cases, the
average gap is 4.59% , calculating time is 5.1 min on
average, which is far less than the single and rolling
Cplex. It shows that the multi-layer nested Tabu search
proposed has a great performance in certain circum-
stance ; the differences in quality and computing speed
are both within the acceptable range comparing with
Cplex.
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Test 3 uses the dynamic decision-making frame-
work proposed with multi-layer nested Tabu search un-
der uncertain circumstance. In each epoch, the 2-stage
approximate optimization model is solved with certain
information in current epoch and the randomly scenario
information of following epochs. The average gap of
different scales is 1.34% , 2.13% , 6.45% , respec-
tively.

Compared with Test 2 and Test 1. 2, the incre-
ment is not notable, which means the adjustable deci-
sions in the 2™ stage can effectively response to the un-
certainties, a better decisions in the 1% stage can be
obtained, the posterior optimality of the 2-stage deci-
sion can be enhanced. Since the adjustable decisions
should be made in all scenarios selected, the average
computing time of large scale is 33.9 min, still within
the acceptable range.

Test 4 is similar to Test 2, using Cplex in rolling
horizon, based on the expect information of next ep-
och’ s randomly scenarios instead. The average gaps of
different scales are 3.57% , 4.68% , 11.5% , respec-
tively, far more than the corresponding value in Test
3. It indicates that using expert information in 2™ stage
can’t deal with the uncertainties very well even using
Cplex. It also shows the value and importance of ran-
dom scenario based information in the 2-stage approxi-
mate optimization model with decision-making frame-

work proposed.

3.3 Sensitivity analysis

The sensitivity analysis is made for the uncertainty
of vessels arrival time, of which value is set as 2, 3
and 4 under different stochastic circumstances. The
sensitivity of gaps is obtained as Section 3.2 does. The
trend of average gap value in each scale case is shown
in Fig. 4.

It can be observed that there are still consistent
conclusions as Section 3. 2 under different values of
o!. In addition, with the increases of ¢!, the increase
of Test 3 gap is not notable, while the difference be-
tween Test 4 and Test 3 is increased, which shows that
the dynamic stochastic-scenario-based decision frame-
work proposed has a more pronounced effect when the
degree of uncertainty is increasing.

4 Conclusion

This paper addresses the integrated berth and
quay crane allocation problem under uncertain circum-
stances. Set vessel arrival time as stochastic parameters
with continuous berth position. Based on the analysis
of the characteristics of information and operation in 2-

stage stochastic optimization process, a 2-stage approx-
imate model is proposed. A dynamic decision-making
framework is developed with the stochastic-scenario-

based decisions in the 2™

stage, and the multi-layer
nested Tabu search is proposed to deal with this mixed
integer programing effectively. The numeral experi-
ments show that such decision-making framework with
multi-layer nested Tabu search can get an approximate
optimal solution which is much close to the theoretical

optimization in completely posterior situation.
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Fig.4 Sensitivity of gaps under different o

values for different scale cases
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